Skip to main content

Hypergraph Acyclicity and Propositional Model Counting

  • Conference paper
Theory and Applications of Satisfiability Testing – SAT 2014 (SAT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8561))

Abstract

We show that the propositional model counting problem #SAT for CNF-formulas with hypergraphs that allow a disjoint branches decomposition can be solved in polynomial time. We show that this class of hypergraphs is incomparable to hypergraphs of bounded incidence cliquewidth which were the biggest class of hypergraphs for which #SAT was known to be solvable in polynomial time so far. Furthermore, we present a polynomial time algorithm that computes a disjoint branches decomposition of a given hypergraph if it exists and rejects otherwise. Finally, we show that some slight extensions of the class of hypergraphs with disjoint branches decompositions lead to intractable #SAT, leaving open how to generalize the counting result of this paper.

Partially supported by DFG grants BU 1371/2-2 and BU 1371/3-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences 13(3), 335–379 (1976), http://www.sciencedirect.com/science/article/pii/S0022000076800451

    Article  MATH  MathSciNet  Google Scholar 

  2. Brandstädt, A., Lozin, V.V.: On the linear structure and clique-width of bipartite permutation graphs. Ars Combinatoria 67(1), 273–281 (2003)

    MATH  MathSciNet  Google Scholar 

  3. Brault-Baron, J.: A Negative Conjunctive Query is Easy if and only if it is Beta-Acyclic. In: Computer Science Logic, 26th International Workshop/21st Annual Conference of the EACSL, pp. 137–151 (2012)

    Google Scholar 

  4. Cohen, D.A., Green, M.J., Houghton, C.: Constraint representations and structural tractability. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 289–303. Springer, Heidelberg (2009), http://dl.acm.org/citation.cfm?id=1788994.1789021

    Chapter  Google Scholar 

  5. Duris, D.: Some characterizations of γ and β-acyclicity of hypergraphs. Inf. Process. Lett. 112(16), 617–620 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes. Journal of the ACM 30(3), 514–550 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of bounded tree-width or clique-width. Discrete Applied Mathematics 156(4), 511–529 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag New York Inc. (2006)

    Google Scholar 

  9. Gottlob, G., Pichler, R.: Hypergraphs in Model Checking: Acyclicity and Hypertree-Width versus Clique-Width. SIAM Journal on Computing 33(2) (2004)

    Google Scholar 

  10. Miklós, Z.: Understanding Tractable Decompositions for Constraint Satisfaction. Ph.D. thesis. University of Oxford (2008)

    Google Scholar 

  11. Ordyniak, S., Paulusma, D., Szeider, S.: Satisfiability of acyclic and almost acyclic CNF formulas. Theoretical Computer Science 481, 85–99 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Paulusma, D., Slivovsky, F., Szeider, S.: Model Counting for CNF Formulas of Bounded Modular Treewidth. In: 30th International Symposium on Theoretical Aspects of Computer Science, STACS 2013, pp. 55–66 (2013)

    Google Scholar 

  13. Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence 82(1-2), 273–302 (1996), http://www.sciencedirect.com/science/article/pii/0004370294000921

    Article  MathSciNet  Google Scholar 

  14. Samer, M., Szeider, S.: Algorithms for propositional model counting. Journal of Discrete Algorithms 8(1), 50–64 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Slivovsky, F.: Personal communication (2014)

    Google Scholar 

  16. Slivovsky, F., Szeider, S.: Model Counting for Formulas of Bounded Clique-Width. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 677–687. Springer, Heidelberg (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Capelli, F., Durand, A., Mengel, S. (2014). Hypergraph Acyclicity and Propositional Model Counting. In: Sinz, C., Egly, U. (eds) Theory and Applications of Satisfiability Testing – SAT 2014. SAT 2014. Lecture Notes in Computer Science, vol 8561. Springer, Cham. https://doi.org/10.1007/978-3-319-09284-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09284-3_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09283-6

  • Online ISBN: 978-3-319-09284-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics