Abstract
A palindromic factorization of a string w is a factorization of w consisting only of palindromic substrings of w. In this paper, we present an on-line O(n logn)-time O(n)-space algorithm to compute smallest palindromic factorizations of all prefixes of w, where n is the length of a given string w. We then show how to extend this algorithm to compute smallest maximal palindromic factorizations of all prefixes of w, consisting only of maximal palindromes (non-extensible palindromic substring) of each prefix, in O(n logn) time and O(n) space, in an on-line manner. We also present an on-line O(n)-time O(n)-space algorithm to compute a smallest palindromic cover of w.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Al-Hafeedh, A., Crochemore, M., Ilie, L., Kopylov, J., Smyth, W., Tischler, G., Yusufu, M.: A comparison of index-based Lempel-Ziv LZ77 factorization algorithms. ACM Computing Surveys 45(1), Article 5 (2012)
Alatabbi, A., Iliopoulos, C.S., Rahman, M.S.: Maximal palindromic factorization. In: Proc. PSC 2013, pp. 70–77 (2013)
Alstrup, S., Holm, J.: Improved algorithms for finding level ancestors in dynamic trees. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 73–84. Springer, Heidelberg (2000)
Apostolico, A., Breslauer, D., Galil, Z.: Parallel detection of all palindromes in a string. Theoretical Computer Science 141(1&2), 163–173 (1995)
Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus. iv. the quotient groups of the lower central series. Annals of Mathematics 68(1), 81–95 (1958)
Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, New York (1994)
Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A subquadratic sequence alignment algorithm for unrestricted scoring matrices. SIAM J. Comput. 32(6), 1654–1673 (2003)
Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)
Goto, K., Bannai, H.: Simpler and faster Lempel Ziv factorization. In: Proc. DCC 2013, pp. 133–142 (2013)
I, T., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Faster Lyndon factorization algorithms for SLP and LZ78 compressed text. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 174–185. Springer, Heidelberg (2013)
Jansson, J., Sadakane, K., Sung, W.-K.: Compressed dynamic tries with applications to LZ-compression in sublinear time and space. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 424–435. Springer, Heidelberg (2007)
Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lightweight Lempel-Ziv parsing. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 139–150. Springer, Heidelberg (2013)
Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Linear time Lempel-Ziv factorization: Simple, fast, small. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 189–200. Springer, Heidelberg (2013)
Kempa, D., Puglisi, S.J.: Lempel-Ziv factorization: Simple, fast, practical. In: Proc. ALENEX 2013, pp. 103–112 (2013)
Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theoretical Computer Science 410(51), 5365–5373 (2009)
Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Proc. FOCS 1999, pp. 596–604 (1999)
Kreft, S., Navarro, G.: LZ77-like compression with fast random access. In: Proc. DCC 2010, pp. 239–248 (2010)
Kufleitner, M.: On bijective variants of the Burrows-Wheeler transform. In: Proc. PSC 2009, pp. 65–79 (2009)
Manacher, G.K.: A new linear-time “on-line” algorithm for finding the smallest initial palindrome of a string. J. ACM 22(3), 346–351 (1975)
Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto, K.: Efficient algorithms to compute compressed longest common substrings and compressed palindromes. Theoretical Computer Science 410(8-10), 900–913 (2009)
Okanohara, D., Sadakane, K.: An online algorithm for finding the longest previous factors. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 696–707. Springer, Heidelberg (2008)
Rytter, W.: Application of Lempel-Ziv factorization to the approximation of grammar-based compression. Theoretical Computer Science 302(1-3), 211–222 (2003)
Starikovskaya, T.: Computing Lempel-Ziv factorization online. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 789–799. Springer, Heidelberg (2012)
Sugimoto, S., I, T., Inenaga, S., Bannai, H., Takeda, M.: Computing reversed Lempel-Ziv factorization online. In: Proc. PSC 2013. pp. 107–118 (2013)
Welch, T.A.: A technique for high-performance data compression. IEEE Computer 17(6), 8–19 (1984)
Yamamoto, J., I, T., Bannai, H., Inenaga, S., Takeda, M.: Faster compact on-line Lempel-Ziv factorization. To appear in Proc. STACS 2014 (2013), preprint is availabe at http://arxiv.org/abs/1305.6095
Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory IT-23(3), 337–349 (1977)
Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding. IEEE Transactions on Information Theory 24(5), 530–536 (1978)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
I, T., Sugimoto, S., Inenaga, S., Bannai, H., Takeda, M. (2014). Computing Palindromic Factorizations and Palindromic Covers On-line. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds) Combinatorial Pattern Matching. CPM 2014. Lecture Notes in Computer Science, vol 8486. Springer, Cham. https://doi.org/10.1007/978-3-319-07566-2_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-07566-2_16
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07565-5
Online ISBN: 978-3-319-07566-2
eBook Packages: Computer ScienceComputer Science (R0)