Abstract
In this paper, we consider the online early work problems on three hierarchical machines with a common due date. When there is one machine of hierarchy 1, we propose an optimal online algorithm with a competitive ratio of 1.302. When there are two machines of hierarchy 1, we give a lower bound 1.276, and propose an online algorithm with a competitive ratio of 1.302.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angelelli, E., Speranza, M., Tuza, Z.: Semi on-line scheduling on three processors with known sum of the tasks. J. Sched. 10, 263–269 (2007). https://doi.org/10.1007/s10951-007-0023-y
Albers, S., Hellwig, M.: Semi-online scheduling revisited. Theor. Comput. Sci. 443, 1–9 (2012)
Azar, Y., Regev, O.: On-line bin-stretching. Theor. Comput. Sci. 168, 17–41 (2001)
Böhm, M., Sgall, J., van Stee, R., Veselý, P.: Online bin stretching with three bins. J. Sched. 20(6), 601–621 (2017). https://doi.org/10.1007/s10951-016-0504-y
Chen, X., Sterna, M., Han, X., Blazewicz, J.: Scheduling on parallel identical machines with late work criterion: offline and online cases. J. Sched. 19, 729–736 (2016). https://doi.org/10.1007/s10951-015-0464-7
Chen, X., Kovalev, S., Liu, Y., Sterna, M., Chalamon, I., Blazewicz, J.: Semi-online scheduling on two identical machines with a common due date to maximize total early work. Discrete Appl. Math. 290, 71–78 (2021)
Faigle, U., Kern, W., Turan, G.: On the performance of on-line algorithms for partition problems. Acta Cybernet. 9(2), 107–119 (1989)
Fleischer, R., Wahl, M.: On-line scheduling revisited. J. Sched. 3, 343–353 (2000)
Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating adversaries for request-answer games. In: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 564–565. SIAM, Philadelphia (2000)
He, Y., Zhang, G.: Semi on-line scheduling on two identical machines. Computing 62, 179–187 (1999). https://doi.org/10.1007/s006070050020
Jiang, Y., He, Y., Tang, C.: Optimal online algorithms for scheduling on two identical machines under a grade of service. J. Zhejiang Univ., Sci., A 7, 309–314 (2006). https://doi.org/10.1631/jzus.2006.A0309
Kellerer, H., Kotov, V., Gabay, M.: An efficient algorithm for semi-online multiprocessor scheduling with given total processing time. J. Sched. 18(6), 623–630 (2015). https://doi.org/10.1007/s10951-015-0430-4
Kellerer, H., Kotov, V., Speranza, M., Tuza, Z.: Semi on-line algorithms for the partition problem. Oper. Res. Lett. 21(5), 235–242 (1997)
Lee, K., Lim, K.: Semi-online scheduling problems on a small number of machines. J. Sched. 16, 461–477 (2013). https://doi.org/10.1007/s10951-013-0329-x
Park, J., Chang, S., Lee, K.: Online and semi-online scheduling of two machines under a grade of service provision. Oper. Res. Lett. 34(6), 692–696 (2006)
Sterna, M.: Late and early work scheduling: a survey. Omega 104(15–16), 102453 (2021)
Wu, Y., Yang, Q.: Optimal semi-online scheduling algorithms on two parallel identical machines under a grade of service provision. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 261–270. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14355-7_27
Xiao, M., Liu, X., Li, W.: Semi-online early work maximization problem on two hierarchical machines with partial information of processing time. In: Wu, W., Du, H. (eds.) AAIM 2021. LNCS, vol. 13153, pp. 146–156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93176-6_13
Zhang, A., Jiang, Y., Tan, Z.: Online parallel machines scheduling with two hierarchies. Theor. Comput. Sci. 410, 3597–3605 (2009)
Xiao, M., Ding, L., Zhao, S., Li, W.: Semi-online algorithms for hierarchical scheduling on three parallel machines with a buffer size of 1. In: He, K., Zhong, C., Cai, Z., Yin, Y. (eds.) NCTCS 2020. CCIS, vol. 1352, pp. 47–56. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-1877-2_4
Acknowledgement
The work is supported in part by the National Natural Science Foundation of China [No. 12071417].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xiao, M., Li, W. (2022). Online Early Work Maximization on Three Hierarchical Machines with a Common Due Date. In: Li, M., Sun, X. (eds) Frontiers of Algorithmic Wisdom. IJTCS-FAW 2022. Lecture Notes in Computer Science, vol 13461. Springer, Cham. https://doi.org/10.1007/978-3-031-20796-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-20796-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20795-2
Online ISBN: 978-3-031-20796-9
eBook Packages: Computer ScienceComputer Science (R0)