Skip to main content

Approximation Algorithms for the Maximum Bounded Connected Bipartition Problem

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13153))

Included in the following conference series:

Abstract

In this paper, we study the maximum bounded connected bipartition problem (2-BCBP): given a vertex-weighted connected graph \(G=(V,E;w)\) and an upper bound B, the vertex set V is partitioned into two subsets denoted as \((V_1,V_2)\) such that both subgraphs induced by \(V_1\) and \(V_2\) are connected and the total weight of these two subgraphs is maximized, where the weight of the subgraph is the minimum of the sum of the weight of all vertices and B. The 2-BCBP is a hybrid variant of the maximum balanced connected partition problem on connected graphs and the maximum total early work problem in scheduling theory. In this paper, we consider the 2-BCBP and present an \(\frac{8}{7}\)-approximation algorithm. In particular, we consider the 2-BCBP on interval graphs and present a fully polynomial-time approximation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Becker, R., Lari, I., Lucertini, M., Simeone, B.: Max-min partitioning of grid graphs into connected components. Networks 32, 115–125 (1998)

    Article  MathSciNet  Google Scholar 

  2. Becker, R., Lari, I., Lucertini, M., Simeone, B.: A polynomial-time algorithm for max-min partitioning of ladders. Theory Comput. Syst. 34, 353–374 (2001)

    Article  MathSciNet  Google Scholar 

  3. Becker, R., Perl, Y.: Shifting algorithms for tree partitioning with general weighting functions. J. Algorithms 4(2), 101–120 (1983)

    Article  MathSciNet  Google Scholar 

  4. Chataigner, F., Salgado, L., Wakabayashi, Y.: Approximation and inapproximability results on balanced connected partitions of graphs. Discrete Math. Theor. Comput. Sci. 9, 177–192 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Chen, G., Chen, Y., Chen, Z.-Z., Lin, G., Liu, T., Zhang, A.: Approximation algorithms for the maximally balanced connected graph tripartition problem. J. Comb. Optim., 1–21 (2020). https://doi.org/10.1007/s10878-020-00544-w

  6. Chen, X., Liang, Y., Sterna, M., Wang, W., Blazewicz, J.: Fully polynomial time approximation scheme to maximize early work on parallel machines with common due date. Eur. J. Oper. Res. 284, 67–74 (2020)

    Article  MathSciNet  Google Scholar 

  7. Chen, X., Wang, W., Xie, P., Zhang, X., Sterna, M., Blazewicz, J.: Exact and heuristic algorithms for scheduling on two identical machines with early work maximization. Comput. Ind. Eng. 144, Article No. 106449 (2020)

    Google Scholar 

  8. Chen, Y., Chen, Z.-Z., Lin, G., Xu, Y., Zhang, A.: Approximation algorithms for maximally balanced connected graph partition. In: Li, Y., Cardei, M., Huang, Y. (eds.) COCOA 2019. LNCS, vol. 11949, pp. 130–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36412-0_11

    Chapter  Google Scholar 

  9. Chlebíková, J.: Approximating the maximally balanced connected partition problem in graphs. Inf. Process. Lett. 60, 225–230 (1996)

    Article  MathSciNet  Google Scholar 

  10. Choi, B., Park, M., Kim, K., Min, Y.: A parallel machine scheduling problem maximizing total weighted early work. Asia-Pac. J. Oper. Res. Article No. 2150007 (2021)

    Google Scholar 

  11. Dyer, M., Frieze, A.: On the complexity of partitioning graphs into connected subgraphs. Discret. Appl. Math. 10, 139–153 (1985)

    Article  MathSciNet  Google Scholar 

  12. Even, S., Tarjan, R.: Computing an ST-numbering. Theoret. Comput. Sci. 2, 339–344 (1976)

    Article  MathSciNet  Google Scholar 

  13. Frederickson, G.: Optimal algorithms for tree partitioning. In: Symposium on Discrete Algorithms, pp. 168–177 (1991)

    Google Scholar 

  14. Frederickson, G., Samson, Z.: Optimal parametric search for path and tree partitioning. arXiv:abs/1711.00599 (2017)

  15. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45(9), 1563–1581 (1966)

    Article  Google Scholar 

  16. Guan, L., Li, W., Xiao, M.: Online algorithms for the mixed ring loading problem with two nodes. Optim. Lett. 15(4), 1229–1239 (2020). https://doi.org/10.1007/s11590-020-01632-w

    Article  MathSciNet  Google Scholar 

  17. Györgyi, P., Kis, T.: A common approximation framework for early work, late work, and resource leveling problems. Eur. J. Oper. Res. 286(1), 129–137 (2020)

    Article  MathSciNet  Google Scholar 

  18. Jana, S., Pandit, S., Roy, S.: Balanced connected graph partition. In: Mudgal, A., Subramanian, C.R. (eds.) CALDAM 2021. LNCS, vol. 12601, pp. 487–499. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67899-9_38

    Chapter  Google Scholar 

  19. Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity testing of graphs. In: Rosenstiehl, P. (ed.) International Symposium 1966, Theory of Graphs, pp. 215–232. Gordon and Breach, New York; Dunod, Paris (1966)

    Google Scholar 

  20. Li, W.: Improved approximation schemes for early work scheduling on identical parallel machines with common due date. arXiv:abs/2007.12388 (2020)

  21. Lucertini, M., Perl, Y., Simeone, B.: Image enhancement by path partitioning. In: Cantoni, V., Creutzburg, R., Levialdi, S., Wolf, G. (eds.) PAR 1988. LNCS, vol. 399, pp. 12–22. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51815-0_37

    Chapter  Google Scholar 

  22. Lucertini, M., Perl, Y., Simeone, B.: Most uniform path partitioning and its use in image processing. Discret. Appl. Math. 42(2–3), 227–256 (1993)

    Article  MathSciNet  Google Scholar 

  23. Maravalle, M., Simeone, B., Naldini, R.: Clustering on trees. Comput. Stat. Data Anal. 24(2), 217–234 (1997)

    Article  MathSciNet  Google Scholar 

  24. Miyazawa, F., Moura, P., Ota, M., Wakabayashi, Y.: Partitioning a graph into balanced connected classes: formulations, separation and experiments. Eur. J. Oper. Res. 293, 826–836 (2021)

    Article  MathSciNet  Google Scholar 

  25. Soltan, S., Yannakakis, M., Zussman, G.: Doubly balanced connected graph partitioning. ACM Trans. Algorithms 16, 1–24 (2020)

    Article  MathSciNet  Google Scholar 

  26. Sterna, M.: Late and early work scheduling: a survey. Omega-Int. J. Manag. Sci. 104(10), Artical No. 102453 (2021)

    Google Scholar 

  27. Sterna, M., Czerniachowska, K.: Polynomial time approximation scheme for two parallel machines scheduling with a common due date to maximize early work. J. Optim. Theory Appl. 174(3), 927–944 (2017)

    Article  MathSciNet  Google Scholar 

  28. Wu, B.Y.: A 7/6-approximation algorithm for the max-min connected bipartition problem on grid graphs. In: Akiyama, J., Bo, J., Kano, M., Tan, X. (eds.) CGGA 2010. LNCS, vol. 7033, pp. 188–194. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24983-9_19

    Chapter  Google Scholar 

  29. Wu, B.: Fully polynomial time approximation schemes for the max-min connected partition problem on interval graphs. Discret Math. Algorithm Appl. 4, Artical No. 1250005 (2012)

    Google Scholar 

  30. Wu, B.: Algorithms for the minimum non-separating path and the balanced connected bipartition problems on grid graphs. J. Comb. Optim. 26, 592–607 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is supported in part by the National Natural Science Foundation of China [No. 12071417], and Project for Innovation Team (Cultivation) of Yunnan Province [No. 202005AE160006].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Li, W., Liu, X., Yang, J. (2021). Approximation Algorithms for the Maximum Bounded Connected Bipartition Problem. In: Wu, W., Du, H. (eds) Algorithmic Aspects in Information and Management. AAIM 2021. Lecture Notes in Computer Science(), vol 13153. Springer, Cham. https://doi.org/10.1007/978-3-030-93176-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93176-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93175-9

  • Online ISBN: 978-3-030-93176-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics