Abstract
Let F 1,..., F s ∈ Z[X 1,...,X n ] be quasiconvex polynomials of degree bounded by d≥2. Let L be an upper bound for the binary length of their coefficients. We show that the system F 1≤0,..., F s ≤0 admits an integer solution if and only if there exists such a solution with binary length bounded by (sd)cn · L. (Here c>0 is a constant independent on s, d, n and L). We obtain a similar geometric bound for the corresponding minimization problem. The simply exponential feature of our bound is intrinsic to this problem.
EXTENDED ABSTRACT
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
B. Bank, R. Mandel, Parametric integer optimization, Akademie-Verlag, Berlin (1988).
B. Bank, R. Mandel, (Mixed-)Integer solutions of quasiconvex polynomial inequalities, Mathematical Research Advances in Mathematical Optimization, Akademie-Verlag, Berlin, Vol. 45 (1988) 20–34.
J. Heintz, M.-F. Roy, P. Solernó, On the complexity of semialgebraic sets (extended abstract), Proc. IFIP 89, IX World Computer Congress, North Holland (1989) 293–298.
J. Heintz, M.-F. Roy, P. Solernó, Complexité du principe de Tarski-Seidenberg, C. R. Acad. Sci. Paris, t. 309, Série I (1989) 825–830.
J. Heintz, M.-F. Roy, P. Solernó, Sur la complexité du principe de Tarski-Seidenberg, Bull. Soc. math. France 118 (1990) 101–126.
L.G. Khachiyan, Convexity and complexity in polynomial programming, Proc. Int. Congress Math., Varsaw (1983).
J. Renegar, On the computational complexity and geometry of the first-order theory of the reals. Part III. Quantifier Elimination, Technical report 856, Cornell University (1989).
A. Schrijver, Theory of linear and integer programming, Wiley Interscience Series in Discrete Mathematics (1986).
P. Solernó, Complejidad de conjuntos semialgebraicos, Thesis, Universidad de Buenos Aires (1989).
S.P. Tarasov, L.G. Khachiyan, Bounds of solutions and algorithmic complexity of systems of convex diophantine inequalities, Soviet. Math. Adel., Vol. 22, No. 3 (1980).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bank, B., Krick, T., Mandel, R., Solernó, P. (1991). A geometrical bound for integer programming with polynomial constraints. In: Budach, L. (eds) Fundamentals of Computation Theory. FCT 1991. Lecture Notes in Computer Science, vol 529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54458-5_56
Download citation
DOI: https://doi.org/10.1007/3-540-54458-5_56
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54458-6
Online ISBN: 978-3-540-38391-8
eBook Packages: Springer Book Archive