Years and Authors of Summarized Original Work
-
2011; Fischer, Heun
Problem Definition
Given a static array A of n totally ordered objects, the range minimum query problem (RMQ problem) is to build a data structure \(\mathcal{D}\) on A that allows us to answer efficiently subsequent online queries of the form “what is the position of a minimum element in the subarray ranging from i to j?” (We consider the minimum; all results hold for maximum as well.) Such queries are denoted by RMQ A (i, j) and are formally defined by \(\text{RMQ}_{A}(i,j) =\mathrm{ argmin}_{i\leq k\leq j}{\bigl \{A[k]\bigr \}}\) for an array A[1, n] and indices 1 ≤ i ≤ j ≤ n. In the succinct or compressed setting, the goal is to use as few bits as possible for \(\mathcal{D}\), hopefully sublinear in the space needed for storing A itself. The space for A is denoted by | A | and is \(\vert A\vert =\varTheta (n\log n)\) bits if A stores numbers from a universe of size \(n^{\varTheta (1)}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Recommended Reading
Amir A, Fischer J, Lewenstein M (2007) Two-dimensional range minimum queries. In: Proceedings of the CPM, London, LNCS, vol 4580. Springer, pp 286–294
Barbay J, Fischer J, Navarro G (2012) LRM-trees: compressed indices, adaptive sorting, and compressed permutation. Theor Comput Sci 459:26–41
Brodal GS, Davoodi P, Lewenstein M, Raman R, Rao SS (2012) Two dimensional range minimum queries and Fibonacci lattices. In: Proceedings of the ESA, Ljubljana, LNCS, vol 7501. Springer, pp 217–228
Brodal GS, Davoodi P, Rao SS (2012) On space efficient two dimensional range minimum data structures. Algorithmica 63(4):815–830
Brodal GS, Brodnik A, Davoodi P (2013) The encoding complexity of two dimensional range minimum data structures. In: Proceedings of the ESA, Sophia Antipolis, LNCS, vol 8125. Springer, pp 229–240
Chan TM, Durocher S, Larsen KG, Morrison J, Wilkinson BT (2014) Linear-space data structures for range mode query in arrays. Theory Comput Syst 55(4):719–741
Chen KY, Chao KM (2004) On the range maximum-sum segment query problem. In: Proceedings of the ISAAC, Hong Kong, LNCS, vol 3341. Springer, pp 294–305
Davoodi P, Navarro G, Raman R, Rao SS (2014) Encoding range minima and range top-2 queries. Philos Trans R Soc A 372:20130,131
Demaine ED, Landau GM, Weimann O (2014) On Cartesian trees and range minimum queries. Algorithmica 68(3):610–625
Fischer J (2011) Inducing the LCP-array. In: Proceedings of the WADS, New York, LNCS, vol 6844. Springer, pp 374–385
Fischer J, Heun V (2010) Finding range minima in the middle: approximations and applications. Math Comput Sci 3(1):17–30
Fischer J, Heun V (2011) Space efficient preprocessing schemes for range minimum queries on static arrays. SIAM J Comput 40(2):465–492
Fischer J, Mäkinen V, Navarro G (2009) Faster entropy-bounded compressed suffix trees. Theor Comput Sci 410(51):5354–5364
Golin M, Iacono J, Krizanc D, Raman R, Rao SS (2011) Encoding 2d range maximum queries. In: Proceedings of the ISAAC, Yokohama, LNCS, vol 7074. Springer, pp 180–189
Grossi R, Iacono J, Navarro G, Raman R, Rao SS (2013) Encodings for range selection and top-k queries. In: Proceedings of the ESA, Sophia Antipolis, LNCS, vol 8125. Springer, pp 553–564
Hon WK, Shah R, Thankachan SV, Vitter JS (2014) Space-efficient frameworks for top-k string retrieval. J ACM 61(2):Article No. 9
Jørgensen AG, Larsen KG (2011) Range selection and median: tight cell probe lower bounds and adaptive data structures. In: Proceedings of the SODA, San Francisco. ACM/SIAM, pp 805–813
Kärkkäinen J, Kempa D, Puglisi SJ (2013) Lightweight Lempel-Ziv parsing. In: Proceedings of the SEA, Rome, LNCS, vol 7933. Springer, pp 139–150
Lewenstein M (2013) Orthogonal range searching for text indexing. In: Space-efficient data structures, streams, and algorithms, LNCS, vol 8066. Springer, Heidelberg, pp 267–302
Navarro G (2014) Spaces, trees, and colors: the algorithmic landscape of document retrieval on sequences. ACM Comput Surv 46(4):Article No. 52
Navarro G, Sadakane K (2014) Fully functional static and dynamic succinct trees. ACM Trans Algorithms 10(3):Article No. 16
Navarro G, Raman R, Satti SR (2014) Asymptotically optimal encodings for range selection. In: Proceedings of the FSTTCS, New Delhi. IBFI Schloss Dagstuhl, paper to be published
Pǎtraşcu M (2008) Succincter. In: Proceedings of the FOCS, Washington, DC. IEEE Computer Society, pp 305–313
Sadakane K (2007) Compressed suffix trees with full functionality. Theory Comput Syst 41(4):589–607
Yuan H, Atallah MJ (2010) Data structures for range minimum queries in multidimensional arrays. In: Proceedings of the SODA, Austin. ACM/SIAM, pp 150–160
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media New York
About this entry
Cite this entry
Fischer, J. (2016). Compressed Range Minimum Queries. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_640
Download citation
DOI: https://doi.org/10.1007/978-1-4939-2864-4_640
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-2863-7
Online ISBN: 978-1-4939-2864-4
eBook Packages: Computer ScienceReference Module Computer Science and Engineering