Abstract
Approximate computing exploits the fact that many applications are inherently error resilient which means that some errors in their outputs can safely be exchanged for improving other parameters such as energy consumption or operation frequency. A new method based on evolutionary computing is proposed in this paper which enables to approximate edge detection circuits. Rather than evolving approximate edge detectors from scratch, key components of existing edge detector are replaced by their approximate versions obtained using Cartesian Genetic Programming (CGP). Various approximate edge detectors are then composed and their quality is evaluated using a database of images. The paper reports interesting edge detectors showing a good tradeoff between the quality of edge detection and implementation cost.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Esmaeilzadeh, H., Sampson, A., Ceze, L., Burger, D.: Neural acceleration for general-purpose approximate programs. Commun. ACM 58(1), 105–115 (2015)
Fu, W., Johnston, M., Zhang, M.: Genetic programming for edge detection using multivariate density. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 917–924. ACM (2013)
Golonek, T., Grzechca, D., Rutkowski, J.: Application of genetic programming to edge detector design. In: Proceedings of the 2006 IEEE International Symposium on Circuits and Systems, pp. 4683–4686. IEEE (2006)
Harding, S., Banzhaf, W.: Genetic programming on GPUs for image processing. Int. J. High Perform. Syst. Archit. 1(4), 231–240 (2008)
Harris, C., Buxton, B.: Evolving edge detectors with genetic programming. In: Proceedings of the First Annual Conference on Genetic Programming, pp. 309–314 (1996)
Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, H., Furuya, T.: Evolving hardware with genetic learning: a first step towards building a Darwin machine. In: Proceedings of the 2nd International Conference on Simulated Adaptive Behaviour, pp. 417–424. MIT Press (1993)
Hollingworth, G., Tyrrell, A.M., Smith, S.: Simulation of evolvable hardware to solve low level image processing tasks. In: Poli, R., Voigt, H.-M., Cagnoni, S., Corne, D.W., Smith, G.D., Fogarty, T.C. (eds.) EvoIASP 1999 and EuroEcTel 1999. LNCS, vol. 1596, pp. 46–58. Springer, Heidelberg (1999)
Kogge, P.M., Stone, H.S.: A parallel algorithm for the efficient solution of a general class of recurrence equations. IEEE Trans. Comput. 22, 786–793 (1973)
Kulkarni, P., Gupta, P., Ercegovac, M.D.: Trading accuracy for power in a multiplier architecture. J. Low Power Electron. 7(4), 490–501 (2011)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 416–423, July 2001
Miller, J.F.: Cartesian Genetic Programming. Springer-Verlag, Berlin (2011)
Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)
Monajati, M., Fakhraie, S., Kabir, E.: Approximate arithmetic for low-power image median filtering. Circuits Syst. Signal Process. 34(10), 3191–3219 (2015)
Nepal, K., Li, Y., Bahar, R.I., Reda, S.: Abacus: a technique for automated behavioral synthesis of approximate computing circuits. In: Proceedings of the Conference on Design, Automation and Test in Europe, DATE 2014, pp. 1–6. EDA Consortium (2014)
Priego, B., Bellas, F., Souto, D., Lopez-Pena, F., Duro, R.: Evolving cellular automata for detecting edges in hyperspectral images. In: 2012 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2012)
Sekanina, L., Harding, L.S., Banzhaf, W., Kowaliw, T.: Image processing and CGP. In: Miller, J.F. (ed.) Cartesian Genetic Programming, pp. 181–215. Springer, Heidelberg (2011)
Sekanina, L., Vasicek, Z.: Approximate circuits by means of evolvable hardware. In: 2013 IEEE International Conference on Evolvable Systems. Proceedings of the 2013 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 21–28. IEEE CIS (2013)
Shi, K., Boland, D., Stott, E., Bayliss, S., Constantinides, G.: Datapath synthesis for overclocking: online arithmetic for latency-accuracy trade-offs. In: 51st ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2014)
Sonka, M., Hlavac, V., Boyle, R.: Image Processing: Analysis and Machine Vision. Thomson-Engineering, Toronto (1999)
Torresen, J.: A scalable approach to evolvable hardware. Genet. Program Evolvable Mach. 3(3), 259–282 (2002)
Ttofis, C., Hadjitheophanous, S., Georghiades, A., Theocharides, T.: Edge-directed hardware architecture for real-time disparity map computation. IEEE Trans. Comput. 62(4), 690–704 (2013)
Vasicek, Z., Sekanina, L.: An evolvable hardware system in Xilinx Virtex II Pro FPGA. Int. J. Innovative Comput. Appl. 1(1), 63–73 (2007)
Vasicek, Z., Sekanina, L.: Formal verification of candidate solutions for post-synthesis evolutionary optimization in evolvable hardware. Genet. Program Evolvable Mach. 12(3), 305–327 (2011)
Vasicek, Z., Sekanina, L.: Circuit approximation using single- and multi-objective cartesian GP. In: Machado, P., et al. (eds.) EuroGP. LNCS, vol. 9025, pp. 217–229. Springer International Publishing, Switzerland (2015)
Vasicek, Z., Sekanina, L.: Evolutionary approach to approximate digital circuits design. IEEE Trans. Evol. Comput. 19(3), 432–444 (2015)
Yazdanbakhsh, A., Mahajan, D., Thwaites, B., Park, J., Nagendrakumar, A., Sethuraman, S., Ramkrishnan, K., Ravindran, N., Jariwala, R., Rahimi, A., Esmaeilzadeh, H., Bazargan, K.: Axilog: language support for approximate hardware design. In: Design, Automation Test in Europe Conference Exhibition (DATE 2015), pp. 812–817. IEEE (2015)
Zhang, Y., Rockett, P.I.: Evolving optimal feature extraction using multiobjective genetic programming: a methodology and preliminary study on edge detection. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 795–802. ACM (2005)
Acknowledgements
This work was supported by the Czech science foundation project GA16-17538S.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Dvoracek, P., Sekanina, L. (2016). Evolutionary Approximation of Edge Detection Circuits. In: Heywood, M., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds) Genetic Programming. EuroGP 2016. Lecture Notes in Computer Science(), vol 9594. Springer, Cham. https://doi.org/10.1007/978-3-319-30668-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-30668-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-30667-4
Online ISBN: 978-3-319-30668-1
eBook Packages: Computer ScienceComputer Science (R0)