Skip to main content

BSDA-Net: A Boundary Shape and Distance Aware Joint Learning Framework for Segmenting and Classifying OCTA Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Optical coherence tomography angiography (OCTA) is a novel non-invasive imaging technique that allows visualizations of vasculature and foveal avascular zone (FAZ) across retinal layers. Clinical researches suggest that the morphology and contour irregularity of FAZ are important biomarkers of various ocular pathologies. Therefore, precise segmentation of FAZ has great clinical interest. Also, there is no existing research reporting that FAZ features can improve the performance of deep diagnostic classification networks. In this paper, we propose a novel multi-level boundary shape and distance aware joint learning framework, named BSDA-Net, for FAZ segmentation and diagnostic classification from OCTA images. Two auxiliary branches, namely boundary heatmap regression and signed distance map reconstruction branches, are constructed in addition to the segmentation branch to improve the segmentation performance, resulting in more accurate FAZ contours and fewer outliers. Moreover, both low-level and high-level features from the aforementioned three branches, including shape, size, boundary, and signed directional distance map of FAZ, are fused hierarchically with features from the diagnostic classifier. Through extensive experiments, the proposed BSDA-Net is found to yield state-of-the-art segmentation and classification results on the OCTA-500, OCTAGON, and FAZID datasets.

L. Lin and Z. Wang—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, A., Balaji, J., Raman, R., Lakshminarayanan, V.: The Foveal avascular zone image database (FAZID). In: Applications of Digital Image Processing XLIII, vol. 11510, pp. 1151027. International Society for Optics and Photonics (2020)

    Google Scholar 

  2. Alam, M., Le, D., Lim, J., Chan, R., Yao, X.: Supervised machine learning based multi-task artificial intelligence classification of retinopathies. J. Clin. Med. 8(6), 872 (2019)

    Google Scholar 

  3. Andreeva, R., Fontanella, A., Giarratano, Y., Bernabeu, M.: DR detection using optical coherence tomography angiography (OCTA): a transfer learning approach with robustness analysis. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds.) International Workshop on Ophthalmic Medical Image Analysis, vol. 12069, pp. 11–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63419-3_2

  4. Balaji, J., Agarwal, A., Raman, R., Lakshminarayanan, V.: Comparison of foveal avascular zone in diabetic retinopathy, high myopia, and normal fundus images. In: Ophthalmic Technologies XXX, vol. 11218, pp. 1121810. International Society for Optics and Photonics (2020)

    Google Scholar 

  5. Chen, L., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with Atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Proceedings of the European Conference on Computer Vision (ECCV). LNCS, vol. 11211, pp. 801–818 (2018)

    Google Scholar 

  6. De Carlo, T., Romano, A., Waheed, N., Duker, J.: A review of optical coherence tomography angiography (OCTA). Int. J. Retin. Vitr. 1(1), 5 (2015)

    Google Scholar 

  7. Díaz, M., Novo, J., Cutrín, P., Gómez-Ulla, F., Penedo, M., Ortega, M.: Automatic segmentation of the Foveal avascular zone in ophthalmological OCT-A images. PLoS One 14(2), e0212364 (2019)

    Google Scholar 

  8. Guo, M., Zhao, M., Cheong, A., Dai, H., Lam, A., Zhou, Y.: Automatic quantification of superficial foveal avascular zone in optical coherence tomography angiography implemented with deep learning. Vis. Comput. Ind. Biomed. Art 2(1), 1–9 (2019)

    Google Scholar 

  9. Haddouche, A., Adel, M., Rasigni, M., Conrath, J., Bourennane, S.: Detection of the foveal avascular zone on retinal angiograms using Markov random fields. Digital Sig. Process. 20(1), 149–154 (2010)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imag. 28(8), 1251–1265 (2009)

    Google Scholar 

  12. Le, D., et al.: Transfer learning for automated OCTA detection of diabetic retinopathy. Transl. Vis. Sci. Technol. 9(2), 35 (2020)

    Google Scholar 

  13. Leitgeb, R.: En face optical coherence tomography: a technology review. Biomed. Opt. Express 10(5), 2177–2201 (2019)

    Google Scholar 

  14. Li, M., et al.: Image projection network: 3D to 2D image segmentation in octa images. IEEE Trans. Med. Imag. 39(11), 3343–3354 (2020)

    Google Scholar 

  15. Li, M., et al.: IPN-V2 and OCTA-500: methodology and dataset for retinal image segmentation. arXiv preprint arXiv:2012.07261 (2020)

  16. Li, M., Wang, Y., Ji, Z., Fan, W., Yuan, S., Chen, Q.: Fast and robust fovea detection framework for OCT images based on Foveal avascular zone segmentation. OSA Continuum 3(3), 528–541 (2020)

    Google Scholar 

  17. Linderman, R., Salmon, A., Strampe, M., Russillo, M., Khan, J., Carroll, J.: Assessing the accuracy of Foveal avascular zone measurements using optical coherence tomography angiography: segmentation and scaling. Transl. Vis. Sci. Technol. 6(3), 16 (2017)

    Google Scholar 

  18. Lu, Y., et al.: Evaluation of automatically quantified foveal avascular zone metrics for diagnosis of diabetic retinopathy using optical coherence tomography angiography. Investig. Ophthalmol. Vis. Sci. 59(6), 2212–2221 (2018)

    Google Scholar 

  19. Ma, Y., et al.: ROSE: a retinal OCT-angiography vessel segmentation dataset and new model. IEEE Trans. Med. Imag. (2020, in Press)

    Google Scholar 

  20. Mehta, S., et al.: Y-Net: joint segmentation and classification for diagnosis of breast biopsy images. In: In: Frangi, A., Schnabel, J., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. MICCAI 2018. LNCS, vol. 11071, pp. 893–901. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_99

  21. Ometto, G., Montesano, G., Chakravarthy, U., Kee, F., Hogg, R., Crabb, D.: Fast 3-dimensional estimation of the foveal avascular zone from OCTA. arXiv preprint arXiv:2012.09945 (2020)

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Maier-Hein, G.E.B., Fritzsche, K., Deserno, G.E.B., Lehmann, T., Handels, H., Tolxdorff, T. (eds.) International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  23. Salles, M., Kvanta, A., Amrén, U., Epstein, D.: Optical coherence tomography angiography in central retinal vein occlusion: correlation between the foveal avascular zone and visual acuity. Investig. Ophthalmol. Vis. Sci. 57(9), OCT242–OCT246 (2016)

    Google Scholar 

  24. Silva, A., et al.: Segmentation of Foveal avascular zone of the retina based on morphological alternating sequential filtering. In: Proceedings of the IEEE 28th International Symposium on Computer-Based Medical Systems, pp. 38–43 (2015)

    Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  26. Tan, C., et al.: Deep multi-task and task-specific feature learning network for robust shape preserved organ segmentation. In: IEEE International Symposium on Biomedical Imaging, pp. 1221–1224 (2018)

    Google Scholar 

  27. Wijnen, K., et al.: Automated Lesion detection by regressing intensity-based distance with a neural network. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, pp. 234–242. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_26

  28. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  29. Zhang, H., et al.: ResNeSt: split-attention networks. arXiv preprint arXiv:2004.08955 (2020)

  30. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  31. Zheng, Y., Gandhi, J., Stangos, A., Campa, C., Broadbent, D., Harding, S.: Automated segmentation of foveal avascular zone in Fundus Fluorescein angiography. Investig. Ophthalmol. Vis. Sci. 51(7), 3653–3659 (2010)

    Google Scholar 

  32. Zhou, Z., Siddiquee, M., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imag. 39(6), 1856–1867 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Tang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 858 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, L. et al. (2021). BSDA-Net: A Boundary Shape and Distance Aware Joint Learning Framework for Segmenting and Classifying OCTA Images. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12908. Springer, Cham. https://doi.org/10.1007/978-3-030-87237-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87237-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87236-6

  • Online ISBN: 978-3-030-87237-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics