Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3512))

Included in the following conference series:

Abstract

We develop a methodology for solving high dimensional dependency estimation problems between pairs of data types, which is viable in the case where the output of interest has very high dimension, e.g., thousands of dimensions. This is achieved by mapping the objects into continuous or discrete spaces, using joint kernels. Known correlations between input and output can be defined by such kernels, some of which can maintain linearity in the outputs to provide simple (closed form) pre-images. We provide examples of such kernels and empirical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mercer, J.: Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society A 209, 415–446 (1909)

    Article  Google Scholar 

  2. Aizerman, M.A., Braverman, E.M., Rozonoer, L.I.: Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control 25, 821–837 (1964)

    MathSciNet  Google Scholar 

  3. Boser, B.E., Guyon, I.M., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Haussler, D. (ed.) Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, Pittsburgh, PA, pp. 144–152. ACM Press, New York (1992)

    Chapter  Google Scholar 

  4. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  5. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  6. Kimeldorf, G.S., Wahba, G.: Some results on Tchebycheffian spline functions. Journal of Mathematical Analysis and Applications 33, 82–95 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  7. Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.: Kernel dependency estimation. Neural Processing Information Systems 15 (2002)

    Google Scholar 

  8. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. ICML (2004)

    Google Scholar 

  9. Haussler, D.: Convolution kernels on discrete structure. Technical report, UC Santa Cruz (1999)

    Google Scholar 

  10. Watkins, C.: Dynamic alignment kernels. In: Smola, A.J., Bartlett, P.L., Schölkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 39–50. MIT Press, Cambridge (2000)

    Google Scholar 

  11. Vapnik, V.N.: Statistical Learning Theory. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  12. Pérez-Cruz, F., Camps, G., Soria, E., Pérez, J., Figueiras-Vidal, A.R., Artés-Rodrguez, A.: Multi-dimensional function approximation and regression estimation. In: ICANN 2002 (2002)

    Google Scholar 

  13. Weston, J., Watkins, C.: Multi-class support vector machines. Royal Holloway Technical Report CSD-TR-98-04 (1998)

    Google Scholar 

  14. Hofmann, T., Tsochantaridis, I., Altun, Y.: Learning over discrete output spaces via joint kernel functions. Kernel Methods Workshop, Neural Processing Information Systems 15 (2002)

    Google Scholar 

  15. Collins, M., Duffy, N.: Convolution kernels for natural language. Neural Processing Information Systems 14 (2001)

    Google Scholar 

  16. Micchelli, C.A., Pontil, M.: On learning vector-valued functions. Research Note RN/03/08, Dept of Computer Science, UCL (2003)

    Google Scholar 

  17. Guestrin, C., Taskar, B., Koller, D.: Max-margin markov networks. Neural Information Processing Systems 16 (2003)

    Google Scholar 

  18. Kwok, J.T., Tsang, I.W.: Finding the pre-images in kernel principal component analysis. In: 6th Annual Workshop On Kernel Machines, Whistler, Canada (2002)

    Google Scholar 

  19. Bakir, G.H., Weston, J., Schölkopf, B.: Learning to find pre-images. Advances in Neural Information Processing Systems 16 (2004)

    Google Scholar 

  20. Saunders, C., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in dual variables. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 515–521. Morgan Kaufmann Publishers Inc, San Francisco (1998)

    Google Scholar 

  21. Max Planck Institute Face Database, http://faces.kyb.tuebingen.mpg.de/

  22. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: SIGGRAPH 1999, pp. 187–194 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weston, J., Schölkopf, B., Bousquet, O. (2005). Joint Kernel Maps. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_23

Download citation

  • DOI: https://doi.org/10.1007/11494669_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics