Abstract
Android malware can pose serious security threat to the mobile users. With the rapid growth in malware programs, categorical isolation of malware is no longer satisfactory for security risk management. It is more pragmatic to focus the limited resources on identifying the small fraction of malware programs of high security impact. In this paper, we define a new research issue of measuring and predicting the impact of the detected Android malware. To address this issue, we first propose two metrics to isolate the high impact Android malware programs from the low impact ones. With the proposed metrics, we created a new research dataset including high impact and low impact Android malware samples. The dataset allows us to empirically discover the driving factors for the high malware impact. To characterize the differences between high impact and low impact Android malware, we leverage features from two sources available in every Android application. (1) the readily available AndroidManifest.xml file and (2) the disassembled code from the compiled binary. From these characteristics, we trained a highly accurate classifier to identify high impact Android malware. The experimental results show that our proposed method is feasible and has great potential in predicting the impact of Android malware in general.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
References
Global market share held by the leading smartphone operating systems in sales to end users from 1st quarter 2009 to 1st quarter 2017. https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/ (2017). Accessed 28 June 2017
Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: mining API-level features for robust malware detection in Android. In: Zia, T., Zomaya, A., Varadharajan, V., Mao, M. (eds.) SecureComm 2013. LNICST, vol. 127, pp. 86–103. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-04283-1_6
Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.: DREBIN: effective and explainable detection of android malware in your pocket. In: NDSS (2014)
Arzt, S., et al.: Flowdroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. ACM SIGPLAN Not. 49(6), 259–269 (2014)
Bartel, A., Klein, J., Le Traon, Y., Monperrus, M.: Dexpler: converting android Dalvik Bytecode to Jimple for static analysis with soot. In: Proceedings of the ACM SIGPLAN International Workshop on State of the Art in Java Program analysis, pp. 27–38. ACM (2012)
Bläsing, T., Batyuk, L., Schmidt, A.D., Camtepe, S.A., Albayrak, S.: An android application sandbox system for suspicious software detection. In: 2010 5th International Conference on Malicious and Unwanted Software (MALWARE), pp. 55–62. IEEE (2010)
Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware detection system for android. In: Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, pp. 15–26. ACM (2011)
Chakradeo, S., Reaves, B., Traynor, P., Enck, W.: MAST: triage for market-scale mobile malware analysis. In: Proceedings of the sixth ACM conference on Security and privacy in wireless and mobile networks, pp. 13–24. ACM (2013)
Desnos, A.: Androguard (2011). https://github.com/androguard/androguard
Desnos, A., Gueguen, G.: Android: from reversing to decompilation. In: Proceedings of Black Hat Abu Dhabi, pp. 77–101 (2011)
Enck, W., et al.: Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS) 32(2), 5 (2014)
Enck, W., Octeau, D., McDaniel, P.D., Chaudhuri, S.: A study of android application security. In: USENIX Security Symposium, vol. 2, p. 2 (2011)
Faruki, P., Ganmoor, V., Laxmi, V., Gaur, M.S., Bharmal, A.: AndroSimilar: robust statistical feature signature for Android malware detection. In: Proceedings of the 6th International Conference on Security of Information and Networks, pp. 152–159. ACM (2013)
Feng, Y., Anand, S., Dillig, I., Aiken, A.: Apposcopy: semantics-based detection of android malware through static analysis. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 576–587. ACM (2014)
Feng, Y., Bastani, O., Martins, R., Dillig, I., Anand, S.: Automated synthesis of semantic malware signatures using maximum satisfiability. In: NDSS (2017)
Gascon, H., Yamaguchi, F., Arp, D., Rieck, K.: Structural detection of android malware using embedded call graphs. In: Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security, pp. 45–54. ACM (2013)
Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Their Appl. 13(4), 18–28 (1998)
Hinton, G.E.: Visualizing high-dimensional data using t-SNE. Vigiliae Christianae 9(2), 2579–2605 (2008)
Hou, S., Ye, Y., Song, Y., Abdulhayoglu, M.: HinDroid: an intelligent android malware detection system based on structured heterogeneous information network (2017)
Huang, C.Y., Tsai, Y.T., Hsu, C.H.: Performance evaluation on permission-based detection for Android malware. In: Pan, J.S., Yang, C.N., Lin, C.C. (eds.) Advances in Intelligent Systems and Applications, vol. 2, pp. 111–120. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35473-1_12
Lueg, C.: 8,400 new Android malware samples every day, April 2017. https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day. Accessed 28 June 2017
Octeau, D., Jha, S., McDaniel, P.: Retargeting android applications to Java Bytecode. In: Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, p. 6. ACM (2012)
Rastogi, V., Chen, Y., Enck, W.: AppsPlayground: automatic security analysis of smartphone applications. In: Proceedings of the third ACM Conference on Data and Application Security and Privacy, pp. 209–220. ACM (2013)
Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P.G., Álvarez, G.: PUMA: permission usage to detect malware in android. In: Herrero, Á., et al. (eds.) International Joint Conference CISIS’12-ICEUTE\(^\prime \)12-SOCO\(^\prime \)12 Special Sessionspp, pp. 289–298. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33018-6_30
Snell, B.: Mobile threat report: what’s on the horizon for 2016. Intel Security and McAfee, 1 March 2016
Wognsen, E.R., Karlsen, H.S., Olesen, M.C., Hansen, R.R.: Formalisation and analysis of Dalvik Bytecode. Sci. Comput. Program. 92, 25–55 (2014)
Wu, C., Zhou, Y., Patel, K., Liang, Z., Jiang, X.: AirBag: boosting smartphone resistance to malware infection. In: NDSS (2014)
Wu, D.J., Mao, C.H., Wei, T.E., Lee, H.M., Wu, K.P.: DroidMat: android malware detection through manifest and API calls tracing. In: 2012 Seventh Asia Joint Conference on Information Security (Asia JCIS), pp. 62–69. IEEE (2012)
Yan, L.K., Yin, H.: DroidScope: seamlessly reconstructing the OS and Dalvik semantic views for dynamic android malware analysis. In: USENIX Security Symposium, pp. 569–584 (2012)
Yang, W., Xiao, X., Andow, B., Li, S., Xie, T., Enck, W.: AppContext: differentiating malicious and Benign mobile app behaviors using context. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE), vol. 1, pp. 303–313. IEEE (2015)
Zhang, Y., et al.: Vetting undesirable behaviors in android apps with permission use analysis. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 611–622. ACM (2013)
Zheng, M., Sun, M., Lui, J.C.: Droid analytics: a signature based analytic system to collect, extract, analyze and associate android malware. In: 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 163–171. IEEE (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Qiu, J., Luo, W., Nepal, S., Zhang, J., Xiang, Y., Pan, L. (2018). Keep Calm and Know Where to Focus: Measuring and Predicting the Impact of Android Malware. In: Gan, G., Li, B., Li, X., Wang, S. (eds) Advanced Data Mining and Applications. ADMA 2018. Lecture Notes in Computer Science(), vol 11323. Springer, Cham. https://doi.org/10.1007/978-3-030-05090-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-05090-0_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05089-4
Online ISBN: 978-3-030-05090-0
eBook Packages: Computer ScienceComputer Science (R0)