Abstract
Maximum Satisfiability (MaxSAT), the optimisation extension of the well-known Boolean Satisfiability (SAT) problem, is a competitive approach for solving NP-hard problems encountered in various artificial intelligence and industrial domains. Due to its computational complexity, there is an inherent tradeoff between scalability and guarantee on solution quality in MaxSAT solving. Limitations on available computational resources in many practical applications motivate the development of complete any-time MaxSAT solvers, i.e. algorithms that compute optimal solutions while providing intermediate results. In this work, we propose core-boosted linear search, a generic search-strategy that combines two central approaches in modern MaxSAT solving, namely linear and core-guided algorithms. Our experimental evaluation on a prototype combining reimplementations of two state-of-the-art MaxSAT solvers, PMRES as the core-guided approach and LinSBPS as the linear algorithm, demonstrates that our core-boosted linear algorithm often outperforms its individual components and shows competitive and, on many domains, superior results when compared to other state-of-the-art solvers for incomplete MaxSAT solving.
The first author is financially supported by the University of Helsinki Doctoral Program in Computer Science and the Academy of Finland (grant 312662). We thank the University of Melbourne and the Melbourne School of Engineering Visiting Fellows scheme for supporting the visit of Jeremias Berg.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A consequence of the metric we use is that the scores of the other solvers we report are lower than in the evaluation. Their relative ranking is however the same.
References
Abramé, A., Habet, D.: AHMAXSAT: description and evaluation of a branch and bound MaxSAT solver. J. Satisf. Boolean Model. Comput. 9, 89–128 (2015)
Abramé, A., Habet, D.: Learning nobetter clauses in MaxSAT branch and bound solvers. In: Proceedings of the 28th International Conference on Tools with Artificial Intelligence, pp. 452–459. IEEE Computer Society (2016)
Achá, R.J.A., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT and MaxSAT. Ann. Oper. Res. 218(1), 71–91 (2014)
Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality constraints of bounded size. In: Proceedings of IJCAI, pp. 2677–2683. AAAI Press (2015)
Ansótegui, C., Bonet, M.L., Levy, J.: Solving (Weighted) partial MaxSAT through satisfiability testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–440. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_39
Ansótegui, C., Bonet, M., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196, 77–105 (2013)
Ansótegui, C., Bonet, M.L., Gabà s, J., Levy, J.: Improving SAT-based weighted MaxSAT solvers. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_9
Ansótegui, C., Didier, F., Gabà s, J.: Exploiting the structure of unsatisfiable cores in MaxSAT. In: Proceedings of IJCAI, pp. 283–289. AAAI Press (2015)
Ansótegui, C., Gabà s, J.: Wpm3: an (in)complete algorithm for weighted partial maxsat. Artif. Intell. 250, 37–57 (2017)
Argelich, J., Le Berre, D., Lynce, I., Marques-Silva, J., Rapicault, P.: Solving Linux upgradeability problems using Boolean optimization. In: Proceedings of LoCoCo. Electronic Proceedings in Theoretical Computer Science, vol. 29, pp. 11–22 (2010)
AsÃn, R., Nieuwenhuis, R., Oliveras, A., RodrÃguez-Carbonell, E.: Cardinality networks and their applications. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 167–180. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_18
Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proceedings of IJCAI, pp. 399–404. Morgan Kaufmann Publishers Inc. (2009)
Bacchus, F., Narodytska, N.: Cores in core based MaxSat algorithms: an analysis. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 7–15. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_2
Bacchus, F., Järvisalo, M., Martins, R., et al.: MaxSat evaluation 2018 (2018). https://maxsat-evaluations.github.io/2018/. Accessed 05 Sept 2018
Berg, J., Järvisalo, M.: Cost-optimal constrained correlation clustering via weighted partial maximum satisfiability. Artif. Intell. 244, 110–143 (2017)
Berg, J., Järvisalo, M.: Weight-aware core extraction in SAT-based MaxSAT solving. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 652–670. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_42
Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications., vol. 185. IOS Press, Amsterdam (2009)
Bjørner, N., Narodytska, N.: Maximum satisfiability using cores and correction sets. In: Proceedings of IJCAI, pp. 246–252. AAAI Press (2015)
Bunte, K., Järvisalo, M., Berg, J., Myllymäki, P., Peltonen, J., Kaski, S.: Optimal neighborhood preserving visualization by maximum satisfiability. In: Proceedings of AAAI, vol. 3, pp. 1694–1700. AAAI Press (2014)
Chen, Y., Safarpour, S., Marques-Silva, J., Veneris, A.: Automated design debugging with maximum satisfiability. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(11), 1804–1817 (2010)
Davies, J., Bacchus, F.: Exploiting the power of mip solvers in MaxSAT. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_13
Demirović, E., Musliu, N.: MaxSAT based large neighborhood search for high school timetabling. Comput. Oper. Res. 78, 172–180 (2017)
Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. J. Satisf. Boolean Model. Comput. 2(1–4), 1–26 (2006)
Guerra, J., Lynce, I.: Reasoning over biological networks using maximum satisfiability. In: Milano, M. (ed.) CP 2012. LNCS, pp. 941–956. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_67
Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms for maximum satisfiability. In: Proceedings of AAAI. AAAI Press (2011)
Hyttinen, A., Eberhardt, F., Järvisalo, M.: Constraint-based causal discovery: conflict resolution with answer set programming. In: Proceedings of UAI, pp. 340–349. AUAI Press (2014)
Joshi, S., Martins, R., Manquinho, V.: Generalized totalizer encoding for pseudo-boolean constraints. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 200–209. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5_15
Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSat: a partial Max-Sat solver. J. Satisf. Boolean Model. Comput. 8, 95–100 (2012)
Le Berre, D., Parrain, A.: The Sat4j library, release 2.2 system description. J. Satisf. Boolean Model. Comput. 7, 59–64 (2010)
Lei, Z., Cai, S.: Solving (weighted) partial MaxSat by dynamic local search for SAT. In: Proceedings of IJCAI, pp. 1346–1352 (2018)
Li, C.M., Manyà , F., Planes, J.: Exploiting unit propagation to compute lower bounds in branch and bound Max-SAT solvers. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 403–414. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_31
Li, C.M., Manya, F., Planes, J.: New inference rules for MaxSAT. J. Artif. Intell. Res. 30(1), 321–359 (2007)
Li, C.M., Quan, Z.: An efficient branch-and-bound algorithm based on MaxSAT for the maximum clique problem. In: Proceedings of AAAI, vol. 10, pp. 128–133. AAAI Press (2010)
Lin, H., Su, K., Li, C.M.: Within-problem learning for efficient lower bound computation in MaxSAT solving. In: Proceedings of AAAI, pp. 351–356. AAAI Press (2008)
Liu, Y.L., Li, C.M., He, K., Fan, Y.: Breaking cycle structure to improve lower bound for MaxSAT. In: Zhu, D., Bereg, S. (eds.) FAW 2016. LNCS, vol. 9711, pp. 111–124. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39817-4_12
Marques-Silva, J., Janota, M., Ignatiev, A., Morgado, A.: Efficient model based diagnosis with maximum satisfiability. In: Proceedings of IJCAI, pp. 1966–1972. AAAI Press (2015)
Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic optimization: algorithms & applications. Ann. Math. Artif. Intell. 62(3–4), 317–343 (2011)
Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability. CoRR abs/0712.1097 (2007)
Marques-Silva, J., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: Proceedings of ICCAD, pp. 220–227. IEEE Computer Society (1996)
Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver,. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_33
Morgado, A., Dodaro, C., Marques-Silva, J.: Core-duided MaxSAT with soft cardinality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_41
Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-guided maxsat solving: a survey and assessment. Constraints 18(4), 478–534 (2013)
Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_19
Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: Proceedings of AAAI, pp. 2717–2723. AAAI Press (2014)
Saikko, P., Berg, J., Järvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_34
Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_73
Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning: 2: Classical Papers on Computational Logic 1967–1970. Symbolic Computation (Artificial Intelligence), pp. 466–483. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-81955-1_28
Xing, Z., Zhang, W.: MaxSolver: an efficient exact algorithm for (weighted) maximum satisfiability. Artif. intell. 164(1–2), 47–80 (2005)
Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict-driven learning in a Boolean satisfiability solver. In: Proceedings of ICCAD, pp. 279–285. IEEE Computer Society (2001)
Zhang, X., Mangal, R., Grigore, R., Naik, M., Yang, H.: On abstraction refinement for program analyses in datalog. In: Proceedings of PLDI, PLDI 2014, pp. 239–248. ACM, New York (2014)
Zhu, C., Weissenbacher, G., Malik, S.: Post-silicon fault localisation using maximum satisfiability and backbones. In: Proceedings of FMCAD, pp. 63–66. FMCAD Inc. (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Berg, J., Demirović, E., Stuckey, P.J. (2019). Core-Boosted Linear Search for Incomplete MaxSAT. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-19212-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19211-2
Online ISBN: 978-3-030-19212-9
eBook Packages: Computer ScienceComputer Science (R0)