Skip to main content

Computing Palindromic Factorizations and Palindromic Covers On-line

  • Conference paper
Combinatorial Pattern Matching (CPM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8486))

Included in the following conference series:

Abstract

A palindromic factorization of a string w is a factorization of w consisting only of palindromic substrings of w. In this paper, we present an on-line O(n logn)-time O(n)-space algorithm to compute smallest palindromic factorizations of all prefixes of w, where n is the length of a given string w. We then show how to extend this algorithm to compute smallest maximal palindromic factorizations of all prefixes of w, consisting only of maximal palindromes (non-extensible palindromic substring) of each prefix, in O(n logn) time and O(n) space, in an on-line manner. We also present an on-line O(n)-time O(n)-space algorithm to compute a smallest palindromic cover of w.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Al-Hafeedh, A., Crochemore, M., Ilie, L., Kopylov, J., Smyth, W., Tischler, G., Yusufu, M.: A comparison of index-based Lempel-Ziv LZ77 factorization algorithms. ACM Computing Surveys 45(1), Article 5 (2012)

    Google Scholar 

  2. Alatabbi, A., Iliopoulos, C.S., Rahman, M.S.: Maximal palindromic factorization. In: Proc. PSC 2013, pp. 70–77 (2013)

    Google Scholar 

  3. Alstrup, S., Holm, J.: Improved algorithms for finding level ancestors in dynamic trees. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 73–84. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Apostolico, A., Breslauer, D., Galil, Z.: Parallel detection of all palindromes in a string. Theoretical Computer Science 141(1&2), 163–173 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus. iv. the quotient groups of the lower central series. Annals of Mathematics 68(1), 81–95 (1958)

    Article  MathSciNet  Google Scholar 

  6. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, New York (1994)

    MATH  Google Scholar 

  7. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A subquadratic sequence alignment algorithm for unrestricted scoring matrices. SIAM J. Comput. 32(6), 1654–1673 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Duval, J.P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goto, K., Bannai, H.: Simpler and faster Lempel Ziv factorization. In: Proc. DCC 2013, pp. 133–142 (2013)

    Google Scholar 

  10. I, T., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Faster Lyndon factorization algorithms for SLP and LZ78 compressed text. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 174–185. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Jansson, J., Sadakane, K., Sung, W.-K.: Compressed dynamic tries with applications to LZ-compression in sublinear time and space. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 424–435. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lightweight Lempel-Ziv parsing. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 139–150. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Linear time Lempel-Ziv factorization: Simple, fast, small. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 189–200. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Kempa, D., Puglisi, S.J.: Lempel-Ziv factorization: Simple, fast, practical. In: Proc. ALENEX 2013, pp. 103–112 (2013)

    Google Scholar 

  15. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theoretical Computer Science 410(51), 5365–5373 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time. In: Proc. FOCS 1999, pp. 596–604 (1999)

    Google Scholar 

  17. Kreft, S., Navarro, G.: LZ77-like compression with fast random access. In: Proc. DCC 2010, pp. 239–248 (2010)

    Google Scholar 

  18. Kufleitner, M.: On bijective variants of the Burrows-Wheeler transform. In: Proc. PSC 2009, pp. 65–79 (2009)

    Google Scholar 

  19. Manacher, G.K.: A new linear-time “on-line” algorithm for finding the smallest initial palindrome of a string. J. ACM 22(3), 346–351 (1975)

    Article  MATH  Google Scholar 

  20. Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto, K.: Efficient algorithms to compute compressed longest common substrings and compressed palindromes. Theoretical Computer Science 410(8-10), 900–913 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Okanohara, D., Sadakane, K.: An online algorithm for finding the longest previous factors. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 696–707. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of grammar-based compression. Theoretical Computer Science 302(1-3), 211–222 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Starikovskaya, T.: Computing Lempel-Ziv factorization online. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 789–799. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Sugimoto, S., I, T., Inenaga, S., Bannai, H., Takeda, M.: Computing reversed Lempel-Ziv factorization online. In: Proc. PSC 2013. pp. 107–118 (2013)

    Google Scholar 

  25. Welch, T.A.: A technique for high-performance data compression. IEEE Computer 17(6), 8–19 (1984)

    Article  Google Scholar 

  26. Yamamoto, J., I, T., Bannai, H., Inenaga, S., Takeda, M.: Faster compact on-line Lempel-Ziv factorization. To appear in Proc. STACS 2014 (2013), preprint is availabe at http://arxiv.org/abs/1305.6095

  27. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory IT-23(3), 337–349 (1977)

    Article  MathSciNet  Google Scholar 

  28. Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding. IEEE Transactions on Information Theory 24(5), 530–536 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

I, T., Sugimoto, S., Inenaga, S., Bannai, H., Takeda, M. (2014). Computing Palindromic Factorizations and Palindromic Covers On-line. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds) Combinatorial Pattern Matching. CPM 2014. Lecture Notes in Computer Science, vol 8486. Springer, Cham. https://doi.org/10.1007/978-3-319-07566-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07566-2_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07565-5

  • Online ISBN: 978-3-319-07566-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics