Skip to main content

Interval Completion with the Smallest Max-Degree

(Extended Abstract)

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1517))

Included in the following conference series:

Abstract

The interval degree of a graph is defined to be the smallest max-degree of any of its interval supergraphs. We find various bounds for this parameter. We prove that for any graph G the interval degree of G is at least the bandwidth of G, the pathwidth of G 2 and at most twice the bandwidth of G. Also we show that if G is an AT-free claw-free graph, then the interval degree of G is equal to the clique number of G 2 minus one. Finally, we show that there is a polynomial time algorithm for computing the interval degree of AT-free claw-free graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blllionnet, A.: On interval graphs and matrice profiles. RAIRO Rech. Opér. 20, 245–256 (1986)

    Google Scholar 

  2. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Technical Report UU-CS-1996-02, Department of Computer Science, Utrecht University, Utrecht, the Netherlands (1996)

    Google Scholar 

  3. Bondy, J.A.: Basic graph theory: Paths and circuits. In: Graham, R.L., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, vol. 1, pp. 3–110. Elsevier Science B.V., Amsterdam (1995)

    Google Scholar 

  4. Chinn, P.Z., Chvatalova, J., Dewdney, A.K., Gibbs, N.E.: The bandwidth problem for graphs and matrices — a survey. J. Graph Theory 6, 223–254 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ellis, J.A., Sudborough, I.H., Turner, J.: The vertex separation and search number of a graph. Information and Computation 113, 50–79 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    Google Scholar 

  7. Karpinski, M., Wirtgen, J.: On approximation hardness of the bandwidth problem. Technical Report TR-97-041, ECCC (1997)

    Google Scholar 

  8. Klnnersley, N.G.: The vertex separation number of a graph equals its path width. Inform. Proc. Letters 42, 345–350 (1992)

    Article  MathSciNet  Google Scholar 

  9. Klrousis, L.M., Papadimitriou, C.H.: Interval graphs and searching. Disc. Math. 55, 181–184 (1985)

    Article  MathSciNet  Google Scholar 

  10. Kloks, T.: Treewidth. Computations and Approximations. LNCS, vol. 842. Springer, Berlin (1994)

    MATH  Google Scholar 

  11. Kloks, T., Kratsch, D., Müller, H.: Approximating the bandwidth for asteroidal triple-free graphs. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 434–447. Springer, Heidelberg (1995)

    Google Scholar 

  12. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)

    MathSciNet  MATH  Google Scholar 

  13. Möhring, R.H.: Graph problems related to gate matrix layout and PLA folding. In: Mayr, E., Noltemeier, H., Syslo, M. (eds.) Computational Graph Theory, Comuting Suppl., pp. 17–51. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  14. Möhring, R.H.: Triangulating graphs without asteroidal triples. Disc. Appl. Math. 64, 281–287 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Monien, B.: The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete. SIAM J. Alg. Disc. Meth. 7, 505–512 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. MüIler, H.: Personal communication (1998)

    Google Scholar 

  17. Parra, A., Scheffler, P.: Treewidth equals bandwidth for AT-free claw-free graphs, Technical Report 436/1995, Technische Universitat Berlin, Fachbereich Ma-thematik, Berlin, Germany (1995)

    Google Scholar 

  18. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory Series B 35, 39–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fomin, F.V., Golovach, P.A. (1998). Interval Completion with the Smallest Max-Degree. In: Hromkovič, J., Sýkora, O. (eds) Graph-Theoretic Concepts in Computer Science. WG 1998. Lecture Notes in Computer Science, vol 1517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10692760_29

Download citation

  • DOI: https://doi.org/10.1007/10692760_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65195-6

  • Online ISBN: 978-3-540-49494-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics