Skip to main content

Extrinsic Emotion Regulation by Intelligent Agents: A Computational Model Based on Arousal-Valence Dimensions

  • Conference paper
  • First Online:
Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection (PAAMS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13955))

Abstract

Emotion regulation is an important aspect of emotional well-being that involves effectively managing and modifying one’s or other emotions. However, there is a lack of computational models to guide the design and implementation of emotion regulation by intelligent agents. To address this gap, we propose a computational model for an intelligent agent which, using an emotion representation based on the arousal-valence dimensions, facilitates emotion regulation in persons. Based on the theoretical emotion regulation model proposed by J. Gross, our model of intelligent affective agent uses a dynamic planner to select a regulation strategy to facilitate the individual to maintain their emotional balance. The agent selects the most appropriate emotion regulation strategy taking into account the specific personality traits of the individual. The effects of each regulatory strategy on a particular individual are updated by the agent according to the emotional changes detected in the individual physiological parameters in previous uses of the strategy. The proposed model of agent is of great importance to facilitate the learning and use of emotion regulation techniques for promoting emotional well-being of people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9151
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11439
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barańczuk, U.: The five factor model of personality and emotion regulation: a meta-analysis. Personality Individ. Differ. 139, 217–227 (2019)

    Article  Google Scholar 

  2. Bernstein, A., Hadash, Y., Lichtash, Y., Tanay, G., Shepherd, K., Fresco, D.M.: Decentering and related constructs: a critical review and metacognitive processes model. Perspect. Psychol. Sci. 10(5), 599–617 (2015)

    Article  Google Scholar 

  3. Borges, L.M., Naugle, A.E.: The role of emotion regulation in predicting personality dimensions. Pers. Ment. Health 11(4), 314–334 (2017)

    Article  Google Scholar 

  4. Costa, P.T., Jr., McCrae, R.R.: The Revised Neo Personality Inventory (neo-pi-r). Sage Publications Inc, Thousand Oaks (2008)

    Book  Google Scholar 

  5. Dias, J., Mascarenhas, S., Paiva, A.: FAtiMA modular: towards an agent architecture with a generic appraisal framework. In: Bosse, T., Broekens, J., Dias, J., van der Zwaan, J. (eds.) Emotion Modeling. LNCS (LNAI), vol. 8750, pp. 44–56. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12973-0_3

    Chapter  Google Scholar 

  6. Dias, J., Paiva, A.: I want to be your friend: establishing relations with emotionally intelligent agents. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, pp. 777–784 (2013)

    Google Scholar 

  7. DiGirolamo, M.A., Kibrislioglu Uysal, N., McCall, E.C., Isaacowitz, D.M.: Attention-focused emotion regulation in everyday life in adulthood and old age. Emotion 23, 633–650 (2022)

    Article  Google Scholar 

  8. Digman, J.M.: Personality structure: emergence of the five-factor model. Annu. Rev. Psychol. 41, 417–40 (1990)

    Article  Google Scholar 

  9. Egger, M., Ley, M., Hanke, S.: Emotion recognition from physiological signal analysis: a review. Electron. Notes Theor. Comput. Sci. 343, 35–55 (2019)

    Article  Google Scholar 

  10. English, T., Eldesouky, L.: We’re not alone: understanding the social consequences of intrinsic emotion regulation. Emotion 20(1), 43 (2020)

    Article  Google Scholar 

  11. English, T., Lee, I.A., John, O.P., Gross, J.J.: The role of social context and goals: emotion regulation strategy selection in daily life. Motiv. Emot. 41, 230–242 (2017)

    Article  Google Scholar 

  12. Gross, J.J.: The emerging field of emotion regulation: an integrative review. Rev. Gen. Psychol. 2(3), 271–299 (1998)

    Article  Google Scholar 

  13. Gross, J.J.: Emotion regulation. Handb. Emot. 3(3), 497–513 (2008)

    Google Scholar 

  14. Gross, J.J.: Emotion regulation: current status and future prospects. Psychol. Inq. 26(1), 1–26 (2015)

    Article  MathSciNet  Google Scholar 

  15. Gross, J.J.: The extended process model of emotion regulation: elaborations, applications, and future directions. Psychol. Inq. 26(1), 130–137 (2015)

    Article  Google Scholar 

  16. Harris, H., Nass, C.: Emotion regulation for frustrating driving contexts. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 749–752 (2011)

    Google Scholar 

  17. Katayama, S., Aoki, S., Yonezawa, T., Okoshi, T., Nakazawa, J., Kawaguchi, N.: ER-chat: a text-to-text open-domain dialogue framework for emotion regulation. IEEE Trans. Affect. Comput. 13(4), 2229–2237 (2022)

    Article  Google Scholar 

  18. Kever, A., Pollatos, O., Vermeulen, N., Grynberg, D.: Interoceptive sensitivity facilitates both antecedent-and response-focused emotion regulation strategies. Pers. Individ. Differ. 87, 20–23 (2015)

    Article  Google Scholar 

  19. Kobayashi, R., Shigematsu, J., Miyatani, M., Nakao, T.: Cognitive reappraisal facilitates decentering: a longitudinal cross-lagged analysis study. Front. Psychol. 11, 103 (2020)

    Article  Google Scholar 

  20. Martínez-Miranda, J., Bresó, A., García-Gómez, J.M.: Look on the bright side: a model of cognitive change in virtual agents. In: Bickmore, T., Marsella, S., Sidner, C. (eds.) IVA 2014. LNCS (LNAI), vol. 8637, pp. 285–294. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09767-1_37

    Chapter  Google Scholar 

  21. Martínez-Miranda, J., Bresó, A., García-Gómez, J.M.: Modelling two emotion regulation strategies as key features of therapeutic empathy. In: Bosse, T., Broekens, J., Dias, J., van der Zwaan, J. (eds.) Emotion Modeling. LNCS (LNAI), vol. 8750, pp. 115–133. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12973-0_7

    Chapter  Google Scholar 

  22. Mets, M.A., Kuipers, E., de Senerpont Domis, L.M., Leenders, M., Olivier, B., Verster, J.C.: Effects of alcohol on highway driving in the STISIM driving simulator. Human Psychopharmacol. Clin. Exp. 26(6), 434–439 (2011)

    Google Scholar 

  23. Nalepa, G.J., Kutt, K., Giżycka, B., Jemioło, P., Bobek, S.: Analysis and use of the emotional context with wearable devices for games and intelligent assistants. Sensors 19(11), 2509 (2019)

    Article  Google Scholar 

  24. Nozaki, Y., Mikolajczak, M.: Extrinsic emotion regulation. Emotion 20(1), 10 (2020)

    Article  Google Scholar 

  25. Peng, Z., Kim, T., Ma, X.: GremoBot: exploring emotion regulation in group chat. In: Conference Companion Publication of the 2019 on Computer Supported Cooperative Work and Social Computing, pp. 335–340 (2019)

    Google Scholar 

  26. Pereira, G., Dimas, J., Prada, R., Santos, P.A., Paiva, A.: A generic emotional contagion computational model. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011. LNCS, vol. 6974, pp. 256–266. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24600-5_29

    Chapter  Google Scholar 

  27. Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)

    Google Scholar 

  28. Esti Hayu Purnamaningsih: Personality and emotion regulation strategies. Int. J. Psychol. Res. 10(1), 53–60 (2017)

    Article  Google Scholar 

  29. Rashkin, H., Smith, E.M., Li, M., Boureau, Y.L.: Towards empathetic open-domain conversation models: a new benchmark and dataset. arXiv preprint arXiv:1811.00207 (2018)

  30. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161 (1980)

    Article  Google Scholar 

  31. Scheffel, C., Diers, K., Schönfeld, S., Brocke, B., Strobel, A., Dörfel, D.: Cognitive emotion regulation and personality: an analysis of individual differences in the neural and behavioral correlates of successful reappraisal. Pers. Neurosci. 2, e11 (2019)

    Google Scholar 

  32. Sheppes, G.: Emotion regulation choice: theory and findings. Handb. Emot. Regul. 2, 126–139 (2014)

    Google Scholar 

  33. Todd, R.M., Cunningham, W.A., Anderson, A.K., Thompson, E.: Affect-biased attention as emotion regulation. Trends Cogn. Sci. 16(7), 365–372 (2012)

    Article  Google Scholar 

  34. Webb, T.L., Miles, E., Sheeran, P.: Dealing with feeling: a meta-analysis of the effectiveness of strategies derived from the process model of emotion regulation. Psychol. Bull. 138(4), 775 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Generalitat Valenciana CIPROM/2021/077, Spanish Government by projects PID2020-113416RB-I00 and TED2021-131295B-C32, and TAILOR, a project funded by EU Horizon 2020, under GA No 952215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquin Taverner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pico, A., Taverner, J., Vivancos, E., Botti, V., Garcia-Fornes, A. (2023). Extrinsic Emotion Regulation by Intelligent Agents: A Computational Model Based on Arousal-Valence Dimensions. In: Mathieu, P., Dignum, F., Novais, P., De la Prieta, F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection. PAAMS 2023. Lecture Notes in Computer Science(), vol 13955. Springer, Cham. https://doi.org/10.1007/978-3-031-37616-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37616-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37615-3

  • Online ISBN: 978-3-031-37616-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics