Skip to main content

Minimal-Model-Guided Approaches to Solving Polynomial Constraints and Extensions

  • Conference paper
Theory and Applications of Satisfiability Testing – SAT 2014 (SAT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8561))

Abstract

In this paper we present new methods for deciding the satisfiability of formulas involving integer polynomial constraints. In previous work we proposed to solve SMT(NIA) problems by reducing them to SMT(LIA): non-linear monomials are linearized by abstracting them with fresh variables and by performing case splitting on integer variables with finite domain. When variables do not have finite domains, artificial ones can be introduced by imposing a lower and an upper bound, and made iteratively larger until a solution is found (or the procedure times out). For the approach to be practical, unsatisfiable cores are used to guide which domains have to be relaxed (i.e., enlarged) from one iteration to the following one. However, it is not clear then how large they have to be made, which is critical.

Here we propose to guide the domain relaxation step by analyzing minimal models produced by the SMT(LIA) solver. Namely, we consider two different cost functions: the number of violated artificial domain bounds, and the distance with respect to the artificial domains. We compare these approaches with other techniques on benchmarks coming from constraint-based program analysis and show the potential of the method. Finally, we describe how one of these minimal-model-guided techniques can be smoothly adapted to deal with the extension Max-SMT of SMT(NIA) and then applied to program termination proving.

This work has been supported by the Spanish Ministry MICINN/MINECO under the project SweetLogics-UPC (TIN2010-21062-C02-01) and the FPI grant (Daniel Larraz) BES-2011-044621.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196, 77–105 (2013)

    Article  MATH  Google Scholar 

  2. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  3. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Commun. 25(2), 97–116 (2012)

    MATH  MathSciNet  Google Scholar 

  4. Ben-Eliyahu, R., Dechter, R.: On computing minimal models. Ann. Math. Artif. Intell. 18(1), 3–27 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ben-Eliyahu-Zohary, R.: An incremental algorithm for generating all minimal models. Artif. Intell. 169(1), 1–22 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Beyene, T., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based approach to solving games on infinite graphs. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2014, pp. 221–233. ACM, New York (2014)

    Google Scholar 

  7. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (February 2009)

    Google Scholar 

  8. Bloem, R., Sharygina, N. (eds.): Proceedings of 10th International Conference on Formal Methods in Computer-Aided Design, FMCAD 2010, Lugano, Switzerland, October 20-23. IEEE (2010)

    Google Scholar 

  9. Bockmayr, A., Weispfenning, V.: Solving numerical constraints. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 751–842. Elsevier and MIT Press (2001)

    Google Scholar 

  10. Bonacina, M.P. (ed.): CADE 2013. LNCS, vol. 7898. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  11. Borralleras, C., Lucas, S., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.: SAT Modulo Linear Arithmetic for Solving Polynomial Constraints. J. Autom. Reasoning 48(1), 107–131 (2012)

    Article  MATH  Google Scholar 

  12. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooperation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 413–429. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Cheng, C.H., Shankar, N., Ruess, H., Bensalem, S.: EFSMT: A Logical Framework for Cyber-Physical Systems, coRR abs/1306.3456 (2013)

    Google Scholar 

  15. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability Modulo the Theory of Costs: Foundations and Applications. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Collins, G.E.: Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

    Google Scholar 

  17. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear Invariant Generation Using Non-linear Constraint Solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Cooper, S.B.: Computability Theory. Chapman Hall/CRC Mathematics Series (2004)

    Google Scholar 

  19. Corzilius, F., Loup, U., Junges, S., Ábrahám, E.: SMT-RAT: An SMT-Compliant Nonlinear Real Arithmetic Toolbox - (Tool Presentation). In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 442–448. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. JSAT 1(3-4), 209–236 (2007)

    Google Scholar 

  22. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: SAT Solving for Termination Analysis with Polynomial Interpretations. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Ganai, M.K., Ivancic, F.: Efficient decision procedure for non-linear arithmetic constraints using CORDIC. In: FMCAD, pp. 61–68. IEEE (2009)

    Google Scholar 

  24. Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiability over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 286–300. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Gao, S., Ganai, M.K., Ivancic, F., Gupta, A., Sankaranarayanan, S., Clarke, E.M.: Integrating ICP and LRA solvers for deciding nonlinear real arithmetic problems. In: Bloem and Sharygina [8], pp. 81–89

    Google Scholar 

  26. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT Solver for Nonlinear Theories over the Reals. In: Bonacina [10], pp. 208–214

    Google Scholar 

  27. Grebenshchikov, S., Gupta, A., Lopes, N.P., Popeea, C., Rybalchenko, A.: HSF(C): A Software Verifier Based on Horn Clauses - (Competition Contribution). In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 549–551. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  29. Khanh, T.V., Ogawa, M.: SMT for Polynomial Constraints on Real Numbers. Electr. Notes Theor. Comput. Sci. 289, 27–40 (2012)

    Article  Google Scholar 

  30. Larraz, D., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.: Proving termination of imperative programs using Max-SMT. In: FMCAD, pp. 218–225. IEEE (2013)

    Google Scholar 

  31. Larraz, D., Rodríguez-Carbonell, E., Rubio, A.: SMT-Based Array Invariant Generation. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 169–188. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  32. Li, C.M., Manyà, F.: MaxSAT, Hard and Soft Constraints. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 613–631. IOS Press (2009)

    Google Scholar 

  33. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal correction subsets. In: Rossi, F. (ed.) IJCAI. IJCAI/AAAI (2013)

    Google Scholar 

  34. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: A survey and assessment. Constraints 18(4), 478–534 (2013)

    Article  MathSciNet  Google Scholar 

  35. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  36. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 1–12. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  37. Moura, L.M.d., Passmore, G.O.: Computation in real closed infinitesimal and transcendental extensions of the rationals. In: Bonacina [10], pp. 178–192

    Google Scholar 

  38. Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization Problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  39. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)

    Article  MathSciNet  Google Scholar 

  40. Nuzzo, P., Puggelli, A., Seshia, S.A., Sangiovanni-Vincentelli, A.L.: CalCS: SMT solving for non-linear convex constraints. In: Bloem and Sharygina [8], pp. 71–79

    Google Scholar 

  41. Oliver, R.: Optimization Modulo Theories. Master’s thesis. Universitat Politècnica de Catalunya, Spain (January 2012)

    Google Scholar 

  42. Platzer, A., Quesel, J.-D., Rümmer, P.: Real world verification. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 485–501. Springer, Heidelberg (2009)

    Google Scholar 

  43. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation using Gröbner bases. In: Jones, N.D., Leroy, X. (eds.) POPL, pp. 318–329. ACM (2004)

    Google Scholar 

  44. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. Formal Methods in System Design 32(1), 25–55 (2008)

    Article  MATH  Google Scholar 

  45. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (June 1998)

    Google Scholar 

  46. Sebastiani, R., Tomasi, S.: Optimization in SMT with \(\mathcal{LA}\mathbb{(Q)}\) Cost Functions. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 484–498. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  47. Soh, T., Inoue, K.: Identifying necessary reactions in metabolic pathways by minimal model generation. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 277–282. IOS Press (2010)

    Google Scholar 

  48. Tarski, A.: A decision method for elementary algebra and geometry. Bulletin of the American Mathematical Society 59 (1951)

    Google Scholar 

  49. Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS (LNAI), vol. 6355, pp. 481–500. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  50. Zhang, L., Malik, S.: Validating SAT Solvers Using an Independent Resolution-Based Checker: Practical Implementations and Other Applications. In: 2008 Design, Automation and Test in Europe, vol. 1, p. 10880 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Larraz, D., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A. (2014). Minimal-Model-Guided Approaches to Solving Polynomial Constraints and Extensions. In: Sinz, C., Egly, U. (eds) Theory and Applications of Satisfiability Testing – SAT 2014. SAT 2014. Lecture Notes in Computer Science, vol 8561. Springer, Cham. https://doi.org/10.1007/978-3-319-09284-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09284-3_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09283-6

  • Online ISBN: 978-3-319-09284-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics