Skip to main content

Practical Algorithms for Pattern Based Linear Regression

  • Conference paper
Discovery Science (DS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3735))

Included in the following conference series:

Abstract

We consider the problem of discovering the optimal pattern from a set of strings and associated numeric attribute values. The goodness of a pattern is measured by the correlation between the number of occurrences of the pattern in each string, and the numeric attribute value assigned to the string. We present two algorithms based on suffix trees, that can find the optimal substring pattern in O(Nn) and O(N 2) time, respectively, where n is the number of strings and N is their total length. We further present a general branch and bound strategy that can be used when considering more complex pattern classes. We also show that combining the O(N 2) algorithm and the branch and bound heuristic increases the efficiency of the algorithm considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brazma, A., Jonassen, I., Eidhammer, I., Gilbert, D.: Approaches to the automatic discovery of patterns in biosequences. J. Comput. Biol. 5, 279–305 (1998)

    Article  Google Scholar 

  2. Hirao, M., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S.: A practical algorithm to find the best subsequence patterns. Theoretical Computer Science 292, 465–479 (2002)

    Article  MathSciNet  Google Scholar 

  3. Shinohara, A., Takeda, M., Arikawa, S., Hirao, M., Hoshino, H., Inenaga, S.: Finding best patterns practically. In: Arikawa, S., Shinohara, A. (eds.) Progress in Discovery Science. LNCS (LNAI), vol. 2281, pp. 307–317. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Takeda, M., Inenaga, S., Bannai, H., Shinohara, A., Arikawa, S.: Discovering most classificatory patterns for very expressive pattern classes. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843, pp. 486–493. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Hirao, M., Inenaga, S., Shinohara, A., Takeda, M., Arikawa, S.: A practical algorithm to find the best episode patterns. In: Jantke, K.P., Shinohara, A. (eds.) DS 2001. LNCS (LNAI), vol. 2226, pp. 435–440. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Inenaga, S., Bannai, H., Shinohara, A., Takeda, M., Arikawa, S.: Discovering best variable-length-don’t-care patterns. In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS 2002. LNCS (LNAI), vol. 2534, pp. 86–97. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Bussemaker, H.J., Li, H., Siggia, E.D.: Regulatory element detection using correlation with expression. Nature Genetics 27, 167–171 (2001)

    Article  Google Scholar 

  8. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M., Miyano, S.: A string pattern regression algorithm and its application to pattern discovery in long introns. Genome Informatics 13, 3–11 (2002)

    Google Scholar 

  9. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M., Miyano, S.: Efficiently finding regulatory elements using correlation with gene expression. Journal of Bioinformatics and Computational Biology 2, 273–288 (2004)

    Article  Google Scholar 

  10. Zilberstein, C.B.Z., Eskin, E., Yakhini, Z.: Using expression data to discover RNA and DNA regulatory sequence motifs. In: The First Annual RECOMB Satellite Workshop on Regulatory Genomics (2004)

    Google Scholar 

  11. Bannai, H., Hyyrö, H., Shinohara, A., Takeda, M., Nakai, K., Miyano, S.: An O(N2) algorithm for discovering optimal Boolean pattern pairs. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1, 159–170 (special issue for selected papers of WABI 2004)

    Google Scholar 

  12. Hui, L.: Color set size problem with applications to string matching. In: Apostolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS, vol. 644, pp. 230–243. Springer, Heidelberg (1992)

    Google Scholar 

  13. Miyano, S., Shinohara, A., Shinohara, T.: Which classes of elementary formal systems are polynomial-time learnable? In: Proceedings of the 2nd Workshop on Algorithmic Learning Theory, pp. 139–150 (1991)

    Google Scholar 

  14. Miyano, S., Shinohara, A., Shinohara, T.: Polynomial-time learning of elementary formal systems. New Generation Computing 18, 217–242 (2000)

    Article  Google Scholar 

  15. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  16. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM Journal on Computing 6, 323–350 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-common-prefix computation in suffix arrays and its applications. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Kasai, T., Arimura, H., Arikawa, S.: Efficient substring traversal with suffix arrays. Technical Report 185, Department of Informatics, Kyushu University (2001)

    Google Scholar 

  19. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998)

    Google Scholar 

  20. Shinozaki, D., Akutsu, T., Maruyama, O.: Finding optimal degenerate patterns in DNA sequences. Bioinformatics 19, ii206–ii214 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bannai, H., Hatano, K., Inenaga, S., Takeda, M. (2005). Practical Algorithms for Pattern Based Linear Regression. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds) Discovery Science. DS 2005. Lecture Notes in Computer Science(), vol 3735. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11563983_6

Download citation

  • DOI: https://doi.org/10.1007/11563983_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29230-2

  • Online ISBN: 978-3-540-31698-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics