Skip to main content

Entity Extraction from Portuguese Legal Documents Using Distant Supervision

  • Conference paper
  • First Online:
Computational Processing of the Portuguese Language (PROPOR 2022)

Abstract

Most approaches to role-filler entity extraction (REE) rely on large labeled training corpora in which entity mentions are directly annotated in the input document. In this work, we leverage an existing knowledge base (KB) of entities to perform document-level REE from drug seizure petitions. We propose a system that learns to extract entities from petitions to fill 29 roles of a drug seizure event. Although we have access to a KB covering more than 170 thousand entities and six thousand petitions, such that each entity in the KB is linked to a specific petition, the mentions to an entity within a petition’s text are not annotated. The lack of these annotations brings challenges related to mismatches between entity values in the KB and entity mentions in the documents. Additionally, there are entities with same type or same value. Thus, we propose a distant annotation method to overcome these challenges and automatically label petition documents using the available KB. This annotation method includes a parameter that controls the balance between precision and recall. We also propose a strategy to effectively tune this parameter in order to optimize a given metric. We then train a BERT-based sequence labeling model that learns to identify entity mentions and label them. Our system achieves an \(F_1\) score of 78.59 with precision over 82%. We also report ablation studies regarding the distant annotation method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    MPMS is a public institution whose duties include criminal prosecution in the Brazilian state of Mato Grosso do Sul.

References

  1. Bonifacio, L.H., Vilela, P.A., Lobato, G.R., Fernandes, E.R.: A study on the impact of intradomain finetuning of deep language models for legal named entity recognition in Portuguese. In: Cerri, R., Prati, R.C. (eds.) BRACIS 2020. LNCS (LNAI), vol. 12319, pp. 648–662. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61377-8_46

    Chapter  Google Scholar 

  2. Chelba, C., Mahajan, M.: Information extraction using the structured language model. CoRR cs.CL/0108023 (2001)

    Google Scholar 

  3. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018)

    Google Scholar 

  4. Du, X., Rush, A.M., Cardie, C.: Document-level event-based extraction using generative template-filling transformers. CoRR abs/2008.09249 (2020)

    Google Scholar 

  5. Du, X., Rush, A.M., Cardie, C.: Template filling with generative transformers. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, 6–11 June 2021 (2021)

    Google Scholar 

  6. Hedderich, M.A., Lange, L., Klakow, D.: ANEA: distant supervision for low-resource named entity recognition. CoRR abs/2102.13129 (2021). https://arxiv.org/abs/2102.13129

  7. Huang, K., Tang, S., Peng, N.: Document-level entity-based extraction as template generation. CoRR abs/2109.04901 (2021)

    Google Scholar 

  8. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)

    MathSciNet  Google Scholar 

  9. Liang, C., Yu, Y., Jiang, H., Er, S., Wang, R., Zhao, T., Zhang, C.: BOND: BERT-assisted open-domain named entity recognition with distant supervision. CoRR abs/2006.15509 (2020)

    Google Scholar 

  10. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. CoRR abs/1907.11692 (2019)

    Google Scholar 

  11. Luo, X.: On coreference resolution performance metrics. In: Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, pp. 25–32. Association for Computational Linguistics, Vancouver (2005)

    Google Scholar 

  12. Reschke, K., Jankowiak, M., Surdeanu, M., Manning, C., Jurafsky, D.: Event extraction using distant supervision. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation, pp. 4527–4531. European Language Resources Association (ELRA), Reykjavik, Iceland, May 2014

    Google Scholar 

  13. Sang, E.F.T.K., Meulder, F.D.: Introduction to the CONLL-2003 shared task: Language-independent named entity recognition. In: Daelemans, W., Osborne, M. (eds.) Proceedings of the Seventh Conference on Natural Language Learning, CoNLL 2003, Held in cooperation with HLT-NAACL 2003, Edmonton, Canada, May 31–June 1 2003. pp. 142–147. ACL (2003). https://aclanthology.org/W03-0419/

  14. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. CoRR abs/1910.01108 (2019)

    Google Scholar 

  15. Sarwar, S.M., Allan, J.: SearchIE: a retrieval approach for information extraction. In: Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval, ICTIR 2019, pp. 249–252. Association for Computing Machinery, New York (2019)

    Google Scholar 

  16. Souza, F., Nogueira, R., Lotufo, R.: BERTimbau: pretrained BERT models for Brazilian Portuguese. In: Cerri, R., Prati, R.C. (eds.) BRACIS 2020. LNCS (LNAI), vol. 12319, pp. 403–417. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61377-8_28

    Chapter  Google Scholar 

  17. Wagner Filho, J.A., Wilkens, R., Idiart, M., Villavicencio, A.: The brWaC corpus: a new open resource for Brazilian Portuguese. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). European Language Resources Association (ELRA), Miyazaki, May 2018

    Google Scholar 

  18. Wolf, T., et al.: HuggingFace’s transformers: state-of-the-art natural language processing. CoRR abs/1910.03771 (2019)

    Google Scholar 

  19. Xiang, W., Wang, B.: A survey of event extraction from text. IEEE Access 7, 173111–173137 (2019)

    Article  Google Scholar 

  20. Yao, X., Van Durme, B.: Information extraction over structured data: question answering with Freebase. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 956–966. Association for Computational Linguistics, Baltimore, June 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas M. Navarezi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Navarezi, L.M. et al. (2022). Entity Extraction from Portuguese Legal Documents Using Distant Supervision. In: Pinheiro, V., et al. Computational Processing of the Portuguese Language. PROPOR 2022. Lecture Notes in Computer Science(), vol 13208. Springer, Cham. https://doi.org/10.1007/978-3-030-98305-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98305-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98304-8

  • Online ISBN: 978-3-030-98305-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics