Abstract
In this paper, we construct a family of iterative methods with memory from one without memory, analyzing their convergence and stability. The main aim of this manuscript yields in the advantage that the use of real multidimensional dynamics gives us to decide among the different classes designed and, afterwards, to select its most stable members. Some numerical tests confirm the theoretical results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amat, S., Busquier, S. (eds.): Advances in Iterative Methods for Nonlinear Equations. SSSS, vol. 10. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39228-8
Amat, S., Busquier, S., Plaza, S.: Chaotic dynamics of a third-order Newton-type method. Math. Anal. Appl. 366(1), 24–32 (2010)
Arroyo, V., Cordero, A., Torregrosa, J.R.: Approximation of artificial satellites preliminary orbits: the efficiency challenge. Math. Comput. Model. 54, 1802–1807 (2011)
Campos, B., Cordero, A., Torregrosa, J.R., Vindel, P.: A multidimensional dynamical approach to iterative methods with memory. Appl. Math. Comput. 271, 701–715 (2015)
Campos, B., Cordero, A., Torregrosa, J.R., Vindel, P.: Stability of King’s family of iterative methods with memory. Comput. Appl. Math. 318, 504–514 (2017)
Magreñán, Á.A., Cordero, A., Gutiérrez, J.M., Torregrosa, J.R.: Real qualitative behavior of a fourth-order family of iterative methods by using the convergence plane. Math. Comput. Simul. 105, 49–61 (2014)
Petković, M.S., Neta, B., Petković, L.D., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Elsevier, Amsterdam (2013)
Robinson, R.C.: An Introduction to Dynamical Systems: Continuous and Discrete. American Mathematical Society, Providence (2012)
Acknowledgements
This research was partially supported by Ministerio de Economía y Competitividad under grants MTM2014-52016-C2-2-P and Generalitat Valenciana PROMETEO/2016/089.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Cordero, A., Giménez, I., Torregrosa, J.R. (2019). Efficiency and Stability of a Family of Iterative Schemes for Solving Nonlinear Equations. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-11539-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-11538-8
Online ISBN: 978-3-030-11539-5
eBook Packages: Computer ScienceComputer Science (R0)