Skip to main content

Compressed Range Minimum Queries

  • Reference work entry
  • First Online:
Encyclopedia of Algorithms
  • 89 Accesses

Years and Authors of Summarized Original Work

  • 2011; Fischer, Heun

Problem Definition

Given a static array A of n totally ordered objects, the range minimum query problem (RMQ problem) is to build a data structure \(\mathcal{D}\) on A that allows us to answer efficiently subsequent online queries of the form “what is the position of a minimum element in the subarray ranging from i to j?” (We consider the minimum; all results hold for maximum as well.) Such queries are denoted by RMQ A (i, j) and are formally defined by \(\text{RMQ}_{A}(i,j) =\mathrm{ argmin}_{i\leq k\leq j}{\bigl \{A[k]\bigr \}}\) for an array A[1, n] and indices 1 ≤ i ≤ j ≤ n. In the succinct or compressed setting, the goal is to use as few bits as possible for \(\mathcal{D}\), hopefully sublinear in the space needed for storing A itself. The space for A is denoted by | A | and is \(\vert A\vert =\varTheta (n\log n)\) bits if A stores numbers from a universe of size \(n^{\varTheta (1)}\).

Compressed Range Minimum...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Amir A, Fischer J, Lewenstein M (2007) Two-dimensional range minimum queries. In: Proceedings of the CPM, London, LNCS, vol 4580. Springer, pp 286–294

    Google Scholar 

  2. Barbay J, Fischer J, Navarro G (2012) LRM-trees: compressed indices, adaptive sorting, and compressed permutation. Theor Comput Sci 459:26–41

    Article  MathSciNet  MATH  Google Scholar 

  3. Brodal GS, Davoodi P, Lewenstein M, Raman R, Rao SS (2012) Two dimensional range minimum queries and Fibonacci lattices. In: Proceedings of the ESA, Ljubljana, LNCS, vol 7501. Springer, pp 217–228

    Google Scholar 

  4. Brodal GS, Davoodi P, Rao SS (2012) On space efficient two dimensional range minimum data structures. Algorithmica 63(4):815–830

    Article  MathSciNet  MATH  Google Scholar 

  5. Brodal GS, Brodnik A, Davoodi P (2013) The encoding complexity of two dimensional range minimum data structures. In: Proceedings of the ESA, Sophia Antipolis, LNCS, vol 8125. Springer, pp 229–240

    Google Scholar 

  6. Chan TM, Durocher S, Larsen KG, Morrison J, Wilkinson BT (2014) Linear-space data structures for range mode query in arrays. Theory Comput Syst 55(4):719–741

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen KY, Chao KM (2004) On the range maximum-sum segment query problem. In: Proceedings of the ISAAC, Hong Kong, LNCS, vol 3341. Springer, pp 294–305

    Google Scholar 

  8. Davoodi P, Navarro G, Raman R, Rao SS (2014) Encoding range minima and range top-2 queries. Philos Trans R Soc A 372:20130,131

    Google Scholar 

  9. Demaine ED, Landau GM, Weimann O (2014) On Cartesian trees and range minimum queries. Algorithmica 68(3):610–625

    Article  MathSciNet  MATH  Google Scholar 

  10. Fischer J (2011) Inducing the LCP-array. In: Proceedings of the WADS, New York, LNCS, vol 6844. Springer, pp 374–385

    Google Scholar 

  11. Fischer J, Heun V (2010) Finding range minima in the middle: approximations and applications. Math Comput Sci 3(1):17–30

    Article  MathSciNet  MATH  Google Scholar 

  12. Fischer J, Heun V (2011) Space efficient preprocessing schemes for range minimum queries on static arrays. SIAM J Comput 40(2):465–492

    Article  MathSciNet  MATH  Google Scholar 

  13. Fischer J, Mäkinen V, Navarro G (2009) Faster entropy-bounded compressed suffix trees. Theor Comput Sci 410(51):5354–5364

    Article  MathSciNet  MATH  Google Scholar 

  14. Golin M, Iacono J, Krizanc D, Raman R, Rao SS (2011) Encoding 2d range maximum queries. In: Proceedings of the ISAAC, Yokohama, LNCS, vol 7074. Springer, pp 180–189

    Google Scholar 

  15. Grossi R, Iacono J, Navarro G, Raman R, Rao SS (2013) Encodings for range selection and top-k queries. In: Proceedings of the ESA, Sophia Antipolis, LNCS, vol 8125. Springer, pp 553–564

    Google Scholar 

  16. Hon WK, Shah R, Thankachan SV, Vitter JS (2014) Space-efficient frameworks for top-k string retrieval. J ACM 61(2):Article No. 9

    Google Scholar 

  17. Jørgensen AG, Larsen KG (2011) Range selection and median: tight cell probe lower bounds and adaptive data structures. In: Proceedings of the SODA, San Francisco. ACM/SIAM, pp 805–813

    Google Scholar 

  18. Kärkkäinen J, Kempa D, Puglisi SJ (2013) Lightweight Lempel-Ziv parsing. In: Proceedings of the SEA, Rome, LNCS, vol 7933. Springer, pp 139–150

    Google Scholar 

  19. Lewenstein M (2013) Orthogonal range searching for text indexing. In: Space-efficient data structures, streams, and algorithms, LNCS, vol 8066. Springer, Heidelberg, pp 267–302

    Chapter  Google Scholar 

  20. Navarro G (2014) Spaces, trees, and colors: the algorithmic landscape of document retrieval on sequences. ACM Comput Surv 46(4):Article No. 52

    Google Scholar 

  21. Navarro G, Sadakane K (2014) Fully functional static and dynamic succinct trees. ACM Trans Algorithms 10(3):Article No. 16

    Google Scholar 

  22. Navarro G, Raman R, Satti SR (2014) Asymptotically optimal encodings for range selection. In: Proceedings of the FSTTCS, New Delhi. IBFI Schloss Dagstuhl, paper to be published

    Google Scholar 

  23. Pǎtraşcu M (2008) Succincter. In: Proceedings of the FOCS, Washington, DC. IEEE Computer Society, pp 305–313

    Google Scholar 

  24. Sadakane K (2007) Compressed suffix trees with full functionality. Theory Comput Syst 41(4):589–607

    Article  MathSciNet  MATH  Google Scholar 

  25. Yuan H, Atallah MJ (2010) Data structures for range minimum queries in multidimensional arrays. In: Proceedings of the SODA, Austin. ACM/SIAM, pp 150–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Fischer, J. (2016). Compressed Range Minimum Queries. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2864-4_640

Download citation

Publish with us

Policies and ethics