Abstract
For both the Lempel Ziv 77- and 78-factorization we propose factorization algorithms using \((1+\epsilon ) n \lg n + \mathop {}\mathopen {}\mathcal {O}\mathopen {}\left( n\right) \) bits (for any positive constant \(\epsilon \le 1\)) working space (including the space for the output) for any text of size \(n\) over an integer alphabet in \(\mathop {}\mathopen {}\mathcal {O}\mathopen {}\left( n / \epsilon ^{2}\right) \) time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amir, A., Farach, M., Idury, R.M., Poutré, J.A.L., Schäffer, A.A.: Improved dynamic dictionary matching. Inf. Comput. 119(2), 258–282 (1995)
Bannai, H., Inenaga, S., Takeda, M.: Efficient LZ78 factorization of grammar compressed text. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 86–98. Springer, Heidelberg (2012)
Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Representing trees of higher degree. Algorithmica 43(4), 275–292 (2005)
Fischer, J., I, T., Köppl, D.: Lempel Ziv computation in small space (LZ-CISS) (2015). arXiv:1504.02605
Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)
Fischer, J., Gawrychowski, P.: Alphabet-dependent string searching with wexponential search trees. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 160–171. Springer, Heidelberg (2015)
Goto, K., Bannai, H.: Simpler and faster Lempel Ziv factorization. In: Proceedings of the 2013 Data Compression Conference, DCC 2013, pp. 133–142. IEEE Computer Society, Washington (2013)
Goto, K., Bannai, H.: Space efficient linear time Lempel-Ziv factorization for small alphabets. In: Data Compression Conference, DCC 2014, Snowbird, UT, USA, 26–28 March 2014, pp. 163–172 (2014)
Jansson, J., Sadakane, K., Sung, W.: Linked dynamic tries with applications to LZ-compression in sublinear time and space. Algorithmica 71(4), 969–988 (2015)
Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Linear time Lempel-Ziv factorization: simple, fast, small. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 189–200. Springer, Heidelberg (2013)
Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. J. ACM 53(6), 918–936 (2006)
Kempa, D., Puglisi, S.J.: Lempel-Ziv factorization: simple, fast, practical. In: ALENEX, pp. 103–112 (2013)
Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches. SIAM J. Comput. 22(5), 935–948 (1993)
Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of permutations and functions. Theor. Comput. Sci. 438, 74–88 (2012)
Nakashima, Y., I, T., Inenaga, S., Bannai, H., Takeda, M.: Constructing LZ78 tries and position heaps in linear time for large alphabets. Inform. Process. Lett. 115(9), 655–659 (2015)
Navarro, G., Sadakane, K.: Fully functional static and dynamic succinct trees. ACM Trans. Algorithms 10(3), 16:1–16:39 (2014)
Ohlebusch, E., Fischer, J., Gog, S.: CST++. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 322–333. Springer, Heidelberg (2010)
Välimäki, N., Mäkinen, V., Gerlach, W., Dixit, K.: Engineering a compressed suffix tree implementation. ACM J. Exp. Algorithmics 14 (2009)
Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)
Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 24(5), 530–536 (1978)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Fischer, J., I, T., Köppl, D. (2015). Lempel Ziv Computation in Small Space (LZ-CISS). In: Cicalese, F., Porat, E., Vaccaro, U. (eds) Combinatorial Pattern Matching. CPM 2015. Lecture Notes in Computer Science(), vol 9133. Springer, Cham. https://doi.org/10.1007/978-3-319-19929-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-19929-0_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19928-3
Online ISBN: 978-3-319-19929-0
eBook Packages: Computer ScienceComputer Science (R0)