Skip to main content

Fast Geodesic Active Contours

  • Conference paper
  • First Online:
Scale-Space Theories in Computer Vision (Scale-Space 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1682))

Included in the following conference series:

Abstract

We use an unconditionally stable numerical scheme to im- plement a fast version of the geodesic active contour model. The proposed scheme is useful for object segmentation in images, like tracking moving objects in a sequence of images. The method is based on the Weickert- Romeney-Viergever [33] AOS scheme. It is applied at small regions, mo- tivated by Adalsteinsson-Sethian [1] level set narrow band approach, and uses Sethian’s fast marching method [26] for re-initialization. Experimen- tal results demonstrate the power of the new method for tracking in color movies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D Adalsteinsson and J A Sethian. A fast level set method for propagating interfaces. J. of Comp. Phys., 118:269–277, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  2. V Caselles, F Catte, T Coll, and F Dibos. A geometric model for active contours. Numerische Mathematik, 66:1–31, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  3. V Caselles and B Coll. Snakes in movement. SIAM J. Numer. Analy., 33(6):2445–2456, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  4. V Caselles, R Kimmel, and G Sapiro. Geodesic active contours. In Proceedings ICCV’95, pages 694–699, Boston, Massachusetts, June 1995.

    Google Scholar 

  5. V Caselles, R Kimmel, and G Sapiro. Geodesic active contours. IJCV, 22(1):61–79,1997.

    Article  MATH  Google Scholar 

  6. V Caselles, R Kimmel, G Sapiro, and C Sbert. Minimal surfaces: A geometric three dimensional segmentation approach. Numerische Mathematik, 77(4):423–425, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  7. V Caselles, R Kimmel, G Sapiro, and C Sbert. Minimal surfaces based object segmentation. IEEE Trans. on PAMI, 19:394–398, 1997.

    Google Scholar 

  8. C S Chiang, C M Hoffmann, and R E Lync. How to compute offsets without self-intersection. In Proc. of SPIE, volume 1620, page 76, 1992.

    Article  Google Scholar 

  9. D L Chopp. Computing minimal surfaces via level set curvature flow. J. of Computational Physics, 106(1):77–91, May 1993.

    Article  MATH  MathSciNet  Google Scholar 

  10. L D Cohen. On active contour models and balloons. CVGIP: Image Understanding, 53(2):211–218, 1991.

    Article  MATH  Google Scholar 

  11. S Di Zenzo. A note on the gradient of a multi image. Computer Vision, Graphics, and Image Processing, 33:116–125, 1986.

    Article  Google Scholar 

  12. B A Dubrovin, A T Fomenko, and S P Novikov. Modern Geometry-Methods and Applications I. Springer-Verlag, New York, 1984.

    Google Scholar 

  13. O Faugeras and R Keriven. Variational principles, surface evolution PFE’s, level set methods, and the stereo problem. IEEE Trans. on Image Processing, 7(3):336–344, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  14. M Gage and R S Hamilton. The heat equation shrinking convex plane curves. J. Diff. Geom., 23, 1986.

    Google Scholar 

  15. M A Grayson. The heat equation shrinks embedded plane curves to round points. J. Diff. Geom., 26, 1987.

    Google Scholar 

  16. Bertrand Leroy Isabelle L Herlin and Laurent Cohen. Multi-resolution algorithms for active contour models. In Proc. 12th Int. Conf. on Analysis and Optimization of Systems (ICAOS’96), Paris, France, June 1996.

    Google Scholar 

  17. M Kass, A Witkin, and D Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1:321–331, 1988.

    Article  Google Scholar 

  18. S Kichenassamy, A Kumar, P Olver, A Tannenbaum, and A Yezzi. Gradient flows and geometric active contour models. In Proceedings ICCV’95, pages 810–815, Boston, Massachusetts, June 1995.

    Google Scholar 

  19. R Malladi, R Kimmel, D Adalsteinsson, V Caselles, G Sapiro, and J A Sethian. A geometric approach to segmentation and analysis of 3d medical images. In Proceedings of IEEE/SIAM workshop on Biomedical Image Analysis, San-Francisco, California, June 1996.

    Google Scholar 

  20. R Malladi and J A Sethian. An O(N log N) algorithm for shape modeling. Proceedings of National Academy of Sciences, USA, 93:9389–9392, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  21. R Malladi, J A Sethian, and B C Vemuri. Shape modeling with front propagation: A level set approach. IEEE Trans. on PAMI, 17:158–175, 1995.

    Google Scholar 

  22. S J Osher and J A Sethian. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. of Comp. Phys., 79:12–49,1988.

    Article  MATH  MathSciNet  Google Scholar 

  23. N Paragios and R Deriche. A PDE-based level set approach for detection and tracking of moving objects. In Proc. of the 6th ICCV, Bombay, India, 1998.

    Google Scholar 

  24. P Perona and J Malik. Scale-space and edge detection using anisotropic diffusion. IEEE-PAMI, 12:629–639, 1990.

    Google Scholar 

  25. G Sapiro and D L Ringach. Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Proc., 5:1582–1586, 1996.

    Article  Google Scholar 

  26. J A Sethian. Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Cambridge Univ. Press, 1996.

    Google Scholar 

  27. J A Sethian. A marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci., 93(4), 1996.

    Google Scholar 

  28. J Shah. A common framework for curve evolution, segmentation and anisotropic diffusion. In Proceedings IEEE CVPR’96, pages 136–142, 1996.

    Google Scholar 

  29. N Sochen, R Kimmel, and R Malladi. A general framework for low level vision. IEEE Trans. on Image Processing, 7(3):310–318, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  30. D Terzopoulos, A Witkin, and M Kass. Constraints on deformable models: Recovering 3D shape and nonrigid motions. Artificial Intelligence, 36:91–123, 1988.

    Article  MATH  Google Scholar 

  31. J N Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Trans. on Automatic Control, 40(9):1528–1538, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  32. J Weickert. Fast segmentation methods based on partial differential equations and the watershed transformation. In Mustererkennung, pages 93–100, Berlin, 1998. Springer.

    Google Scholar 

  33. J Weickert, B Mter Haar Romeny, and MA Viergever. Efficient and reliable scheme for nonlinear diffusion filtering. IEEE Trans. on Image Processing, 7(3):398–410,1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M. (1999). Fast Geodesic Active Contours. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds) Scale-Space Theories in Computer Vision. Scale-Space 1999. Lecture Notes in Computer Science, vol 1682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48236-9_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-48236-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66498-7

  • Online ISBN: 978-3-540-48236-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics