Skip to main content

Temporal Logics over Transitive States

  • Conference paper
Automated Deduction – CADE-20 (CADE 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3632))

Included in the following conference series:

Abstract

We investigate the computational behaviour of ‘two-dimensional’ propositional temporal logics over (ℕ, <) (with and without the next-time operator O) that are capable of reasoning about states with transitive relations. Such logics are known to be undecidable (even \(\Pi^{\rm 1}_{\rm 1}\)-complete) if the domains of states with those relations are assumed to be constant. Motivated by applications in the areas of temporal description logic and specification & verification of hybrid systems, in this paper we analyse the computational impact of allowing the domains of states to expand. We show that over finite expanding domains (with an arbitrary, tree-like, quasi-order, or linear transitive relation) the logics are recursively enumerable, but undecidable. If these finite domains eventually become constant then the resulting O-free logics are decidable (but not in primitive recursive time); on the other hand, when equipped with O they are not even recursively enumerable. Finally, we show that temporal logics over infinite expanding domains as above are undecidable even for the language with the sole temporal operator ‘eventually.’ The proofs are based on Kruskal’s tree theorem and reductions of reachability problems for lossy channel systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Artemov, S., Davoren, J., Nerode, A.: Modal logics and topological semantics for hybrid systems. Technical Report MSI 97-05, Cornell University (1997)

    Google Scholar 

  2. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the ACM 30, 323–342 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Davoren, J., Nerode, A.: Logics for hybrid systems. Proceedings of the IEEE 88, 985–1010 (2000)

    Article  Google Scholar 

  4. Finkel, A.: Decidability of the termination problem for completely specified protocols. Distributed Computing 7, 129–135 (1994)

    Article  Google Scholar 

  5. Fisher, M.: A resolution method for temporal logic. In: Myopoulos, J., Reiter, R. (eds.) Proceedings of IJCAI 1991, pp. 99–104. Morgan Kaufman, San Francisco (1991)

    Google Scholar 

  6. Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Transactions on Computational Logic (TOCL) 2(1), 12–56 (2001)

    Article  MathSciNet  Google Scholar 

  7. Gabbay, D., Hodkinson, I., Reynolds, M.: Temporal Logic, vol. 1. Oxford University Press, Oxford (1994)

    Book  Google Scholar 

  8. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal Logics: Theory and Applications. In: Studies in Logic, vol. 148, Elsevier, Amsterdam (2003)

    Google Scholar 

  9. Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Combining spatial and temporal logics: expressiveness vs. complexity. Journal of Artificial Intelligence Research 23, 167–243 (2005)

    MATH  MathSciNet  Google Scholar 

  10. Gabelaia, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Non-primitive recursive decidability of products of modal logics with expanding domains. Manuscript (2004), Available at http://www.dcs.kcl.ac.uk/staff/mz

  11. Gabelaia, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Products of ‘transitive’ modal logics. Journal of Symbolic Logic (2005). (in print) Draft, available at http://www.dcs.kcl.ac.uk/staff/mz

  12. Halpern, J., Vardi, M.: The complexity of reasoning about knowledge and time I: lower bounds. Journal of Computer and System Sciences 38, 195–237 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society 2, 326–336 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hodkinson, I., Wolter, F., Zakharyaschev, M.: Decidable fragments of first-order temporal logics. Annals of Pure and Applied Logic 106, 85–134 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hustadt, U., Konev, B.: TRP++ 2.0: A temporal resolution prover. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 274–278. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Hustadt, U., Konev, B., Riazanov, A., Voronkov, A.: TeMP: A temporal monodic prover. In: Proceedings IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 326–330. Springer, Heidelberg (2004)

    Google Scholar 

  17. Konev, B., Degtyarev, A., Dixon, C., Fisher, M., Hustadt, U.: Towards the implementation of first-order temporal resolution: the expanding domain case. Information and Computation. In: print. Available as Technical Report ULCS-03-005, The University of Liverpool, Department of Computer Science (2005)

    Google Scholar 

  18. Konev, B., Kontchakov, R., Wolter, F., Zakharyaschev, M.: On dynamic topological and metric logics. Manuscript (2005), Available at http://www.dcs.kcl.ac.uk/staff/mz

  19. Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporalising tableaux. Studia Logica 76, 91–134 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kremer, P., Mints: Dynamic topological logic. Bulletin of Symbolic Logic 3, 371–372 (1997)

    Google Scholar 

  21. Kremer, P., Mints, G.: Dynamic topological logic. Annals of Pure and Applied Logic 131, 133–158 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kruskal, J.B.: Well-quasi-orderings, the tree theorem, and Vázsonyi’s conjecture. Transactions of the American Mathematical Society 95, 210–225 (1960)

    MATH  MathSciNet  Google Scholar 

  23. Lutz, C., Sattler, U., Wolter, F.: Modal logic and the two-variable fragment. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 262–276. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  24. Mayr, R.: Undecidable problems in unreliable computations. Theoretical Computer Science 297, 337–354 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schild, K.: Combining terminological logics with tense logic. In: Proceedings of the 6th Portuguese Conference on Artificial Intelligence, Porto, pp. 105–120 (1993)

    Google Scholar 

  26. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive complexity. Information Processing Letters 83, 251–261 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schwendimann, S.: Aspects of Computational Logic. PhD thesis, Universität Bern, Switzerland (1998)

    Google Scholar 

  28. Sistla, A., Clarke, E.: The complexity of propositional linear temporal logics. Journal of the Association for Computing Machinery 32, 733–749 (1985)

    MATH  MathSciNet  Google Scholar 

  29. Sistla, A., German, S.: Reasoning with many processes. In: Proceedings of the Second IEEE Symposium on Logic in Computer Science, pp. 138–153 (1987)

    Google Scholar 

  30. Wolper, P.: The tableau method for temporal logic: An overview. Logique et Analyse 28, 119–152 (1985)

    MATH  MathSciNet  Google Scholar 

  31. Wolter, F., Zakharyaschev, M.: Temporalizing description logics. In: Gabbay, D., de Rijke, M. (eds.) Frontiers of Combining Systems II, pp. 379–401. Studies Press/Wiley, Chichester (2000)

    Google Scholar 

  32. Wolter, F., Zakharyaschev, M.: Axiomatizing the monodic fragment of first-order temporal logic. Annals of Pure and Applied Logic 118, 133–145 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Konev, B., Wolter, F., Zakharyaschev, M. (2005). Temporal Logics over Transitive States. In: Nieuwenhuis, R. (eds) Automated Deduction – CADE-20. CADE 2005. Lecture Notes in Computer Science(), vol 3632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11532231_14

Download citation

  • DOI: https://doi.org/10.1007/11532231_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28005-7

  • Online ISBN: 978-3-540-31864-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics