Abstract
Let \(\mathcal R\) be a set of n colored imprecise points, where each point is colored by one of k colors. Each imprecise point is specified by a unit disk in which the point lies. We study the problem of computing the smallest and the largest possible minimum color spanning circle, among all possible choices of points inside their corresponding disks. We present an \(O(nk\log n)\) time algorithm to compute a smallest minimum color spanning circle. Regarding the largest minimum color spanning circle, we show that the problem is \(\mathsf {NP}\text {-}\mathsf {Hard}\) and present a \(\frac{1}{3}\)-factor approximation algorithm. We improve the approximation factor to \(\frac{1}{2}\) for the case where no two disks of distinct color intersect.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abellanas, M., et al.: Smallest color-spanning objects. In: ESA, pp. 278–289 (2001)
Acharyya, A., Nandy, S.C., Roy, S.: Minimum width color spanning annulus. Theoret. Comput. Sci. 725, 16–30 (2018)
de Berg, M., Gudmundsson, J., Katz, M.J., Levcopoulos, C., Overmars, M.H., van der Stappen, A.F.: TSP with neighborhoods of varying size. J. Algorithms 57(1), 22–36 (2005)
Cabello, S.: Approximation algorithms for spreading points. J. Algorithms 62(2), 49–73 (2007)
Consuegra, M.E., Narasimhan, G.: Geometric avatar problems. In: FSTTCS, pp. 389–400 (2013)
Daescu, O., Ju, W., Luo, J.: NP-completeness of spreading colored points. In: COCOA, pp. 41–50 (2010)
Das, S., Goswami, P.P., Nandy, S.C.: Smallest color-spanning object revisited. Internat. J. Comput. Geom. Appl. 19(05), 457–478 (2009)
Dror, M., Orlin, J.B.: Combinatorial optimization with explicit delineation of the ground set by a collection of subsets. SIAM J. Discrete Math. 21(4), 1019–1034 (2008)
Dumitrescu, A., Jiang, M.: Dispersion in disks. Theory Comput. Syst. 51(2), 125–142 (2012)
Fiala, J., Kratochvíl, J., Proskurowski, A.: Systems of distant representatives. Discrete Appl. Math. 145(2), 306–316 (2005)
Fleischer, R., Xu, X.: Computing minimum diameter color-spanning sets is hard. Inform. Process. Lett. 111(21–22), 1054–1056 (2011)
Fraser, R.: Algorithms for geometric covering and piercing problems. Ph.D. thesis, University of Waterloo (2013)
Hasheminejad, J., Khanteimouri, P., Mohades, A.: Computing the smallest color spanning equilateral triangle. In: EuroCG, pp. 32–35 (2015)
Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces and its applications. Discrete Comput. Geom. 9(3), 267–291 (1993)
Jadhav, S., Mukhopadhyay, A., Bhattacharya, B.: An optimal algorithm for the intersection radius of a set of convex polygons. J. Algorithms 20(2), 244–267 (1996)
Jiang, M., Wang, H.: Shortest color-spanning intervals. In: COCOON, pp. 288–299 (2014)
Ju, W., Fan, C., Luo, J., Zhu, B., Daescu, O.: On some geometric problems of color-spanning sets. J. Comb. Optim. 26(2), 266–283 (2013)
Khanteimouri, P., Mohades, A., Abam, M.A., Kazemi, M.R.: Computing the smallest color-spanning axis-parallel square. In: ISAAC, pp. 634–643 (2013)
Knauer, C., Löffler, M., Scherfenberg, M., Wolle, T.: The directed Hausdorff distance between imprecise point sets. Theoret. Comput. Sci. 412(32), 4173–4186 (2011)
Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM J. Discrete Math. 5(3), 422–427 (1992)
Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)
Löffler, M., van Kreveld, M.: Largest bounding box, smallest diameter, and related problems on imprecise points. Comput. Geom. 43(4), 419–433 (2010)
Manzini, R., Gamberini, R.: Design, management and control of logistic distribution systems. Int. J. Adv. Robot. Syst. 263–290 (2008)
Pop, P.C.: The generalized minimum spanning tree problem: an overview of formulations, solution procedures and latest advances. Eur. J. Oper. Res. (2019)
Robert, J.M., Toussaint, G.: Computational geometry and facility location. In: Operations Research and Management Science, pp. 11–15 (1990)
Salesin, D., Stolfi, J., Guibas, L.: Epsilon geometry: building robust algorithms from imprecise computations. In: SoCG, pp. 208–217 (1989)
Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K.H., Kitsuregawa, M.: Keyword search in spatial databases: towards searching by document. In: ICDE, pp. 688–699 (2009)
Acknowledgements
The authors would like to thank Irina Kostitsyna for key discussions on the hardness reduction and Hans Raj Tiwary for the proof of Lemma 5. A.A., R.J., V.K., and M. S. were supported by the Czech Science Foundation, grant number GJ19-06792Y, and by institutional support RVO: 67985807. M.L. was partially supported by the Netherlands Organization for Scientific Research (NWO) under project no. 614.001.504. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Acharyya, A., Jallu, R.K., Keikha, V., Löffler, M., Saumell, M. (2021). Minimum Color Spanning Circle in Imprecise Setup. In: Chen, CY., Hon, WK., Hung, LJ., Lee, CW. (eds) Computing and Combinatorics. COCOON 2021. Lecture Notes in Computer Science(), vol 13025. Springer, Cham. https://doi.org/10.1007/978-3-030-89543-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-89543-3_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89542-6
Online ISBN: 978-3-030-89543-3
eBook Packages: Computer ScienceComputer Science (R0)