Skip to main content

Adaptive Computation with Perfectly Matched Layers for the Wave Scattering by Periodic Structures

  • Conference paper
Modeling, Simulation and Optimization of Complex Processes
  • 1386 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, D., Brandt, A.: Local mesh refinement multilevel techniques. SIAM J. Sci. Stat. Comput., 8, 109–134 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bänsch, E.: Local mesh refinement in 2 and 3 dimensions. Impact of Computing in Science and Engineering, 3, 181–191 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bao, G., Dobson, D.C., Cox, J.A.: Mathematical studies in rigorous grating theory. J. Opt. Soc. Am. A, 12, 1029–1042 (1995)

    Article  MathSciNet  Google Scholar 

  4. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Physics, 114, 185–200 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bramble, J.H.: Multigrid Methods. Pitman Research Notes in Mathematical Sciences, 294, Longman, Essex, (1993)

    MATH  Google Scholar 

  6. Bramble, J.H., Pasicak, J.E.: New estimates for multigrid algorithms including the V-cycle. Math. Comp., 60, 447–471 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Z., Dai, S.: On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients. SIAM J. Sci. Comput., 24, 443–462 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Z., Wu, H.: An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J. Numer. Anal. (to appear)

    Google Scholar 

  9. Collino, F., Monk, P.B.: Optimizing the perfectly matched layer. Comput. Methods Appl. Mech. Engrg., 164, 157–171 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mitchell, W.F.: Optimal multilevel iterative methods for adaptive grids. SIAM J. Sci. Stat. Comput., 13, 146–167 (1992)

    Article  MATH  Google Scholar 

  11. Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal., 38, 466–488 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schmidt, A. Siebert, K.G.: ALBERT: An adaptive hierarchical finite element toolbox. IAM, University of Freiburg (2000) http://www.mathematik.uni-freiburg.de/IAM/Research/projectsdz/albert.

    Google Scholar 

  13. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wu, H., Chen, Z.: Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems. submitted.

    Google Scholar 

  15. Xu, J.: An introduction to multigrid convergence theory. Lecture Notes for Winter School on Iterative Methods in Scientific Computing and their Applications, December 14–20 (1995)

    Google Scholar 

  16. Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Amer. Math. Soc., 15, 573–397 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Z., Wu, H. (2005). Adaptive Computation with Perfectly Matched Layers for the Wave Scattering by Periodic Structures. In: Bock, H.G., Phu, H.X., Kostina, E., Rannacher, R. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27170-8_6

Download citation

Publish with us

Policies and ethics