Skip to main content

Online Early Work Maximization on Three Hierarchical Machines with a Common Due Date

  • Conference paper
  • First Online:
Frontiers of Algorithmic Wisdom (IJTCS-FAW 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13461))

Included in the following conference series:

Abstract

In this paper, we consider the online early work problems on three hierarchical machines with a common due date. When there is one machine of hierarchy 1, we propose an optimal online algorithm with a competitive ratio of 1.302. When there are two machines of hierarchy 1, we give a lower bound 1.276, and propose an online algorithm with a competitive ratio of 1.302.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angelelli, E., Speranza, M., Tuza, Z.: Semi on-line scheduling on three processors with known sum of the tasks. J. Sched. 10, 263–269 (2007). https://doi.org/10.1007/s10951-007-0023-y

    Article  MathSciNet  MATH  Google Scholar 

  2. Albers, S., Hellwig, M.: Semi-online scheduling revisited. Theor. Comput. Sci. 443, 1–9 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Azar, Y., Regev, O.: On-line bin-stretching. Theor. Comput. Sci. 168, 17–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Böhm, M., Sgall, J., van Stee, R., Veselý, P.: Online bin stretching with three bins. J. Sched. 20(6), 601–621 (2017). https://doi.org/10.1007/s10951-016-0504-y

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, X., Sterna, M., Han, X., Blazewicz, J.: Scheduling on parallel identical machines with late work criterion: offline and online cases. J. Sched. 19, 729–736 (2016). https://doi.org/10.1007/s10951-015-0464-7

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, X., Kovalev, S., Liu, Y., Sterna, M., Chalamon, I., Blazewicz, J.: Semi-online scheduling on two identical machines with a common due date to maximize total early work. Discrete Appl. Math. 290, 71–78 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Faigle, U., Kern, W., Turan, G.: On the performance of on-line algorithms for partition problems. Acta Cybernet. 9(2), 107–119 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Fleischer, R., Wahl, M.: On-line scheduling revisited. J. Sched. 3, 343–353 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating adversaries for request-answer games. In: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 564–565. SIAM, Philadelphia (2000)

    Google Scholar 

  10. He, Y., Zhang, G.: Semi on-line scheduling on two identical machines. Computing 62, 179–187 (1999). https://doi.org/10.1007/s006070050020

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, Y., He, Y., Tang, C.: Optimal online algorithms for scheduling on two identical machines under a grade of service. J. Zhejiang Univ., Sci., A 7, 309–314 (2006). https://doi.org/10.1631/jzus.2006.A0309

    Article  MATH  Google Scholar 

  12. Kellerer, H., Kotov, V., Gabay, M.: An efficient algorithm for semi-online multiprocessor scheduling with given total processing time. J. Sched. 18(6), 623–630 (2015). https://doi.org/10.1007/s10951-015-0430-4

    Article  MathSciNet  MATH  Google Scholar 

  13. Kellerer, H., Kotov, V., Speranza, M., Tuza, Z.: Semi on-line algorithms for the partition problem. Oper. Res. Lett. 21(5), 235–242 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee, K., Lim, K.: Semi-online scheduling problems on a small number of machines. J. Sched. 16, 461–477 (2013). https://doi.org/10.1007/s10951-013-0329-x

    Article  MathSciNet  MATH  Google Scholar 

  15. Park, J., Chang, S., Lee, K.: Online and semi-online scheduling of two machines under a grade of service provision. Oper. Res. Lett. 34(6), 692–696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sterna, M.: Late and early work scheduling: a survey. Omega 104(15–16), 102453 (2021)

    Article  Google Scholar 

  17. Wu, Y., Yang, Q.: Optimal semi-online scheduling algorithms on two parallel identical machines under a grade of service provision. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 261–270. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14355-7_27

    Chapter  Google Scholar 

  18. Xiao, M., Liu, X., Li, W.: Semi-online early work maximization problem on two hierarchical machines with partial information of processing time. In: Wu, W., Du, H. (eds.) AAIM 2021. LNCS, vol. 13153, pp. 146–156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93176-6_13

    Chapter  Google Scholar 

  19. Zhang, A., Jiang, Y., Tan, Z.: Online parallel machines scheduling with two hierarchies. Theor. Comput. Sci. 410, 3597–3605 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xiao, M., Ding, L., Zhao, S., Li, W.: Semi-online algorithms for hierarchical scheduling on three parallel machines with a buffer size of 1. In: He, K., Zhong, C., Cai, Z., Yin, Y. (eds.) NCTCS 2020. CCIS, vol. 1352, pp. 47–56. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-1877-2_4

    Chapter  Google Scholar 

Download references

Acknowledgement

The work is supported in part by the National Natural Science Foundation of China [No. 12071417].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, M., Li, W. (2022). Online Early Work Maximization on Three Hierarchical Machines with a Common Due Date. In: Li, M., Sun, X. (eds) Frontiers of Algorithmic Wisdom. IJTCS-FAW 2022. Lecture Notes in Computer Science, vol 13461. Springer, Cham. https://doi.org/10.1007/978-3-031-20796-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20796-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20795-2

  • Online ISBN: 978-3-031-20796-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics