Skip to main content

Combining Multi-level Loss for Image Denoising

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11691))

Included in the following conference series:

  • 1284 Accesses

Abstract

The image processing has witnessed remarkable progress in image denoising. Nevertheless, restoring the visual quality of the image remains a great challenge. Existing methods might fail to obtain the denoised images with high visual quality since they ignore the potential connection with the high-level feature and result in over-smoothing results. Aiming to research whether high-level feature could influence the performance of denoising task, we propose an end-to-end multi-module neural network architecture, which introduces the combination of the high-level and low-level feature in the training process, for image denoising. In order to guide model preserve structural information efficiently, we introduce a hybrid loss, which is designed to restore details from both pixel and feature space. The experimental results show our method improves the visual quality of images and performs well compared with state-of-the-art methods on three benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://r0k.us/graphics/kodak/.

References

  1. Aharon, M., Elad, M., Bruckstein, A.: \(rmk\)-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. TSP 54 (2006)

    Google Scholar 

  2. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: CVPR, June 2012

    Google Scholar 

  3. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Color image denoising via sparse 3D collaborative filtering with grouping constraint in luminance-chrominance space. In: ICIP, September 2007

    Google Scholar 

  4. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. JMLR 12(7), 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. IJCV 111, 98–136 (2015)

    Article  Google Scholar 

  6. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: CVPR, June 2014

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, June 2016

    Google Scholar 

  8. Jain, V., Seung, H.S.: Natural image denoising with convolutional networks. In: NIPS (2008)

    Google Scholar 

  9. Johnson, J., Alahi, A., Li, F.: Perceptual losses for real-time style transfer and super-resolution. CoRR (2016)

    Google Scholar 

  10. Lefkimmiatis, S.: Universal denoising networks: a novel CNN architecture for image denoising. In: CVPR (2018)

    Google Scholar 

  11. Liu, D., Wen, B., Liu, X., Wang, Z., Huang, T.S.: When image denoising meets high-level vision tasks: a deep learning approach. In: IJCAI (2018)

    Google Scholar 

  12. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: ICCV. IEEE (2009)

    Google Scholar 

  13. Mao, X.J., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. CoRR (2016)

    Google Scholar 

  14. Niknejad, M., Bioucas-Dias, J.M., Figueiredo, M.A.T.: Class-specific poisson denoising by patch-based importance sampling. arXiv preprint arXiv:1706.02867 (2017)

  15. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  16. Remez, T., Litany, O., Giryes, R., Bronstein, A.M.: Class-aware fully convolutional gaussian and poisson denoising. TIP 27(11), 5707–5722 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  18. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. TIP 15(11), 3440–3451 (2006)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  20. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015)

    Google Scholar 

  21. Wang, T., Sun, M., Hu, K.: Dilated deep residual network for image denoising. In: ICTAI, November 2017

    Google Scholar 

  22. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: NIPS (2012)

    Google Scholar 

  23. Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. T-MI 37(6), 1348–1357 (2018)

    MathSciNet  Google Scholar 

  24. Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: CVPR, July 2017

    Google Scholar 

  25. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. TIP 26, 3142–3155 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN-based image denoising. TIP 27(9), 4608–4622 (2018)

    MathSciNet  Google Scholar 

  27. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: ICCV. IEEE (2011)

    Google Scholar 

Download references

Acknowledgement

This work has been supported by HGJ, HJSW and Research & Development plan of Shaanxi Province (Program No. 2017ZDXM-GY-094, 2015KTZDGY04-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Li or Jiangbin Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, F., Kuang, N., Zheng, J., Wei, Q., Xi, Y., Guo, Y. (2020). Combining Multi-level Loss for Image Denoising. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2019. Lecture Notes in Computer Science(), vol 11691. Springer, Cham. https://doi.org/10.1007/978-3-030-39431-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39431-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39430-1

  • Online ISBN: 978-3-030-39431-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics