Skip to main content

Efficient Federated Tumor Segmentation via Normalized Tensor Aggregation and Client Pruning

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 12963))

Included in the following conference series:

Abstract

Federated learning, which trains a generic model for different institutions without sharing their data, is a new trend to avoid training with centralized data, which is often impossible due to privacy issues. The Federated Tumor Segmentation (FeTS) Challenge 2021 has two tasks for participants. Task 1 aims at effective weight aggregation methods given a pre-defined segmentation algorithm for clients training. While task 2 looks for robust segmentation algorithms evaluated on unseen data from remote independent institutions. In federated learning, heterogeneity in the local clients’ datasets and training speeds results in non-negligible variations between clients in each aggregation round. The naive weighted average aggregation of such models causes objective inconsistency. As for task 1, we devise a tensor normalization approach to solve the objective inconsistency. Furthermore, we propose a client pruning strategy to alleviate the negative impact on the convergence time caused by the uneven training time among local clients. Our method achieves a projected convergence score of 74.32% during the training phase. For task 2, we dynamically adapt model weights at test time by minimizing the entropy loss to address the domain shifting problem for unseen data evaluation. Our method finally achieves dice scores of 90.67%, 86.23%, and 78.90% for the whole tumor, tumor core, and enhancing tumor, respectively, on the task’s validation data. Overall, the proposed solution ranked first for task 2 and third for task 1 in the FeTS Challenge 2021.

The first two authors contributed equally. The work was done when they did summer internship at CUHK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pati, S., et al.: Reproducibility analysis of multi-institutional paired expert annotations and radiomic features of the Ivy glioblastoma atlas project (Ivy GAP) dataset. Med. Phys. 12, 6039–6052 (2020)

    Article  Google Scholar 

  2. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  3. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge (2019)

    Google Scholar 

  4. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  5. Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11

    Chapter  Google Scholar 

  6. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  7. Annas, G.J.: HIPAA regulations - a new era of medical-record privacy? N. Engl. J. Med. 348(15), 1486–1490 (2003)

    Article  Google Scholar 

  8. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data (2017)

    Google Scholar 

  9. Yang, T., et al.: Applied federated learning: improving google keyboard query suggestions (2018)

    Google Scholar 

  10. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 2, 1–19 (2019)

    Google Scholar 

  11. Rieke, N., et al.: The future of digital health with federated learning. NPJ Digital Med. 1, 1–7 (2020)

    Google Scholar 

  12. Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional pruning without sharing patient data. Sci. Rep. 1, 1–12 (2020)

    Google Scholar 

  13. Dou, Q., et al.: Federated deep learning for detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study. NPJ Digital Med. 4(1), 1–11 (2021)

    Article  Google Scholar 

  14. Roth, H.R., et al.: Federated learning for breast density classification: a real-world implementation. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 181–191. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_18

    Chapter  Google Scholar 

  15. Li, W., et al.: Privacy-preserving federated brain tumour segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 133–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_16

    Chapter  Google Scholar 

  16. Kaissis, G.A., Makowski, M.R., Rückert, D., Braren, R.F.: Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2(6), 305–311 (2020)

    Article  Google Scholar 

  17. Li, D., Kar, A., Ravikumar, N., Frangi, A.F., Fidler, S.: Federated simulation for medical imaging. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 159–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_16

    Chapter  Google Scholar 

  18. Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_9

    Chapter  Google Scholar 

  19. Silva, S., Gutman, B.A., Romero, E., Thompson, P.M., Altmann, A., Lorenzi, M.: Federated learning in distributed medical databases: meta-analysis of large-scale subcortical brain data. In: ISBI, pp. 270–274. IEEE (2019)

    Google Scholar 

  20. Pati, S., et al.: The federated tumor segmentation (FeTS) challenge (2021)

    Google Scholar 

  21. Guo, P., Wang, P., Zhou, J., Jiang, S., Patel, V.M.: Multi-institutional collaborations for improving deep learning-based magnetic resonance image reconstruction using federated learning (2021)

    Google Scholar 

  22. Mohri, M., Sivek, G., Suresh, A.T.: Agnostic federated learning (2019)

    Google Scholar 

  23. Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization (2020)

    Google Scholar 

  24. Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.-A.: FedDG: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: CVPR (2021)

    Google Scholar 

  25. Chen, C., Liu, Q., Jin, Y., Dou, Q., Heng, P.-A.: Source-free domain adaptive fundus image segmentation with denoised pseudo-labeling. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 225–235. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_22

    Chapter  Google Scholar 

  26. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: fully test-time adaptation by entropy minimization (2021)

    Google Scholar 

  27. Liu, C., Belkin, M.: Accelerating SGD with momentum for over-parameterized learning. arXiv preprint arXiv:1810.13395 (2018)

  28. Karani, N., Erdil, E., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. Med. Image Anal. 68, 101907 (2021)

    Article  Google Scholar 

  29. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., Hardt, M.: Test-time training with self-supervision for generalization under distribution shifts (2020)

    Google Scholar 

  30. Reina, G.A., et al.: OpenFL: an open-source framework for federated learning (2021)

    Google Scholar 

  31. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection (brats-TCGA-GBM). Cancer Imaging Archive (2017)

    Google Scholar 

  32. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection (brats-TCGA-LGG). Cancer Imaging Archive (2017)

    Google Scholar 

  33. Liu, Q., Yang, H., Dou, Q., Heng, P.-A.: Federated semi-supervised medical image classification via inter-client relation matching. arXiv preprint arXiv:2106.08600 (2021)

Download references

Acknowledgement

This work was supported by Key-Area Research and Development Program of Guangdong Province, China (2020B010165004), Hong Kong RGC TRS Project No. T42-409/18-R, National Natural Science Foundation of China with Project No. U1813204 and Shenzhen-HK Collaborative Development Zone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quande Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, Y. et al. (2022). Efficient Federated Tumor Segmentation via Normalized Tensor Aggregation and Client Pruning. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09002-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09001-1

  • Online ISBN: 978-3-031-09002-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics