Abstract
In this paper we present new methods for deciding the satisfiability of formulas involving integer polynomial constraints. In previous work we proposed to solve SMT(NIA) problems by reducing them to SMT(LIA): non-linear monomials are linearized by abstracting them with fresh variables and by performing case splitting on integer variables with finite domain. When variables do not have finite domains, artificial ones can be introduced by imposing a lower and an upper bound, and made iteratively larger until a solution is found (or the procedure times out). For the approach to be practical, unsatisfiable cores are used to guide which domains have to be relaxed (i.e., enlarged) from one iteration to the following one. However, it is not clear then how large they have to be made, which is critical.
Here we propose to guide the domain relaxation step by analyzing minimal models produced by the SMT(LIA) solver. Namely, we consider two different cost functions: the number of violated artificial domain bounds, and the distance with respect to the artificial domains. We compare these approaches with other techniques on benchmarks coming from constraint-based program analysis and show the potential of the method. Finally, we describe how one of these minimal-model-guided techniques can be smoothly adapted to deal with the extension Max-SMT of SMT(NIA) and then applied to program termination proving.
This work has been supported by the Spanish Ministry MICINN/MINECO under the project SweetLogics-UPC (TIN2010-21062-C02-01) and the FPI grant (Daniel Larraz) BES-2011-044621.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196, 77–105 (2013)
Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer, Berlin (2003)
Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Commun. 25(2), 97–116 (2012)
Ben-Eliyahu, R., Dechter, R.: On computing minimal models. Ann. Math. Artif. Intell. 18(1), 3–27 (1996)
Ben-Eliyahu-Zohary, R.: An incremental algorithm for generating all minimal models. Artif. Intell. 169(1), 1–22 (2005)
Beyene, T., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based approach to solving games on infinite graphs. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2014, pp. 221–233. ACM, New York (2014)
Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (February 2009)
Bloem, R., Sharygina, N. (eds.): Proceedings of 10th International Conference on Formal Methods in Computer-Aided Design, FMCAD 2010, Lugano, Switzerland, October 20-23. IEEE (2010)
Bockmayr, A., Weispfenning, V.: Solving numerical constraints. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 751–842. Elsevier and MIT Press (2001)
Bonacina, M.P. (ed.): CADE 2013. LNCS, vol. 7898. Springer, Heidelberg (2013)
Borralleras, C., Lucas, S., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.: SAT Modulo Linear Arithmetic for Solving Polynomial Constraints. J. Autom. Reasoning 48(1), 107–131 (2012)
Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer, Heidelberg (2005)
Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooperation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 413–429. Springer, Heidelberg (2013)
Cheng, C.H., Shankar, N., Ruess, H., Bensalem, S.: EFSMT: A Logical Framework for Cyber-Physical Systems, coRR abs/1306.3456 (2013)
Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability Modulo the Theory of Costs: Foundations and Applications. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg (2010)
Collins, G.E.: Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)
Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear Invariant Generation Using Non-linear Constraint Solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)
Cooper, S.B.: Computability Theory. Chapman Hall/CRC Mathematics Series (2004)
Corzilius, F., Loup, U., Junges, S., Ábrahám, E.: SMT-RAT: An SMT-Compliant Nonlinear Real Arithmetic Toolbox - (Tool Presentation). In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 442–448. Springer, Heidelberg (2012)
Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)
Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. JSAT 1(3-4), 209–236 (2007)
Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: SAT Solving for Termination Analysis with Polynomial Interpretations. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer, Heidelberg (2007)
Ganai, M.K., Ivancic, F.: Efficient decision procedure for non-linear arithmetic constraints using CORDIC. In: FMCAD, pp. 61–68. IEEE (2009)
Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiability over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 286–300. Springer, Heidelberg (2012)
Gao, S., Ganai, M.K., Ivancic, F., Gupta, A., Sankaranarayanan, S., Clarke, E.M.: Integrating ICP and LRA solvers for deciding nonlinear real arithmetic problems. In: Bloem and Sharygina [8], pp. 81–89
Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT Solver for Nonlinear Theories over the Reals. In: Bonacina [10], pp. 208–214
Grebenshchikov, S., Gupta, A., Lopes, N.P., Popeea, C., Rybalchenko, A.: HSF(C): A Software Verifier Based on Horn Clauses - (Competition Contribution). In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 549–551. Springer, Heidelberg (2012)
Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer, Heidelberg (2012)
Khanh, T.V., Ogawa, M.: SMT for Polynomial Constraints on Real Numbers. Electr. Notes Theor. Comput. Sci. 289, 27–40 (2012)
Larraz, D., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.: Proving termination of imperative programs using Max-SMT. In: FMCAD, pp. 218–225. IEEE (2013)
Larraz, D., Rodríguez-Carbonell, E., Rubio, A.: SMT-Based Array Invariant Generation. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 169–188. Springer, Heidelberg (2013)
Li, C.M., Manyà, F.: MaxSAT, Hard and Soft Constraints. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 613–631. IOS Press (2009)
Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal correction subsets. In: Rossi, F. (ed.) IJCAI. IJCAI/AAAI (2013)
Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: A survey and assessment. Constraints 18(4), 478–534 (2013)
de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 1–12. Springer, Heidelberg (2013)
Moura, L.M.d., Passmore, G.O.: Computation in real closed infinitesimal and transcendental extensions of the rationals. In: Bonacina [10], pp. 178–192
Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization Problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg (2006)
Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)
Nuzzo, P., Puggelli, A., Seshia, S.A., Sangiovanni-Vincentelli, A.L.: CalCS: SMT solving for non-linear convex constraints. In: Bloem and Sharygina [8], pp. 71–79
Oliver, R.: Optimization Modulo Theories. Master’s thesis. Universitat Politècnica de Catalunya, Spain (January 2012)
Platzer, A., Quesel, J.-D., Rümmer, P.: Real world verification. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 485–501. Springer, Heidelberg (2009)
Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation using Gröbner bases. In: Jones, N.D., Leroy, X. (eds.) POPL, pp. 318–329. ACM (2004)
Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. Formal Methods in System Design 32(1), 25–55 (2008)
Schrijver, A.: Theory of Linear and Integer Programming. Wiley (June 1998)
Sebastiani, R., Tomasi, S.: Optimization in SMT with \(\mathcal{LA}\mathbb{(Q)}\) Cost Functions. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 484–498. Springer, Heidelberg (2012)
Soh, T., Inoue, K.: Identifying necessary reactions in metabolic pathways by minimal model generation. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 277–282. IOS Press (2010)
Tarski, A.: A decision method for elementary algebra and geometry. Bulletin of the American Mathematical Society 59 (1951)
Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS (LNAI), vol. 6355, pp. 481–500. Springer, Heidelberg (2010)
Zhang, L., Malik, S.: Validating SAT Solvers Using an Independent Resolution-Based Checker: Practical Implementations and Other Applications. In: 2008 Design, Automation and Test in Europe, vol. 1, p. 10880 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Larraz, D., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A. (2014). Minimal-Model-Guided Approaches to Solving Polynomial Constraints and Extensions. In: Sinz, C., Egly, U. (eds) Theory and Applications of Satisfiability Testing – SAT 2014. SAT 2014. Lecture Notes in Computer Science, vol 8561. Springer, Cham. https://doi.org/10.1007/978-3-319-09284-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-09284-3_25
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09283-6
Online ISBN: 978-3-319-09284-3
eBook Packages: Computer ScienceComputer Science (R0)