Abstract
Practical methods for computing equivalent forms of integer matrices are presented. Both heuristic and modular techniques are used to overcome integer overflow problems, and have successfully handled matrices with hundreds of rows and columns. Applications to finding the structure of finitely presented abelian groups are described.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
12. References
Erwin H. Bareiss, "Computational solutions of matrix problems over an integral domain", J. Inst. Math. Appl. 10 (1972), 68–104.
W.A. Blankinship, "Algorithm 287. Matrix triangularization with integer arithmetic [F1]", Comm. ACM 9 (1966), 513.
I. Borosh and A.S. Fraenkel, "Exact solutions of linear equations with rational coefficients by congruence techniques", Math. Comp. 20 (1966), 107–112.
Gordon H. Bradley, "Algorithms for Hermite and Smith normal matrices and linear Diophantine equations", Math. Comp. 25 (1971), 897–907.
Richard P. Brent, "Algorithm 524. MP, a Fortran multiple-precision arithmetic package [A1]", ACM Trans. Math. Software 4 (1978), 71–81.
Stanley Cabay, "Exact solution of linear equations", Second Symposium on Symbolic and Algebraic Manipulation, 392–398 (Proc. Sympos. held Los Angeles, 1971. Association for Computing Machinery, New York, 1971).
S. Cabay and T.P. Lam, "Congruence techniques for the exact solution of integer systems of linear equations", ACM Trans. Math. Software 3 (1977), 386–397.
L.E. Fuller, "A canonical set of matrices over a principal ideal ring modulo m", Canad. J. Math. 7 (1955), 54–59.
D.B. Gillies, "The exact calculation of the characteristic polynomial of a matrix", Information Processing (Proc. Internat. Conf. Information Processing, Paris, 1959, 62–66. UNESCO, Paris; Oldenbourg, München; Butterworths, London; 1960).
B. Hartley and T.O. Hawkes, Rings, modules and linear algebra (Chapman and Hall, London, Colchester, 1970).
George Havas, "A Reidemeister-Schreier program", Proc. Second Internat. Conf. Theory of Groups, Australian National University, Canberra, 1973, 347–356 (Lecture Notes in Mathematics, 372. Springer-Verlag, Berlin, Heidelberg, New York, 1974).
George Havas, J.S. Richardson and Leon S. Sterling, "The last of the Fibonacci groups", Proc. Roy. Soc. Edinburgh (to appear).
Donald E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms (Addison-Wesley, Reading, Menlo Park, London, Don Mills, 1969).
Bernard R. McDonald, Finite rings with identity (Marcel Dekker, New York, 1974).
M.F. Newman, "A computer aided study of a group defined by fourth powers", Bull. Austral. Math. Soc. 14 (1976), 293–297.
Jürgen Nötzold, "Über reduzierte Gitterbasen und ihre mögliche Bedeutung für die numerische Behandlung linearer Gleichungssysteme", Dissertation, Rheinisch-Westfälsiche Technische Hochschule, Aachen, 1976.
J. Barkley Rosser, "A method of computing exact inverses of matrices with integer coefficients", J. Res. Nat. Bureau Standards 49 (1952), 349–358.
Charles C. Sims, "The influence of computers on algebras", Proc. Symp. Appl. Math. 20 (1974), 13–30.
David A. Smith, "A basis algorithm for finitely generated abelian groups", Math. Algorithms 1 (1966), 13–26.
H.J.S. Smith, "On systems of linear indeterminate equations and congruences", Philos. Trans. Royal Soc. London Cli (1861), 293–326. See also: The Collected Mathematical Papers of Henry John Stephen Smith, Volume I, 367–409 (Chelsea, Bronx, New York, 1965).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1979 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Havas, G., Sterling, L.S. (1979). Integer matrices and Abelian groups. In: Ng, E.W. (eds) Symbolic and Algebraic Computation. EUROSAM 1979. Lecture Notes in Computer Science, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09519-5_94
Download citation
DOI: https://doi.org/10.1007/3-540-09519-5_94
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-09519-4
Online ISBN: 978-3-540-35128-3
eBook Packages: Springer Book Archive