Skip to main content

A geometrical bound for integer programming with polynomial constraints

  • Commanications
  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 529))

Included in the following conference series:

Abstract

Let F 1,..., F s Z[X 1,...,X n ] be quasiconvex polynomials of degree bounded by d≥2. Let L be an upper bound for the binary length of their coefficients. We show that the system F 1≤0,..., F s ≤0 admits an integer solution if and only if there exists such a solution with binary length bounded by (sd)cn · L. (Here c>0 is a constant independent on s, d, n and L). We obtain a similar geometric bound for the corresponding minimization problem. The simply exponential feature of our bound is intrinsic to this problem.

EXTENDED ABSTRACT

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. Bank, R. Mandel, Parametric integer optimization, Akademie-Verlag, Berlin (1988).

    Google Scholar 

  2. B. Bank, R. Mandel, (Mixed-)Integer solutions of quasiconvex polynomial inequalities, Mathematical Research Advances in Mathematical Optimization, Akademie-Verlag, Berlin, Vol. 45 (1988) 20–34.

    Google Scholar 

  3. J. Heintz, M.-F. Roy, P. Solernó, On the complexity of semialgebraic sets (extended abstract), Proc. IFIP 89, IX World Computer Congress, North Holland (1989) 293–298.

    Google Scholar 

  4. J. Heintz, M.-F. Roy, P. Solernó, Complexité du principe de Tarski-Seidenberg, C. R. Acad. Sci. Paris, t. 309, Série I (1989) 825–830.

    Google Scholar 

  5. J. Heintz, M.-F. Roy, P. Solernó, Sur la complexité du principe de Tarski-Seidenberg, Bull. Soc. math. France 118 (1990) 101–126.

    Google Scholar 

  6. L.G. Khachiyan, Convexity and complexity in polynomial programming, Proc. Int. Congress Math., Varsaw (1983).

    Google Scholar 

  7. J. Renegar, On the computational complexity and geometry of the first-order theory of the reals. Part III. Quantifier Elimination, Technical report 856, Cornell University (1989).

    Google Scholar 

  8. A. Schrijver, Theory of linear and integer programming, Wiley Interscience Series in Discrete Mathematics (1986).

    Google Scholar 

  9. P. Solernó, Complejidad de conjuntos semialgebraicos, Thesis, Universidad de Buenos Aires (1989).

    Google Scholar 

  10. S.P. Tarasov, L.G. Khachiyan, Bounds of solutions and algorithmic complexity of systems of convex diophantine inequalities, Soviet. Math. Adel., Vol. 22, No. 3 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

L. Budach

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bank, B., Krick, T., Mandel, R., Solernó, P. (1991). A geometrical bound for integer programming with polynomial constraints. In: Budach, L. (eds) Fundamentals of Computation Theory. FCT 1991. Lecture Notes in Computer Science, vol 529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54458-5_56

Download citation

  • DOI: https://doi.org/10.1007/3-540-54458-5_56

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54458-6

  • Online ISBN: 978-3-540-38391-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics