Skip to main content

An Approximation Algorithm for the B-prize-collecting Multicut Problem in Trees

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13571))

  • 462 Accesses

Abstract

In this paper, we consider the B-prize-collecting multicut problem in trees. In this problem, we are given a tree \(T=(V,E)\), a set of k source-sink pairs \(\mathcal {P}=\{(s_1,t_1),(s_2,t_2),\ldots , (s_k,t_k)\}\) and a profit bound B. Every edge \(e\in E\) has a cost \(c_e\), and every source-sink pair \((s_j,t_j)\in \mathcal {P}\) has a profit \(p_j\) and a penalty \(\pi _j\). This problem is to find a multicut \(M\subseteq E\) such that the total cost, which consists of the total cost of the edges in M and the total penalty of the pairs still connected after removing M, is minimized and the total profit of the disconnected pairs by removing M is at least B. Based on the primal-dual scheme, we present an \((\frac{8}{3}+ \epsilon )\)-approximation algorithm by carefully increasing the penalty, where \(\epsilon \) is any fixed positive number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Du, D., Lu, R., Xu, D.: A primal-dual approximation algorithm for the facility location problem with submodular penalties. Algorithmica 63(1–2), 191–200 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. W.H Freeman and Company, New York (1990)

    MATH  Google Scholar 

  3. Galby, E., Marx, Dániel., Schepper, P., Sharma, R., Tale, P.: Parameterized complexity of weighted multicut in trees. arXiv:2205.10105 (2022) https://doi.org/10.48550/arXiv.2205.10105

  4. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18, 3–20 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Guo, J., Liu, W., Hou, B.: An approximation algorithm for P-prize-collecting set cover problem. J. Oper. Res. Soc. China (2021) https://doi.org/10.1007/s40305-021-00364-7

  6. Guo, J., Niedermeier, R.: Exact algorithms and applications for tree-like weighted set cover. J. Discrete Algorithms 4(4), 608–622 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Han, L., Xu, D., Du, D., Wu, C.: A \(5\)-approximation algorithm for the \(k\)-prize-collecting Steiner tree problem. Opti. Lett.s 13, 573–585 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hou, X., Liu, W., Hou, B.: An approximation algorithm for the \(k\)-prize-collecting multicut on a tree problem. Theoret. Comput. Sci. 844, 26–33 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu, T.C.: Integer Programming and Network Flows. Princeton University Press, Princeton (1969)

    MATH  Google Scholar 

  10. Könemann, J., Parekh, O., Segev, D.: A unified approach to approximating partial covering problems. Algorithmica 59(4), 489–509 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Levin, A., Segev, D.: Partial multicuts in trees. Theoret. Comput. Sci. 369(1–3), 384–395 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Y., Du, D., Xiu, N., Xu, D.: Improved approximation algorithms for the facility location problems with linear /submodular penalties. Algorithmica 73, 460–482 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, X., Dai, H., Li, S., Li, W.: \(k\)-prize-collecting minimum power cover problem with submodular penalties on a plane (in Chinese). Scientia Sinica Informationis 52(6), 947 (2022)

    Article  Google Scholar 

  14. Liu, X., Li, W.: Combinatorial approximation algorithms for the submodular multicut problem in trees with submodular penalties. J. Comb. Opt. 44, 1964–1976 (2022). https://doi.org/10.1007/s10878-020-00568-2

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, X., Li, W., Xie, R.: A primal-dual approximation algorithm for the \(k\)-prize-collecting minimum power cover problem. Opt. Lett. 16, 2373–2385 (2022). https://doi.org/10.1007/s10878-020-00568-2

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, X., Li, W., Yang, J.: A primal-dual approximation algorithm for the \(k\)-prize-collecting minimum vertex cover problem with submodular penalties. Front. Comput. Sci. 17(3), 173404 (2023). https://doi.org/10.1007/s11704-022-1665-9

    Article  Google Scholar 

  17. Zhang, P., Zhu, D., Luan, J.: An approximation algorithm for the generalized \(k\)-multicut problem. Discret. Appl. Math. 160(7–8), 1240–1247 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The work is supported in part by the National Natural Science Foundation of China [No. 12071417].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Liu .

Editor information

Editors and Affiliations

Ethics declarations

Declaration

The authors declare that they have no known competing financial interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Li, W. (2022). An Approximation Algorithm for the B-prize-collecting Multicut Problem in Trees. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Theory and Applications of Models of Computation. TAMC 2022. Lecture Notes in Computer Science, vol 13571. Springer, Cham. https://doi.org/10.1007/978-3-031-20350-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20350-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20349-7

  • Online ISBN: 978-3-031-20350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics