Abstract
Counting vehicles in heavy traffic areas is not an easy task, even for a trained human. Recent advances in real-time object detection using convolutional neural network can jointly detect and identify objects. We propose a straightforward application of using real-time object detection algorithm to count the number of vehicles in high traffic areas. The user defines marks on the road where the proposal counts the number of vehicles crossing the marks. The proposal achieves 87.24% average correct counting in a video sequence with real-time performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)
Aslani, S., Mahdavi-Nasab, H.: Optical flow based moving object detection and tracking for traffic surveillance. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 7(9), 1252–1256 (2013)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
Harsha, S.S., Anne, K.: A highly robust vehicle detection, tracking and speed measurement model for intelligent transport systems. Int. J. Appl. Eng. Res. 11(5), 3733–3742 (2016)
Jo, K., Im, J., Kim, J., Kim, D.S.: A real-time multi-class multi-object tracker using YOLOv2. In: 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 507–511. IEEE (2017)
Luo, W., et al.: Multiple object tracking: a literature review (2014). arXiv preprint arXiv:1409.7618
Mandellos, N.A., Keramitsoglou, I., Kiranoudis, C.T.: A background subtraction algorithm for detecting and tracking vehicles. Expert Syst. Appl. 38(3), 1619–1631 (2011)
Naphade, M., et al.: The 2018 NVIDIA AI city challenge. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 53–60 (2018)
Programmer, D.: DarkLabel1.3 - Image Labeling and Annotation Tool (2017). http://darkpgmr.tistory.com/16
Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)
Trieu, T.: Darkflow (2018). https://github.com/thtrieu/darkflow
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Polidoro, C.H.S., de Castro, W.V.M., Marcato, J., Salgado Filho, G., Matsubara, E.T. (2019). Counting Cars from Aerial Videos Using Deep Learning. In: Moura Oliveira, P., Novais, P., Reis, L. (eds) Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science(), vol 11804. Springer, Cham. https://doi.org/10.1007/978-3-030-30241-2_53
Download citation
DOI: https://doi.org/10.1007/978-3-030-30241-2_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30240-5
Online ISBN: 978-3-030-30241-2
eBook Packages: Computer ScienceComputer Science (R0)