Abstract
We use an unconditionally stable numerical scheme to im- plement a fast version of the geodesic active contour model. The proposed scheme is useful for object segmentation in images, like tracking moving objects in a sequence of images. The method is based on the Weickert- Romeney-Viergever [33] AOS scheme. It is applied at small regions, mo- tivated by Adalsteinsson-Sethian [1] level set narrow band approach, and uses Sethian’s fast marching method [26] for re-initialization. Experimen- tal results demonstrate the power of the new method for tracking in color movies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
D Adalsteinsson and J A Sethian. A fast level set method for propagating interfaces. J. of Comp. Phys., 118:269–277, 1995.
V Caselles, F Catte, T Coll, and F Dibos. A geometric model for active contours. Numerische Mathematik, 66:1–31, 1993.
V Caselles and B Coll. Snakes in movement. SIAM J. Numer. Analy., 33(6):2445–2456, 1996.
V Caselles, R Kimmel, and G Sapiro. Geodesic active contours. In Proceedings ICCV’95, pages 694–699, Boston, Massachusetts, June 1995.
V Caselles, R Kimmel, and G Sapiro. Geodesic active contours. IJCV, 22(1):61–79,1997.
V Caselles, R Kimmel, G Sapiro, and C Sbert. Minimal surfaces: A geometric three dimensional segmentation approach. Numerische Mathematik, 77(4):423–425, 1997.
V Caselles, R Kimmel, G Sapiro, and C Sbert. Minimal surfaces based object segmentation. IEEE Trans. on PAMI, 19:394–398, 1997.
C S Chiang, C M Hoffmann, and R E Lync. How to compute offsets without self-intersection. In Proc. of SPIE, volume 1620, page 76, 1992.
D L Chopp. Computing minimal surfaces via level set curvature flow. J. of Computational Physics, 106(1):77–91, May 1993.
L D Cohen. On active contour models and balloons. CVGIP: Image Understanding, 53(2):211–218, 1991.
S Di Zenzo. A note on the gradient of a multi image. Computer Vision, Graphics, and Image Processing, 33:116–125, 1986.
B A Dubrovin, A T Fomenko, and S P Novikov. Modern Geometry-Methods and Applications I. Springer-Verlag, New York, 1984.
O Faugeras and R Keriven. Variational principles, surface evolution PFE’s, level set methods, and the stereo problem. IEEE Trans. on Image Processing, 7(3):336–344, 1998.
M Gage and R S Hamilton. The heat equation shrinking convex plane curves. J. Diff. Geom., 23, 1986.
M A Grayson. The heat equation shrinks embedded plane curves to round points. J. Diff. Geom., 26, 1987.
Bertrand Leroy Isabelle L Herlin and Laurent Cohen. Multi-resolution algorithms for active contour models. In Proc. 12th Int. Conf. on Analysis and Optimization of Systems (ICAOS’96), Paris, France, June 1996.
M Kass, A Witkin, and D Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1:321–331, 1988.
S Kichenassamy, A Kumar, P Olver, A Tannenbaum, and A Yezzi. Gradient flows and geometric active contour models. In Proceedings ICCV’95, pages 810–815, Boston, Massachusetts, June 1995.
R Malladi, R Kimmel, D Adalsteinsson, V Caselles, G Sapiro, and J A Sethian. A geometric approach to segmentation and analysis of 3d medical images. In Proceedings of IEEE/SIAM workshop on Biomedical Image Analysis, San-Francisco, California, June 1996.
R Malladi and J A Sethian. An O(N log N) algorithm for shape modeling. Proceedings of National Academy of Sciences, USA, 93:9389–9392, 1996.
R Malladi, J A Sethian, and B C Vemuri. Shape modeling with front propagation: A level set approach. IEEE Trans. on PAMI, 17:158–175, 1995.
S J Osher and J A Sethian. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. of Comp. Phys., 79:12–49,1988.
N Paragios and R Deriche. A PDE-based level set approach for detection and tracking of moving objects. In Proc. of the 6th ICCV, Bombay, India, 1998.
P Perona and J Malik. Scale-space and edge detection using anisotropic diffusion. IEEE-PAMI, 12:629–639, 1990.
G Sapiro and D L Ringach. Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Proc., 5:1582–1586, 1996.
J A Sethian. Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Cambridge Univ. Press, 1996.
J A Sethian. A marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci., 93(4), 1996.
J Shah. A common framework for curve evolution, segmentation and anisotropic diffusion. In Proceedings IEEE CVPR’96, pages 136–142, 1996.
N Sochen, R Kimmel, and R Malladi. A general framework for low level vision. IEEE Trans. on Image Processing, 7(3):310–318, 1998.
D Terzopoulos, A Witkin, and M Kass. Constraints on deformable models: Recovering 3D shape and nonrigid motions. Artificial Intelligence, 36:91–123, 1988.
J N Tsitsiklis. Efficient algorithms for globally optimal trajectories. IEEE Trans. on Automatic Control, 40(9):1528–1538, 1995.
J Weickert. Fast segmentation methods based on partial differential equations and the watershed transformation. In Mustererkennung, pages 93–100, Berlin, 1998. Springer.
J Weickert, B Mter Haar Romeny, and MA Viergever. Efficient and reliable scheme for nonlinear diffusion filtering. IEEE Trans. on Image Processing, 7(3):398–410,1998.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M. (1999). Fast Geodesic Active Contours. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds) Scale-Space Theories in Computer Vision. Scale-Space 1999. Lecture Notes in Computer Science, vol 1682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48236-9_4
Download citation
DOI: https://doi.org/10.1007/3-540-48236-9_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66498-7
Online ISBN: 978-3-540-48236-9
eBook Packages: Springer Book Archive