Abstract
The interval degree of a graph is defined to be the smallest max-degree of any of its interval supergraphs. We find various bounds for this parameter. We prove that for any graph G the interval degree of G is at least the bandwidth of G, the pathwidth of G 2 and at most twice the bandwidth of G. Also we show that if G is an AT-free claw-free graph, then the interval degree of G is equal to the clique number of G 2 minus one. Finally, we show that there is a polynomial time algorithm for computing the interval degree of AT-free claw-free graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blllionnet, A.: On interval graphs and matrice profiles. RAIRO Rech. Opér. 20, 245–256 (1986)
Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Technical Report UU-CS-1996-02, Department of Computer Science, Utrecht University, Utrecht, the Netherlands (1996)
Bondy, J.A.: Basic graph theory: Paths and circuits. In: Graham, R.L., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, vol. 1, pp. 3–110. Elsevier Science B.V., Amsterdam (1995)
Chinn, P.Z., Chvatalova, J., Dewdney, A.K., Gibbs, N.E.: The bandwidth problem for graphs and matrices — a survey. J. Graph Theory 6, 223–254 (1982)
Ellis, J.A., Sudborough, I.H., Turner, J.: The vertex separation and search number of a graph. Information and Computation 113, 50–79 (1994)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
Karpinski, M., Wirtgen, J.: On approximation hardness of the bandwidth problem. Technical Report TR-97-041, ECCC (1997)
Klnnersley, N.G.: The vertex separation number of a graph equals its path width. Inform. Proc. Letters 42, 345–350 (1992)
Klrousis, L.M., Papadimitriou, C.H.: Interval graphs and searching. Disc. Math. 55, 181–184 (1985)
Kloks, T.: Treewidth. Computations and Approximations. LNCS, vol. 842. Springer, Berlin (1994)
Kloks, T., Kratsch, D., Müller, H.: Approximating the bandwidth for asteroidal triple-free graphs. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 434–447. Springer, Heidelberg (1995)
Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)
Möhring, R.H.: Graph problems related to gate matrix layout and PLA folding. In: Mayr, E., Noltemeier, H., Syslo, M. (eds.) Computational Graph Theory, Comuting Suppl., pp. 17–51. Springer, Heidelberg (1990)
Möhring, R.H.: Triangulating graphs without asteroidal triples. Disc. Appl. Math. 64, 281–287 (1996)
Monien, B.: The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete. SIAM J. Alg. Disc. Meth. 7, 505–512 (1986)
MüIler, H.: Personal communication (1998)
Parra, A., Scheffler, P.: Treewidth equals bandwidth for AT-free claw-free graphs, Technical Report 436/1995, Technische Universitat Berlin, Fachbereich Ma-thematik, Berlin, Germany (1995)
Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory Series B 35, 39–61 (1983)
Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fomin, F.V., Golovach, P.A. (1998). Interval Completion with the Smallest Max-Degree. In: Hromkovič, J., Sýkora, O. (eds) Graph-Theoretic Concepts in Computer Science. WG 1998. Lecture Notes in Computer Science, vol 1517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10692760_29
Download citation
DOI: https://doi.org/10.1007/10692760_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65195-6
Online ISBN: 978-3-540-49494-2
eBook Packages: Springer Book Archive