Skip to main content

Integer matrices and Abelian groups

  • 11. Applied Algebra
  • Conference paper
  • First Online:
Symbolic and Algebraic Computation (EUROSAM 1979)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 72))

Included in the following conference series:

Abstract

Practical methods for computing equivalent forms of integer matrices are presented. Both heuristic and modular techniques are used to overcome integer overflow problems, and have successfully handled matrices with hundreds of rows and columns. Applications to finding the structure of finitely presented abelian groups are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

12. References

  1. Erwin H. Bareiss, "Computational solutions of matrix problems over an integral domain", J. Inst. Math. Appl. 10 (1972), 68–104.

    Google Scholar 

  2. W.A. Blankinship, "Algorithm 287. Matrix triangularization with integer arithmetic [F1]", Comm. ACM 9 (1966), 513.

    Google Scholar 

  3. I. Borosh and A.S. Fraenkel, "Exact solutions of linear equations with rational coefficients by congruence techniques", Math. Comp. 20 (1966), 107–112.

    Google Scholar 

  4. Gordon H. Bradley, "Algorithms for Hermite and Smith normal matrices and linear Diophantine equations", Math. Comp. 25 (1971), 897–907.

    Google Scholar 

  5. Richard P. Brent, "Algorithm 524. MP, a Fortran multiple-precision arithmetic package [A1]", ACM Trans. Math. Software 4 (1978), 71–81.

    Google Scholar 

  6. Stanley Cabay, "Exact solution of linear equations", Second Symposium on Symbolic and Algebraic Manipulation, 392–398 (Proc. Sympos. held Los Angeles, 1971. Association for Computing Machinery, New York, 1971).

    Google Scholar 

  7. S. Cabay and T.P. Lam, "Congruence techniques for the exact solution of integer systems of linear equations", ACM Trans. Math. Software 3 (1977), 386–397.

    Google Scholar 

  8. L.E. Fuller, "A canonical set of matrices over a principal ideal ring modulo m", Canad. J. Math. 7 (1955), 54–59.

    Google Scholar 

  9. D.B. Gillies, "The exact calculation of the characteristic polynomial of a matrix", Information Processing (Proc. Internat. Conf. Information Processing, Paris, 1959, 62–66. UNESCO, Paris; Oldenbourg, München; Butterworths, London; 1960).

    Google Scholar 

  10. B. Hartley and T.O. Hawkes, Rings, modules and linear algebra (Chapman and Hall, London, Colchester, 1970).

    Google Scholar 

  11. George Havas, "A Reidemeister-Schreier program", Proc. Second Internat. Conf. Theory of Groups, Australian National University, Canberra, 1973, 347–356 (Lecture Notes in Mathematics, 372. Springer-Verlag, Berlin, Heidelberg, New York, 1974).

    Google Scholar 

  12. George Havas, J.S. Richardson and Leon S. Sterling, "The last of the Fibonacci groups", Proc. Roy. Soc. Edinburgh (to appear).

    Google Scholar 

  13. Donald E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms (Addison-Wesley, Reading, Menlo Park, London, Don Mills, 1969).

    Google Scholar 

  14. Bernard R. McDonald, Finite rings with identity (Marcel Dekker, New York, 1974).

    Google Scholar 

  15. M.F. Newman, "A computer aided study of a group defined by fourth powers", Bull. Austral. Math. Soc. 14 (1976), 293–297.

    Google Scholar 

  16. Jürgen Nötzold, "Über reduzierte Gitterbasen und ihre mögliche Bedeutung für die numerische Behandlung linearer Gleichungssysteme", Dissertation, Rheinisch-Westfälsiche Technische Hochschule, Aachen, 1976.

    Google Scholar 

  17. J. Barkley Rosser, "A method of computing exact inverses of matrices with integer coefficients", J. Res. Nat. Bureau Standards 49 (1952), 349–358.

    Google Scholar 

  18. Charles C. Sims, "The influence of computers on algebras", Proc. Symp. Appl. Math. 20 (1974), 13–30.

    Google Scholar 

  19. David A. Smith, "A basis algorithm for finitely generated abelian groups", Math. Algorithms 1 (1966), 13–26.

    Google Scholar 

  20. H.J.S. Smith, "On systems of linear indeterminate equations and congruences", Philos. Trans. Royal Soc. London Cli (1861), 293–326. See also: The Collected Mathematical Papers of Henry John Stephen Smith, Volume I, 367–409 (Chelsea, Bronx, New York, 1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edward W. Ng

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Havas, G., Sterling, L.S. (1979). Integer matrices and Abelian groups. In: Ng, E.W. (eds) Symbolic and Algebraic Computation. EUROSAM 1979. Lecture Notes in Computer Science, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09519-5_94

Download citation

  • DOI: https://doi.org/10.1007/3-540-09519-5_94

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09519-4

  • Online ISBN: 978-3-540-35128-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics