Abstract
Emotion regulation is an important aspect of emotional well-being that involves effectively managing and modifying one’s or other emotions. However, there is a lack of computational models to guide the design and implementation of emotion regulation by intelligent agents. To address this gap, we propose a computational model for an intelligent agent which, using an emotion representation based on the arousal-valence dimensions, facilitates emotion regulation in persons. Based on the theoretical emotion regulation model proposed by J. Gross, our model of intelligent affective agent uses a dynamic planner to select a regulation strategy to facilitate the individual to maintain their emotional balance. The agent selects the most appropriate emotion regulation strategy taking into account the specific personality traits of the individual. The effects of each regulatory strategy on a particular individual are updated by the agent according to the emotional changes detected in the individual physiological parameters in previous uses of the strategy. The proposed model of agent is of great importance to facilitate the learning and use of emotion regulation techniques for promoting emotional well-being of people.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Barańczuk, U.: The five factor model of personality and emotion regulation: a meta-analysis. Personality Individ. Differ. 139, 217–227 (2019)
Bernstein, A., Hadash, Y., Lichtash, Y., Tanay, G., Shepherd, K., Fresco, D.M.: Decentering and related constructs: a critical review and metacognitive processes model. Perspect. Psychol. Sci. 10(5), 599–617 (2015)
Borges, L.M., Naugle, A.E.: The role of emotion regulation in predicting personality dimensions. Pers. Ment. Health 11(4), 314–334 (2017)
Costa, P.T., Jr., McCrae, R.R.: The Revised Neo Personality Inventory (neo-pi-r). Sage Publications Inc, Thousand Oaks (2008)
Dias, J., Mascarenhas, S., Paiva, A.: FAtiMA modular: towards an agent architecture with a generic appraisal framework. In: Bosse, T., Broekens, J., Dias, J., van der Zwaan, J. (eds.) Emotion Modeling. LNCS (LNAI), vol. 8750, pp. 44–56. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12973-0_3
Dias, J., Paiva, A.: I want to be your friend: establishing relations with emotionally intelligent agents. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, pp. 777–784 (2013)
DiGirolamo, M.A., Kibrislioglu Uysal, N., McCall, E.C., Isaacowitz, D.M.: Attention-focused emotion regulation in everyday life in adulthood and old age. Emotion 23, 633–650 (2022)
Digman, J.M.: Personality structure: emergence of the five-factor model. Annu. Rev. Psychol. 41, 417–40 (1990)
Egger, M., Ley, M., Hanke, S.: Emotion recognition from physiological signal analysis: a review. Electron. Notes Theor. Comput. Sci. 343, 35–55 (2019)
English, T., Eldesouky, L.: We’re not alone: understanding the social consequences of intrinsic emotion regulation. Emotion 20(1), 43 (2020)
English, T., Lee, I.A., John, O.P., Gross, J.J.: The role of social context and goals: emotion regulation strategy selection in daily life. Motiv. Emot. 41, 230–242 (2017)
Gross, J.J.: The emerging field of emotion regulation: an integrative review. Rev. Gen. Psychol. 2(3), 271–299 (1998)
Gross, J.J.: Emotion regulation. Handb. Emot. 3(3), 497–513 (2008)
Gross, J.J.: Emotion regulation: current status and future prospects. Psychol. Inq. 26(1), 1–26 (2015)
Gross, J.J.: The extended process model of emotion regulation: elaborations, applications, and future directions. Psychol. Inq. 26(1), 130–137 (2015)
Harris, H., Nass, C.: Emotion regulation for frustrating driving contexts. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 749–752 (2011)
Katayama, S., Aoki, S., Yonezawa, T., Okoshi, T., Nakazawa, J., Kawaguchi, N.: ER-chat: a text-to-text open-domain dialogue framework for emotion regulation. IEEE Trans. Affect. Comput. 13(4), 2229–2237 (2022)
Kever, A., Pollatos, O., Vermeulen, N., Grynberg, D.: Interoceptive sensitivity facilitates both antecedent-and response-focused emotion regulation strategies. Pers. Individ. Differ. 87, 20–23 (2015)
Kobayashi, R., Shigematsu, J., Miyatani, M., Nakao, T.: Cognitive reappraisal facilitates decentering: a longitudinal cross-lagged analysis study. Front. Psychol. 11, 103 (2020)
Martínez-Miranda, J., Bresó, A., García-Gómez, J.M.: Look on the bright side: a model of cognitive change in virtual agents. In: Bickmore, T., Marsella, S., Sidner, C. (eds.) IVA 2014. LNCS (LNAI), vol. 8637, pp. 285–294. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09767-1_37
Martínez-Miranda, J., Bresó, A., García-Gómez, J.M.: Modelling two emotion regulation strategies as key features of therapeutic empathy. In: Bosse, T., Broekens, J., Dias, J., van der Zwaan, J. (eds.) Emotion Modeling. LNCS (LNAI), vol. 8750, pp. 115–133. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12973-0_7
Mets, M.A., Kuipers, E., de Senerpont Domis, L.M., Leenders, M., Olivier, B., Verster, J.C.: Effects of alcohol on highway driving in the STISIM driving simulator. Human Psychopharmacol. Clin. Exp. 26(6), 434–439 (2011)
Nalepa, G.J., Kutt, K., Giżycka, B., Jemioło, P., Bobek, S.: Analysis and use of the emotional context with wearable devices for games and intelligent assistants. Sensors 19(11), 2509 (2019)
Nozaki, Y., Mikolajczak, M.: Extrinsic emotion regulation. Emotion 20(1), 10 (2020)
Peng, Z., Kim, T., Ma, X.: GremoBot: exploring emotion regulation in group chat. In: Conference Companion Publication of the 2019 on Computer Supported Cooperative Work and Social Computing, pp. 335–340 (2019)
Pereira, G., Dimas, J., Prada, R., Santos, P.A., Paiva, A.: A generic emotional contagion computational model. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011. LNCS, vol. 6974, pp. 256–266. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24600-5_29
Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)
Esti Hayu Purnamaningsih: Personality and emotion regulation strategies. Int. J. Psychol. Res. 10(1), 53–60 (2017)
Rashkin, H., Smith, E.M., Li, M., Boureau, Y.L.: Towards empathetic open-domain conversation models: a new benchmark and dataset. arXiv preprint arXiv:1811.00207 (2018)
Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161 (1980)
Scheffel, C., Diers, K., Schönfeld, S., Brocke, B., Strobel, A., Dörfel, D.: Cognitive emotion regulation and personality: an analysis of individual differences in the neural and behavioral correlates of successful reappraisal. Pers. Neurosci. 2, e11 (2019)
Sheppes, G.: Emotion regulation choice: theory and findings. Handb. Emot. Regul. 2, 126–139 (2014)
Todd, R.M., Cunningham, W.A., Anderson, A.K., Thompson, E.: Affect-biased attention as emotion regulation. Trends Cogn. Sci. 16(7), 365–372 (2012)
Webb, T.L., Miles, E., Sheeran, P.: Dealing with feeling: a meta-analysis of the effectiveness of strategies derived from the process model of emotion regulation. Psychol. Bull. 138(4), 775 (2012)
Acknowledgements
This work is partially supported by Generalitat Valenciana CIPROM/2021/077, Spanish Government by projects PID2020-113416RB-I00 and TED2021-131295B-C32, and TAILOR, a project funded by EU Horizon 2020, under GA No 952215.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pico, A., Taverner, J., Vivancos, E., Botti, V., Garcia-Fornes, A. (2023). Extrinsic Emotion Regulation by Intelligent Agents: A Computational Model Based on Arousal-Valence Dimensions. In: Mathieu, P., Dignum, F., Novais, P., De la Prieta, F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection. PAAMS 2023. Lecture Notes in Computer Science(), vol 13955. Springer, Cham. https://doi.org/10.1007/978-3-031-37616-0_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-37616-0_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37615-3
Online ISBN: 978-3-031-37616-0
eBook Packages: Computer ScienceComputer Science (R0)