Skip to main content

Fuzzy Integral for Rule Aggregation in Fuzzy Inference Systems

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2016)

Abstract

The fuzzy inference system (FIS) has been tuned and revamped many times over and applied to numerous domains. New and improved techniques have been presented for fuzzification, implication, rule composition and defuzzification, leaving one key component relatively underrepresented, rule aggregation. Current FIS aggregation operators are relatively simple and have remained more-or-less unchanged over the years. For many problems, these simple aggregation operators produce intuitive, useful and meaningful results. However, there exists a wide class of problems for which quality aggregation requires non-additivity and exploitation of interactions between rules. Herein, we show how the fuzzy integral, a parametric non-linear aggregation operator, can be used to fill this gap. Specifically, recent advancements in extensions of the fuzzy integral to “unrestricted” fuzzy sets, i.e., subnormal and non-convex, makes this now possible. We explore the role of two extensions, the gFI and the NDFI, discuss when and where to apply these aggregations, and present efficient algorithms to approximate their solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zadeh, L.: Fuzzy sets. Inf Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Zadeh, L.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 3(1), 28–44 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mamdani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  4. Sugeno, M.: Industrial Applications of Fuzzy Control. Elsevier Science Inc., New York (1985)

    MATH  Google Scholar 

  5. Tsukamoto, Y.: An approach to fuzzy reasoning method. Adv. Fuzzy Set Theory Appl. 137, 149 (1979)

    MathSciNet  Google Scholar 

  6. Yubazaki, N., Yi, J., Hirota, K.: Sirms (single input rule modules) connected fuzzy inference model. JACIII 1(1), 23–30 (1997)

    Article  Google Scholar 

  7. Seki, H., Mizumoto, M.: Sirms connected fuzzy inference method adopting emphasis and suppression. Fuzzy Sets Syst. 215, 112–126 (2013)

    Article  MathSciNet  Google Scholar 

  8. Sugeno, M.: Theory of Fuzzy Integrals and Its Applications. Tokyo Institute of Technology, Tokyo (1974)

    Google Scholar 

  9. Anderson, D.T., Havens, T.C., Wagner, C., Keller, J.M., Anderson, M.F., Wescott, D.J.: Extension of the fuzzy integral for general fuzzy set-valued information. IEEE Trans. Fuzzy Syst. 22(6), 1625–1639 (2014)

    Article  Google Scholar 

  10. Yager, R.: A general approach to rule aggregation in fuzzy logic control. Appl. Intell. 2(4), 333–351 (1992)

    Article  MathSciNet  Google Scholar 

  11. Yager, R.R., Filev, D.P.: Induced ordered weighted averaging operators. IEEE Trans. Syst. Man Cybern. Part B Cybern. 29(2), 141–150 (1999)

    Article  Google Scholar 

  12. Tahani, H., Keller, J.: Information fusion in computer vision using the fuzzy integral. IEEE Trans. Syst. Man Cybern. 20, 733–741 (1990)

    Article  Google Scholar 

  13. Grabisch, M., Nguyen, H., Walker, E.: Fundamentals of Uncertainty Calculi, with Applications to Fuzzy Inference. Kluwer Academic, Dordrecht (1995)

    Book  MATH  Google Scholar 

  14. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners, 1st edn. Springer, Heidelberg (2008)

    Google Scholar 

  15. Anderson, M., Anderson, D.T., Wescott, D.: Estimation of adult skeletal age-at-death using the sugeno fuzzy integral. Am. J. Phys. Anthropol. 142(1), 30–41 (2010)

    Google Scholar 

  16. Anderson, D.T., Keller, J.M., Anderson, M.F., Wescott, D.J.: Linguistic description of adult skeletal age-at-death estimations from fuzzy integral acquired fuzzy sets. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 2274–2281. IEEE (2011)

    Google Scholar 

  17. Grabisch, M., Murofushi, T., Sugeno, M.: Fuzzy Measures and Integrals: Theory and Applications. Physica-Verlag, Heidelberg (2000)

    MATH  Google Scholar 

  18. Anderson, D.T., Keller, J.M., Havens, T.C.: Learning fuzzy-valued fuzzy measures for the fuzzy-valued Sugeno fuzzy integral. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 502–511. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Beliakov, G.: Construction of aggregation functions from data using linear programming. Fuzzy Sets Syst. 160, 65–75 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mendez-Vazquez, A., Gader, P., Keller, J., Chamberlin, K.: Minimum classification error training for choquet integrals with applications to landmine detection. IEEE Trans. Fuzzy Syst. 16(1), 225–238 (2008)

    Article  Google Scholar 

  21. Grabisch, M., Kojadinovic, I., Meyer, P.: A review of methods for capacity identification in choquet integral based multi-attribute utility theory: applications of the kappalab r package. Eur. J. Oper. Res. 186(2), 766–785 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. McCulloch, J., Wagner, C., Aickelin, U.:Analysing fuzzy sets through combining measures of similarity and distance. In: 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 155–162, July 2014

    Google Scholar 

  23. Havens, T.C., Anderson, D.T., Keller, J.M.: A fuzzy choquet integral with an interval type-2 fuzzy number-valued integrand. In: 2010 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–8, July 2010

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the U.S. Army Research Office, the U.S. Army and RDECOM CERDEC NVESD via W911NF-16-1-0017, W911NF-14-1-0114, W911NF-14-1-0673, W909MY-13-C-0013 and 57940-EV. This work was also partially funded by RCUK’s EP/M02315X/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leary Tomlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Tomlin, L., Anderson, D.T., Wagner, C., Havens, T.C., Keller, J.M. (2016). Fuzzy Integral for Rule Aggregation in Fuzzy Inference Systems. In: Carvalho, J., Lesot, MJ., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2016. Communications in Computer and Information Science, vol 610. Springer, Cham. https://doi.org/10.1007/978-3-319-40596-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40596-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40595-7

  • Online ISBN: 978-3-319-40596-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics