Abstract
A graph \(G = (V,E)\) is a threshold tolerance graph if each vertex \(v \in V\) can be assigned a weight \(w_v\) and a tolerance \(t_v\) such that two vertices \(x,y \in V\) are adjacent if \(w_x + w_y \ge \min (t_x,t_y)\). Currently, the most efficient recognition algorithm for threshold tolerance graphs is the algorithm of Monma, Reed, and Trotter which has an \(O(n^4)\) runtime. We give an \(O(n^2)\) algorithm for recognizing threshold tolerance and their complements, the co-threshold tolerance (co-TT) graphs, resolving an open question of Golumbic, Weingarten, and Limouzy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)
Brandstaedt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics. SIAM, Philadelphia (1999)
Chvatal, V., Hammer, P.L.: Aggregation of inequalities in integer programming. In: Korte, B.H., Hammer, P.L., Johnson, E.L., Nemhauser, G.L. (eds.) Studies in Integer Programming. Annals of Discrete Mathematics, vol. 1, pp. 145–162. North-Holland (Elsevier), Amsterdam (1977)
Farber, M.: Characterizations of strongly chordal graphs. Discrete Math. 43, 173–189 (1983)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
Golumbic, M.C., Goss, C.F.: Perfect elimination and chordal bipartite graphs. J. Graph Theory 2(2), 155–163 (1978)
Golumbic, M.C., Monma, C.L., Trotter Jr., W.T.: Tolerance graphs. Discrete Appl. Math. 9(2), 157–170 (1984)
Golumbic, M.C., Siani, A.: Coloring algorithms for tolerance graphs: reasoning and scheduling with interval constraints. In: Calmet, J., Benhamou, B., Caprotti, O., Henocque, L., Sorge, V. (eds.) AISC 2002 and Calculemus 2002. LNCS (LNAI), vol. 2385, pp. 196–207. Springer, Heidelberg (2002)
Golumbic, M.C., Trenk, A.N.: Tolerance Graphs. Cambridge Studies in Advanced Mathematics. Cambridge University Press, New York (2004)
Golumbic, M.C., Weingarten, N.L., Limouzy, V.: Co-TT graphs and a characterization of split co-TT graphs. Discrete Appl. Math. 165, 168–174 (2014)
McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37(2), 93–147 (2003)
Monma, C.L., Reed, B., Trotter, W.T.: Threshold tolerance graphs. J. Graph Theory 12(3), 343–362 (1988)
Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976)
Spinrad, J.P.: Doubly lexical ordering of dense 0 - 1 matrices. Inf. Process. Lett. 45(5), 229–235 (1993)
Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society, Providence, RI (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Golovach, P.A., Heggernes, P., Lindzey, N., McConnell, R.M., dos Santos, V.F., Spinrad, J.P. (2014). Recognizing Threshold Tolerance Graphs in \(O(n^2)\) Time. In: Kratsch, D., Todinca, I. (eds) Graph-Theoretic Concepts in Computer Science. WG 2014. Lecture Notes in Computer Science, vol 8747. Springer, Cham. https://doi.org/10.1007/978-3-319-12340-0_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-12340-0_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12339-4
Online ISBN: 978-3-319-12340-0
eBook Packages: Computer ScienceComputer Science (R0)