Skip to main content

Minimum Color Spanning Circle in Imprecise Setup

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13025))

Included in the following conference series:

Abstract

Let \(\mathcal R\) be a set of n colored imprecise points, where each point is colored by one of k colors. Each imprecise point is specified by a unit disk in which the point lies. We study the problem of computing the smallest and the largest possible minimum color spanning circle, among all possible choices of points inside their corresponding disks. We present an \(O(nk\log n)\) time algorithm to compute a smallest minimum color spanning circle. Regarding the largest minimum color spanning circle, we show that the problem is \(\mathsf {NP}\text {-}\mathsf {Hard}\) and present a \(\frac{1}{3}\)-factor approximation algorithm. We improve the approximation factor to \(\frac{1}{2}\) for the case where no two disks of distinct color intersect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abellanas, M., et al.: Smallest color-spanning objects. In: ESA, pp. 278–289 (2001)

    Google Scholar 

  2. Acharyya, A., Nandy, S.C., Roy, S.: Minimum width color spanning annulus. Theoret. Comput. Sci. 725, 16–30 (2018)

    Article  MathSciNet  Google Scholar 

  3. de Berg, M., Gudmundsson, J., Katz, M.J., Levcopoulos, C., Overmars, M.H., van der Stappen, A.F.: TSP with neighborhoods of varying size. J. Algorithms 57(1), 22–36 (2005)

    Article  MathSciNet  Google Scholar 

  4. Cabello, S.: Approximation algorithms for spreading points. J. Algorithms 62(2), 49–73 (2007)

    Article  MathSciNet  Google Scholar 

  5. Consuegra, M.E., Narasimhan, G.: Geometric avatar problems. In: FSTTCS, pp. 389–400 (2013)

    Google Scholar 

  6. Daescu, O., Ju, W., Luo, J.: NP-completeness of spreading colored points. In: COCOA, pp. 41–50 (2010)

    Google Scholar 

  7. Das, S., Goswami, P.P., Nandy, S.C.: Smallest color-spanning object revisited. Internat. J. Comput. Geom. Appl. 19(05), 457–478 (2009)

    Article  MathSciNet  Google Scholar 

  8. Dror, M., Orlin, J.B.: Combinatorial optimization with explicit delineation of the ground set by a collection of subsets. SIAM J. Discrete Math. 21(4), 1019–1034 (2008)

    Article  MathSciNet  Google Scholar 

  9. Dumitrescu, A., Jiang, M.: Dispersion in disks. Theory Comput. Syst. 51(2), 125–142 (2012)

    Article  MathSciNet  Google Scholar 

  10. Fiala, J., Kratochvíl, J., Proskurowski, A.: Systems of distant representatives. Discrete Appl. Math. 145(2), 306–316 (2005)

    Article  MathSciNet  Google Scholar 

  11. Fleischer, R., Xu, X.: Computing minimum diameter color-spanning sets is hard. Inform. Process. Lett. 111(21–22), 1054–1056 (2011)

    Article  MathSciNet  Google Scholar 

  12. Fraser, R.: Algorithms for geometric covering and piercing problems. Ph.D. thesis, University of Waterloo (2013)

    Google Scholar 

  13. Hasheminejad, J., Khanteimouri, P., Mohades, A.: Computing the smallest color spanning equilateral triangle. In: EuroCG, pp. 32–35 (2015)

    Google Scholar 

  14. Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces and its applications. Discrete Comput. Geom. 9(3), 267–291 (1993)

    Article  MathSciNet  Google Scholar 

  15. Jadhav, S., Mukhopadhyay, A., Bhattacharya, B.: An optimal algorithm for the intersection radius of a set of convex polygons. J. Algorithms 20(2), 244–267 (1996)

    Article  MathSciNet  Google Scholar 

  16. Jiang, M., Wang, H.: Shortest color-spanning intervals. In: COCOON, pp. 288–299 (2014)

    Google Scholar 

  17. Ju, W., Fan, C., Luo, J., Zhu, B., Daescu, O.: On some geometric problems of color-spanning sets. J. Comb. Optim. 26(2), 266–283 (2013)

    Article  MathSciNet  Google Scholar 

  18. Khanteimouri, P., Mohades, A., Abam, M.A., Kazemi, M.R.: Computing the smallest color-spanning axis-parallel square. In: ISAAC, pp. 634–643 (2013)

    Google Scholar 

  19. Knauer, C., Löffler, M., Scherfenberg, M., Wolle, T.: The directed Hausdorff distance between imprecise point sets. Theoret. Comput. Sci. 412(32), 4173–4186 (2011)

    Article  MathSciNet  Google Scholar 

  20. Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM J. Discrete Math. 5(3), 422–427 (1992)

    Article  MathSciNet  Google Scholar 

  21. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)

    Article  MathSciNet  Google Scholar 

  22. Löffler, M., van Kreveld, M.: Largest bounding box, smallest diameter, and related problems on imprecise points. Comput. Geom. 43(4), 419–433 (2010)

    Article  MathSciNet  Google Scholar 

  23. Manzini, R., Gamberini, R.: Design, management and control of logistic distribution systems. Int. J. Adv. Robot. Syst. 263–290 (2008)

    Google Scholar 

  24. Pop, P.C.: The generalized minimum spanning tree problem: an overview of formulations, solution procedures and latest advances. Eur. J. Oper. Res. (2019)

    Google Scholar 

  25. Robert, J.M., Toussaint, G.: Computational geometry and facility location. In: Operations Research and Management Science, pp. 11–15 (1990)

    Google Scholar 

  26. Salesin, D., Stolfi, J., Guibas, L.: Epsilon geometry: building robust algorithms from imprecise computations. In: SoCG, pp. 208–217 (1989)

    Google Scholar 

  27. Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K.H., Kitsuregawa, M.: Keyword search in spatial databases: towards searching by document. In: ICDE, pp. 688–699 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Irina Kostitsyna for key discussions on the hardness reduction and Hans Raj Tiwary for the proof of Lemma 5. A.A., R.J., V.K., and M. S. were supported by the Czech Science Foundation, grant number GJ19-06792Y, and by institutional support RVO: 67985807. M.L. was partially supported by the Netherlands Organization for Scientific Research (NWO) under project no. 614.001.504. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankush Acharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Acharyya, A., Jallu, R.K., Keikha, V., Löffler, M., Saumell, M. (2021). Minimum Color Spanning Circle in Imprecise Setup. In: Chen, CY., Hon, WK., Hung, LJ., Lee, CW. (eds) Computing and Combinatorics. COCOON 2021. Lecture Notes in Computer Science(), vol 13025. Springer, Cham. https://doi.org/10.1007/978-3-030-89543-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89543-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89542-6

  • Online ISBN: 978-3-030-89543-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics