Abstract
For hydrologic applications, terrain models should have few local minima, and drainage lines should coincide with edges. We show that triangulating a set of points with elevations such that the number of local minima of the resulting terrain is minimized is NP-hard for degenerate point sets. The same result applies when there are no degeneracies for higher-order Delaunay triangulations. Two heuristics are presented to reduce the number of local minima for higher-order Delaunay triangulations, which start out with the Delaunay triangulation. We give efficient algorithms for their implementation, and test on real-world data how well they perform. We also study another desirable drainage characteristic, namely few valley components.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, P.K., Mustafa, N.H.: Independent set of intersection graphs of convex objects in 2D. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 127–137. Springer, Heidelberg (2004)
Bern, M., Edelsbrunner, H., Eppstein, D., Mitchell, S., Tan, T.S.: Edge insertion for optimal triangulations. Discrete Comput. Geom. 10(1), 47–65 (1993)
Bern, M., Eppstein, D.: Mesh generation and optimal triangulation. In: Du, D.-Z., Hwang, F.K. (eds.) Computing in Euclidean Geometry, 2nd edn. Lecture Notes Series on Computing, vol. 4, pp. 47–123. World Scientific, Singapore (1995)
Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4, 97–108 (1989)
de Kok, T., van Kreveld, M., Löffler, M.: Generating realistic terrains with higher-order Delaunay triangulations. Technical Report CS-UU-2005-020, Institute of Information and Computing Sciences (2005)
Frank, A.U., Palmer, B., Robinson, V.B.: Formal methods for the accurate definition of some fundamental terms in physical geography. In: Proc. 2nd Int. Symp. on Spatial Data Handling, pp. 583–599 (1986)
Gudmundsson, J., Hammar, M., van Kreveld, M.: Higher order Delaunay triangulations. Comput. Geom. Theory Appl. 23, 85–98 (2002)
Gudmundsson, J., Haverkort, H., van Kreveld, M.: Constrained higher order Delaunay triangulations. Comput. Geom. Theory Appl. 30, 271–277 (2005)
Hutchinson, M.F.: Calculation of hydrologically sound digital elevation models. In: Proc. 3th Int. Symp. on Spatial Data Handling, pp. 117–133 (1988)
Jenson, S.K., Trautwein, C.M.: Methods and applications in surface depression analysis. In: Proc. Auto-Carto 8, pp. 137–144 (1987)
Liu, Y., Snoeyink, J.: Flooding triangulated terrain. In: Fisher, P.F. (ed.) Developments in Spatial Data Handling. Proc. 11th Int. Sympos., pp. 137–148. Springer, Berlin (2004)
McAllister, M., Snoeyink, J.: Extracting consistent watersheds from digital river and elevation data. In: Proc. ASPRS/ACSM Annu. Conf. (1999)
Mitchell, C.: Terrain Evaluation, 2nd edn. Longman, Harlow (1991)
Ramos, E.A.: On range reporting, ray shooting and k-level construction. In: Proc. 15th Annu. ACM Symp. on Computational Geometry, pp. 390–399 (1999)
Schneider, B.: Geomorphologically sound reconstruction of digital terrain surfaces from contours. In: Poiker, T.K., Chrisman, N. (eds.): Proc. 8th Int. Symp. on Spatial Data Handling, pp. 657–667 (1998)
Theobald, D.M., Goodchild, M.F.: Artifacts of TIN-based surface flow modelling. In: Proc. GIS/LIS, pp. 955–964 (1990)
Tucker, G.E., Lancaster, S.T., Gasparini, N.M., Bras, R.L., Rybarczyk, S.M.: An object-oriented framework for distributed hydrologic and geomorphic modeling using triangulated irregular networks. Computers and Geosciences 27, 959–973 (2001)
Yu, S., van Kreveld, M., Snoeyink, J.: Drainage queries in TINs: from local to global and back again. In: Kraak, M.J., Molenaar, M. (eds.) Advances in GIS research II: Proc. of the 7th Int. Symp. on Spatial Data Handling, pp. 829–842 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Kok, T., van Kreveld, M., Löffler, M. (2005). Generating Realistic Terrains with Higher-Order Delaunay Triangulations. In: Brodal, G.S., Leonardi, S. (eds) Algorithms – ESA 2005. ESA 2005. Lecture Notes in Computer Science, vol 3669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561071_32
Download citation
DOI: https://doi.org/10.1007/11561071_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29118-3
Online ISBN: 978-3-540-31951-1
eBook Packages: Computer ScienceComputer Science (R0)