Skip to main content

On g-th MDS Codes and Matroids

  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2643))

  • 747 Accesses

Abstract

In this paper, we give a relationship between the generalized Hamming weights for linear codes over finite fields and the rank functions of matroids. We also consider a construction of g-th MDS codes from m-paving matroids. And we determine the support weight distributions of g-th MDS codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Aigner, Combinatorial Theory, Springer-Verlag, Berlin-New York (1980).

    Google Scholar 

  2. A. Barg, The matroid of supports of a linear code, Applicable Algebra in Engineering, Communication and Computing, 8 (1997) pp. 165–172.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Greene, Weight enumeration and the geometry of linear codes, Studies in Applied Mathematics 55 (1976) pp. 119–128.

    MathSciNet  MATH  Google Scholar 

  4. T. Helleseth, T. Kløve, and J. Mykkeltveit, The weight distribution of irreducible cyclic codes with block lengths n 1((q l−1)/N), Discrete Mathematics 18 (1977) pp. 179–211.

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Kasami, T. Tanaka, T. Fujiwara, and S. Lin, On the optimum bit orders with respect to the state complexity of trellis diagrams for binary linear codes, IEEE Trans. Inform. Theory 39 (1993) pp. 242–245.

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Kløve, Support weight distribution of linear codes. Discrete Mathematics 106/107 (1992) pp. 311–316.

    Article  Google Scholar 

  7. F.J. MacWilliams, A theorem on the distribution of weights in a systematic code, Bell System Tech. J 42 (1963) pp. 79–94.

    MathSciNet  Google Scholar 

  8. F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam 1977.

    MATH  Google Scholar 

  9. J.G. Oxley, Matroid Theory, Oxford University Press, Oxford, 1992.

    MATH  Google Scholar 

  10. S. Rajpal, On paving matroids and a generalization of MDS codes, Discrete Applied Mathematics 60 (1995) pp. 343–347.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Rajpal, On binary k-paving matroids and Reed-Muller codes, Discrete Mathematics 190 (1998) pp. 191–200.

    Article  MATH  MathSciNet  Google Scholar 

  12. M.A. Tsfasman and S.G. Vlădut, Geometric approach to higher weights, IEEE Trans. Inform. Theory 41 (1995) pp. 1564–1588.

    Article  MATH  MathSciNet  Google Scholar 

  13. V.K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory 37 (1991) pp. 1412–1418.

    Article  MATH  MathSciNet  Google Scholar 

  14. V.K. Wei, Generalized Hamming weights; Fundamental open problems in coding theory, Arithmetic, geometry and coding theory (Luminy, 1993) pp. 269–281.

    Google Scholar 

  15. D.J.A. Welsh, Matroid Theory, Academic Press, London, 1976.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shiromoto, K. (2003). On g-th MDS Codes and Matroids. In: Fossorier, M., Høholdt, T., Poli, A. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2003. Lecture Notes in Computer Science, vol 2643. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44828-4_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-44828-4_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40111-7

  • Online ISBN: 978-3-540-44828-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics