Skip to main content

Recognizing Threshold Tolerance Graphs in \(O(n^2)\) Time

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2014)

Abstract

A graph \(G = (V,E)\) is a threshold tolerance graph if each vertex \(v \in V\) can be assigned a weight \(w_v\) and a tolerance \(t_v\) such that two vertices \(x,y \in V\) are adjacent if \(w_x + w_y \ge \min (t_x,t_y)\). Currently, the most efficient recognition algorithm for threshold tolerance graphs is the algorithm of Monma, Reed, and Trotter which has an \(O(n^4)\) runtime. We give an \(O(n^2)\) algorithm for recognizing threshold tolerance and their complements, the co-threshold tolerance (co-TT) graphs, resolving an open question of Golumbic, Weingarten, and Limouzy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brandstaedt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  3. Chvatal, V., Hammer, P.L.: Aggregation of inequalities in integer programming. In: Korte, B.H., Hammer, P.L., Johnson, E.L., Nemhauser, G.L. (eds.) Studies in Integer Programming. Annals of Discrete Mathematics, vol. 1, pp. 145–162. North-Holland (Elsevier), Amsterdam (1977)

    Chapter  Google Scholar 

  4. Farber, M.: Characterizations of strongly chordal graphs. Discrete Math. 43, 173–189 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  6. Golumbic, M.C., Goss, C.F.: Perfect elimination and chordal bipartite graphs. J. Graph Theory 2(2), 155–163 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Golumbic, M.C., Monma, C.L., Trotter Jr., W.T.: Tolerance graphs. Discrete Appl. Math. 9(2), 157–170 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Golumbic, M.C., Siani, A.: Coloring algorithms for tolerance graphs: reasoning and scheduling with interval constraints. In: Calmet, J., Benhamou, B., Caprotti, O., Henocque, L., Sorge, V. (eds.) AISC 2002 and Calculemus 2002. LNCS (LNAI), vol. 2385, pp. 196–207. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Golumbic, M.C., Trenk, A.N.: Tolerance Graphs. Cambridge Studies in Advanced Mathematics. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  10. Golumbic, M.C., Weingarten, N.L., Limouzy, V.: Co-TT graphs and a characterization of split co-TT graphs. Discrete Appl. Math. 165, 168–174 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37(2), 93–147 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Monma, C.L., Reed, B., Trotter, W.T.: Threshold tolerance graphs. J. Graph Theory 12(3), 343–362 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Spinrad, J.P.: Doubly lexical ordering of dense 0 - 1 matrices. Inf. Process. Lett. 45(5), 229–235 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society, Providence, RI (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Lindzey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Golovach, P.A., Heggernes, P., Lindzey, N., McConnell, R.M., dos Santos, V.F., Spinrad, J.P. (2014). Recognizing Threshold Tolerance Graphs in \(O(n^2)\) Time. In: Kratsch, D., Todinca, I. (eds) Graph-Theoretic Concepts in Computer Science. WG 2014. Lecture Notes in Computer Science, vol 8747. Springer, Cham. https://doi.org/10.1007/978-3-319-12340-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12340-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12339-4

  • Online ISBN: 978-3-319-12340-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics