Skip to main content

Parallel-Machine Scheduling Problem under the Job Rejection Constraint

(Extended Abstract)

  • Conference paper
Frontiers in Algorithmics (FAW 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8497))

Included in the following conference series:

Abstract

Given m identical machines and n independent jobs, each job J j has a processing time (or size) p j and a penalty e j . A job can be either rejected, in which case its penalty is paid, or scheduled on one of the machines, in which case its processing time contributes to the load of that machine. The objective is to minimize the makespan of the schedule for accepted jobs under the constraint that the total penalty of the rejected jobs is no more than a given bound B. In this paper, we present a 2-approximation algorithm within strongly polynomial time and a polynomial time approximation scheme whose running time is \(O(nm^{O(\frac{1}{\epsilon^2})}+mn^2)\) for the general case. Moreover, we present a fully polynomial time approximation scheme for the case where the number of machines is a fixed constant. This result improves previous best running time from O(n m + 2/ε m) to O(1/ε 2m + 3 + mn 2) .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling on parallel machines. Journal of Scheduling 1, 55–66 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Angel, E., Bampis, E., Kononov, A.: A FPTAS for approximating the unrelated parallel machines scheduling problem with costs. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 194–205. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Bartal, Y., Leonardi, S., Spaccamela, A.M., Sgall, J., Stougie, L.: Multiprocessor scheduling with rejection. SIAM Journal on Discrete Mathematics 13, 64–78 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cao, Z., Yang, X.: A PTAS for parallel batch scheduling with rejection and dynamic job arrivals. Theoretical Computer Science 410, 2732–2745 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cao, Z., Zhang, Y.: Scheduling with rejection and non-identical job arrivals. Journal of Systems Science and Complexity 20, 529–535 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cheng, Y., Sun, S.: Scheduling linear deteriorating jobs with rejection on a single machine. European Journal of Operational Research 194, 18–27 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Engels, D.W., Karger, D.R., Kolliopoulos, S.G., Sengupta, S., Uma, R.N., Wein, J.: Techniques for scheduling with rejection. Journal of Algorithms 49, 175–191 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell System Technical Journal 45, 1563–1581 (1966)

    Article  Google Scholar 

  9. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: theoretical and practical results. Journal of Association for Computing Machinery 34, 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  10. Hoogeveen, H., Skutella, M., Woeginger, G.J.: Preemptive scheduling with rejection. Mathematics Programming 94, 361–374 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling nonidentical processors. Journal of the ACM 23, 317–327 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jansen, K., Porkolab, L.: Improved approximation schemes for scheduling unrelated parallel machines. In: Proceedings of STOS 1999, 408- 417 (1999)

    Google Scholar 

  13. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and scheduling: Algorithms and complexity. Handbooks in Operations Research and Management Science 4, 445–452 (1993)

    Article  Google Scholar 

  14. Lin, J.H., Vitter, J.S.: ε-Approximation algorithms with minimum packing constraint violation. In: Proceedings of STOS 1992, pp. 771–782 (1992)

    Google Scholar 

  15. Lu, L., Zhang, L., Yuan, J.: The unbounded parallel batch machine scheduling with release dates and rejection to minimize makespan. Theoretical Computer Science 396, 283–289 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lu, L., Cheng, T.C.E., Yuan, J., Zhang, L.: Bounded single-machine parallel-batch scheduling with release dates and rejection. Computers & Operation Research 36, 2748–2751 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lu, S., Feng, H., Li, X.: Minimizing the makespan on a single parallel batching machine. Theoretical Computer Science 411, 1140–1145 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Seiden, S.: Preemptive multiprocessor scheduling with rejection. Theoretical Computer Science 262, 437–458 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shabtay, D., Gaspar, N., Yedidsion, L.: A bicriteria approach to scheduling a single machine with job rejection and positional penalties. Journal of Combinatorial Optimization 23, 395–424 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shabtay, D., Gaspar, N., Kaspi, M.: A survey on offline scheduling with rejection. Journal of Scheduling 16, 3–28 (2013)

    Article  MathSciNet  Google Scholar 

  21. Shmoys, D.B., Tardos, E.: An approximation algorithm for the generalized assignment problem. Mathematical Programming 62, 461–474 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang, L., Lu, L., Yuan, J.: Single machine scheduling with release dates and rejection. European Journal of Operational Research 198, 975–978 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhang, L., Lu, L., Yuan, J.: Single-machine scheduling under the job rejection constraint. Theoretical Computer Science 411, 1877–1882 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhang, Y., Ren, J., Wang, C.: Scheduling with rejection to minimize the makespan. In: Du, D.-Z., Hu, X., Pardalos, P.M. (eds.) COCOA 2009. LNCS, vol. 5573, pp. 411–420. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, W., Li, J., Zhang, X., Chen, Z. (2014). Parallel-Machine Scheduling Problem under the Job Rejection Constraint. In: Chen, J., Hopcroft, J.E., Wang, J. (eds) Frontiers in Algorithmics. FAW 2014. Lecture Notes in Computer Science, vol 8497. Springer, Cham. https://doi.org/10.1007/978-3-319-08016-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08016-1_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08015-4

  • Online ISBN: 978-3-319-08016-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics