Skip to main content

Deciding Monodic Fragments by Temporal Resolution

  • Conference paper
Automated Deduction – CADE-20 (CADE 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3632))

Included in the following conference series:

Abstract

In this paper we study the decidability of various fragments of monodic first-order temporal logic by temporal resolution. We focus on two resolution calculi, namely, monodic temporal resolution and fine-grained temporal resolution. For the first, we state a very general decidability result, which is independent of the particular decision procedure used to decide the first-order part of the logic. For the second, we introduce refinements using orderings and selection functions. This allows us to transfer existing results on decidability by resolution for first-order fragments to monodic first-order temporal logic and obtain new decision procedures. The latter is of immediate practical value, due to the availability of TeMP, an implementation of fine-grained temporal resolution.

Supported by EPSRC (grant GR/L87491) and the Nuffield foundation (grant NAL/00841/G30).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, Voronkov (eds.) [22], ch. 2, pp. 19–99.

    Google Scholar 

  2. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  3. de Nivelle, H.: Splitting through new proposition symbols. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 172–185. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Degtyarev, A., Fisher, M., Konev, B.: Monodic temporal resolution. ACM Transactions on Computational Logic (To appear)

    Google Scholar 

  5. Degtyarev, A.B., Fisher, M., Konev, B.: Monodic temporal resolution. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 397–411. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. 16, pp. 997–1072. Elsevier, Amsterdam (1990)

    Google Scholar 

  7. Fermüller, C., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision procedures. In: Robinson, Voronkov (eds.) [21], ch. 25, pp. 1791–1850.

    Google Scholar 

  8. Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Transactions on Computational Logic 2(1), 12–56 (2001)

    Article  MathSciNet  Google Scholar 

  9. Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded fragment with equality. In: Proc. LICS’99, pp. 295–304. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  10. Hodkinson, I.: Monodic packed fragment with equality is decidable. Studia Logica 72(2), 185–197 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hodkinson, I., Wolter, F., Zakharyaschev, M.: Decidable fragments of first-order temporal logics. Annals of Pure and Applied Logic 106, 85–134 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hustadt, U., Konev, B., Riazanov, A., Voronkov, A.: TeMP: A temporal monodic prover. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 326–330. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Hustadt, U., Schmidt, R.A.: Maslov’s class K revisited. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 172–186. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Konev, B., Degtyarev, A., Dixon, C., Fisher, M., Hustadt, U.: Mechanising first-order temporal resolution. In: Information and Computation (2003) (To appear) Also available as Technical Report ULCS-03-023, Dep. Comp. Sci., Univ. Liverpool

    Google Scholar 

  15. Konev, B., Degtyarev, A., Dixon, C., Fisher, M., Hustadt, U.: Towards the implementation of first-order temporal resolution: the expanding domain case. In: Proc. TIME-ICTL 2003, pp. 72–82. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  16. Konev, B., Degtyarev, A., Fisher, M.: Handling equality in monodic temporal resolution. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 214–228. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporalising tableaux. Studia Logica 76(1), 91–134 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Maslov, S.J.: The inverse method for establishing deducibility for logical calculi. In: Orevkov, V.P. (ed.) The Calculi of Symbolic Logic I: Proceedings of the Steklov Institute of Mathematics, vol. 98(1968), pp. 25–96. American Math. Soc, Providence (1971)

    Google Scholar 

  19. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, Voronkov (eds.) [22], ch. 7, pp. 371–443.

    Google Scholar 

  20. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson, Voronkov (eds.) [22], ch. 6, pp. 335–370.

    Google Scholar 

  21. Riazanov, A., Voronkov, A.: Splitting without backtracking. In: Proc. IJCAI 2001, pp. 611–617. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  22. Robinson, A., Voronkov, A.(ed.): Handbook of Automated Reasoning. Elsevier, Amsterdam (2001)

    MATH  Google Scholar 

  23. Wolter, F., Zakharyaschev, M.: Axiomatizing the monodic fragment of first-order temporal logic. Annals of Pure and Applied logic 118, 133–145 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hustadt, U., Konev, B., Schmidt, R.A. (2005). Deciding Monodic Fragments by Temporal Resolution. In: Nieuwenhuis, R. (eds) Automated Deduction – CADE-20. CADE 2005. Lecture Notes in Computer Science(), vol 3632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11532231_15

Download citation

  • DOI: https://doi.org/10.1007/11532231_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28005-7

  • Online ISBN: 978-3-540-31864-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics