Abstract
In this paper, we introduce the multicut problem in trees with submodular penalties, which generalizes the prize-collecting multicut problem in trees and vertex cover with submodular penalties. We present a combinatorial 3-approximation algorithm, based on the primal-dual scheme for the multicut problem in trees.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)
Du, D., Lu, R., Xu, D.: A primal-dual approximation algorithm for the facility location problem with submodular penalties. Algorithmica 63, 191–200 (2012)
Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Elsevier, Amsterdam (2005)
Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi) cut theorems and their applications. SIAM J. Comput. 25(2), 235–251 (2006)
Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)
Hayrapetyan, A., Swamy, C., Tardos, E.: Network design for information networks. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 933–942 (2005)
Hu, T.C.: Integer Programming and Network Flows. Addison-Wesley, Reading (1969)
Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM 48(4), 761–777 (2001)
Iwata, S., Nagano, K.: Submodular function minimization under covering constraints. In: The 50th Annual Symposium on Foundations of Computer Science, FOCS, pp. 671–680 (2009)
Kamiyama, N.: A note on the submodular vertex cover problem withsubmodular penalties. Theor. Comput. Sci. 659, 95–97 (2017)
Kanj, I., et al.: Improved parameterized and exact algorithms for cut problems on trees. Theor. Comput. Sci. 607, 455–470 (2015)
Khot, S., Regev, O.: Vertex cover might be hard to approximateto with \(2-\epsilon \). J. Comput. Syst. Sci. 74(3), 335–349 (2008)
Levin, A., Segev, D.: Partial multicuts in trees. Theor. Comput. Sci. 369(1–3), 384–395 (2006)
Li, Y., Du, D., Xiu, N., Xu, D.: Improved approximation algorithms for the facility location problems with linear/submodular penalties. Algorithmica 73(2), 460–482 (2015)
Liu, H., Zhang, P.: On the generalized multiway cut in trees problem. J. Comb. Optim. 27(1), 65–77 (2014)
Xu, D., Wang, F., Du, D., Wu, C.: Approximation algorithms for submodular vertex cover problems with linear/submodular penalties using primal-dual technique. Theor. Comput. Sci. 630, 117–125 (2016)
Zhang, P., Zhu, D., Luan, J.: An approximation algorithm for the generalized k-multicut problem. Discrete Appl. Math. 160(7–8), 1240–1247 (2012)
Acknowledgements
The work is supported in part by the National Natural Science Foundation of China [No. 61662088], Program for Excellent Young Talents of Yunnan University, Training Program of National Science Fund for Distinguished Young Scholars, IRTSTYN, and Key Joint Project of the Science and Technology Department of Yunnan Province and Yunnan University [No. 2018FY001(-014)].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, X., Li, W. (2019). A Primal Dual Approximation Algorithm for the Multicut Problem in Trees with Submodular Penalties. In: Du, DZ., Li, L., Sun, X., Zhang, J. (eds) Algorithmic Aspects in Information and Management. AAIM 2019. Lecture Notes in Computer Science(), vol 11640. Springer, Cham. https://doi.org/10.1007/978-3-030-27195-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-27195-4_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27194-7
Online ISBN: 978-3-030-27195-4
eBook Packages: Computer ScienceComputer Science (R0)