
Oracle® Database Gateway for APPC
User’s Guide

12c Release 1 (12.1)

E17931-04

April 2013

Oracle Database Gateway for APPC User's Guide, 12c Release 1 (12.1)

E17931-04

Copyright © 1996, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Maitreyee Chaliha

Contributor: Vira Goorah, Govind Lakkoju, Peter Wong, Juan Pablo Ahues-Vasquez, Peter Castro, and
Charles Benet

Contributor: The Oracle Database 12c documentation is dedicated to Mark Townsend, who was an
inspiration to all who worked on this release.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. xi

Intended Audience... xi
Documentation Accessibility .. xi
Related Documents .. xi
Legacy Compilers... xii
Conventions .. xii

1 Introduction to Oracle Database Gateway for APPC

Overview of the Gateway ... 1-1
Features of the Gateway.. 1-2
Terms .. 1-3
Examples and Sample Files for the Gateway.. 1-6
Architecture of the Gateway .. 1-7
Communication with the Gateway ... 1-8
RPC Functions... 1-8

TIP Function.. 1-9
Remote Transaction Initiation... 1-9
Data Exchange .. 1-9
Remote Transaction Termination ... 1-9

Overview of a Gateway Using SNA .. 1-10
Transaction Types for a Gateway Using SNA .. 1-10
Simple Gateway Communication with the Oracle Database (SNA) 1-10

Steps to Communicate Between Gateway and Mainframe Using SNA 1-11
Writing TIPs to Generate PL/SQL Programs Using SNA ... 1-12

Steps to Writing a TIP on a Gateway Using SNA ... 1-12
Overview of a Gateway Using TCP/IP .. 1-14

Transaction Types for a Gateway Using TCP/IP... 1-14
Simple Gateway Communication with the Oracle Database (TCP/IP).................................. 1-14

Preparing the Gateway to Communicate Using TCP/IP... 1-15
Steps to Communication Between the Gateway and IMS, Using TCP/IP...................... 1-15

Writing TIPs to Generate PL/SQL Programs Using TCP/IP... 1-17
Steps to Writing a TIP on a Gateway Using TCP/IP.. 1-17

2 Procedural Gateway Administration Utility

Overview of PGAU ... 2-1

iv

COMMIT/ROLLBACK Processing ... 2-2
COMMIT Processing ... 2-2
ROLLBACK Processing... 2-2

Invoking PGAU ... 2-3
Definitions and Generation in PGAU ... 2-3
Process to Define and Test a TIP... 2-4

Definition Names ... 2-4
Definition Versioning .. 2-5
Keywords .. 2-5

PGAU Commands .. 2-6
CONNECT .. 2-6
DEFINE CALL.. 2-7
DEFINE DATA ... 2-8
DEFINE TRANSACTION.. 2-10
DESCRIBE .. 2-13
DISCONNECT... 2-13
EXECUTE ... 2-14
EXIT... 2-14
GENERATE.. 2-15
GROUP ... 2-18
HOST... 2-19
PRINT ... 2-20
REDEFINE DATA... 2-20
REM... 2-23
REPORT.. 2-23
SET .. 2-26
SHOW ... 2-27
SPOOL .. 2-28
UNDEFINE CALL... 2-29
UNDEFINE DATA.. 2-29
UNDEFINE TRANSACTION.. 2-30
VARIABLE ... 2-31

3 Creating a TIP

Granting Privileges for TIP Creators.. 3-1
Evaluating the RHT ... 3-2

Identify the Remote Host Transaction .. 3-2
PGAU DEFINE CALL Command ... 3-2
PGAU DEFINE DATA Command... 3-3
PGAU DEFINE TRANSACTION Command on a Gateway Using SNA.................................. 3-3
PGAU DEFINE TRANSACTION Command on a Gateway Using TCP/IP............................. 3-4
Writing the PGAU Statements ... 3-4
Writing a PGAU Script File .. 3-5

Defining and Generating the TIP ... 3-6
Compiling the TIP.. 3-7
TIP Content Documentation (tipname.doc) .. 3-8

v

4 Client Application Development (SNA Only)

Overview of Client Application ... 4-1
Preparing the Client Application .. 4-3
Understanding the Remote Host Transaction Requirements.. 4-3

TIP Content and Purpose.. 4-3
Remote Host Transaction Types .. 4-4

One-Shot Transactions ... 4-4
Persistent Transactions... 4-5
Multi-Conversational Transactions.. 4-5

Customized TIPs for Each Remote Host Transaction ... 4-6
Client Application Requirements ... 4-6
Ensuring TIP and Remote Transaction Program Correspondence.. 4-10

DATA Correspondence.. 4-10
CALL Correspondence... 4-11

Flexible Call Sequence... 4-12
Call Correspondence Order Restrictions.. 4-13

TRANSACTION Correspondence.. 4-13
Calling the TIP from the Client Application ... 4-14

Declaring TIP Variables.. 4-14
Initializing the Conversation ... 4-16

Transaction Instance Parameter... 4-17
Overriding TIP Initializations .. 4-17
Security Considerations .. 4-19

Exchanging Data .. 4-19
Terminating the Conversation .. 4-19
Error Handling .. 4-20
Granting Execute Authority .. 4-20

Executing the Application ... 4-20
APPC Conversation Sharing ... 4-20

APPC Conversation Sharing Concepts .. 4-21
APPC Conversation Sharing Usage ... 4-22
APPC Conversation Sharing TIP Compatibility... 4-22
APPC Conversation Sharing for TIPs That Are Too Large .. 4-23
APPC Conversation Sharing Example... 4-23
APPC Conversation Sharing Overrides and Diagnostics ... 4-25

Application Development with Multi-Byte Character Set Support.. 4-25
Modifying a Terminal-Oriented Transaction to Use APPC.. 4-26
Privileges Needed to Use TIPs.. 4-27

5 Implementing Commit-Confirm (SNA Only)

Overview of Commit-Confirm .. 5-1
Supported OLTPs ... 5-2
Components Required to Support Commit-Confirm ... 5-2
Application Design Requirements ... 5-4
Commit-Confirm Architecture .. 5-4

Components ... 5-5

vi

Interactions.. 5-5
Commit-Confirm Flow .. 5-5

Commit-Confirm Logic Flow, Step by Step .. 5-5
Gateway Server Commit-Confirm Transaction Log .. 5-7

6 PG4TCPMAP Commands (TCP/IP Only)

Preparation for Populating the PGA_TCP_IMSC Table .. 6-1
Overview .. 6-1
Populating the PGA_TCP_IMSC Table .. 6-2
Before You Run the pg4tcpmap Tool ... 6-4
pg4tcpmap Tool Commands .. 6-5

Inserting a Row into the PGA_TCP_IMSC Table .. 6-5
Deleting Rows from the PGA_TCP_IMSC Table .. 6-6
Querying the PGA_TCP_IMSC Table ... 6-6

7 Client Application Development (TCP/IP Only)

Overview of Client Application ... 7-1
Preparing the Client Application .. 7-3

TIP Content and Purpose ... 7-3
Remote Host Transaction Types .. 7-4

Ensuring TIP and Remote Transaction Program Correspondence... 7-4
DATA Correspondence... 7-4
CALL Correspondence.. 7-5

Flexible Call Sequence.. 7-6
Call Correspondence Order Restrictions... 7-7

TRANSACTION Correspondence... 7-7
Calling the TIP from the Client Application .. 7-8

Declaring TIP Variables... 7-8
Initializing the Conversation ... 7-10

Transaction Instance Parameter... 7-11
Overriding TIP Initializations .. 7-11
Security Considerations .. 7-13

Exchanging Data .. 7-13
Terminating the Conversation .. 7-13
Error Handling .. 7-13
Granting Execute Authority .. 7-14

Calling PG4TCPMAP ... 7-14
Executing the Application ... 7-14
Application Development with Multi-Byte Character Set Support.. 7-14
Privileges Needed to Use TIPs.. 7-15

8 Troubleshooting

TIP Definition Errors... 8-1
Problem Analysis with PG DD Diagnostic References ... 8-2
Problem Analysis with PG DD Select Scripts .. 8-3
Data Conversion Errors ... 8-4

vii

Problem Analysis with TIP Runtime Traces .. 8-5
TIP Runtime Trace Controls .. 8-6

Generating Runtime Data Conversion Trace and Warning Support ... 8-6
Controlling TIP Runtime Conversion Warnings... 8-6
Controlling TIP Runtime Function Entry/Exit Tracing ... 8-7
Controlling TIP Runtime Data Conversion Tracing ... 8-7
Controlling TIP Runtime Gateway Exchange Tracing ... 8-7

Suppressing TIP Warnings and Tracing.. 8-7
Problem Analysis of Data Conversion and Truncation Errors.. 8-8
Gateway Server Tracing ... 8-10

Defining the Gateway Trace Destination... 8-10
Enabling the Gateway Trace.. 8-11

Enabling the Gateway Trace Using Initialization Parameters .. 8-11
Enabling the Gateway Trace Dynamically from PL/SQL ... 8-12

A Database Gateway for APPC Data Dictionary

PG DD Environment Dictionary .. A-1
Environment Dictionary Sequence Numbers ... A-1
Environment Dictionary Tables .. A-2

pga_maint.. A-2
pga_environments ... A-2
pga_env_attr ... A-3
pga_env_values.. A-3
pga_compilers .. A-3
pga_datatypes... A-4
pga_datatype_attr .. A-4
pga_datatype_values... A-4
pga_usage.. A-5
pga_modes .. A-5

PG DD Active Dictionary .. A-5
Active Dictionary Versioning.. A-6
Active Dictionary Sequence Numbers ... A-6
Active Dictionary Tables.. A-6

pga_trans ... A-6
pga_trans_attr... A-7
pga_trans_values.. A-8
pga_trans_calls ... A-9
pga_call.. A-9
pga_call_parm .. A-10
pga_data .. A-11
pga_fields .. A-11
pga_data_attr .. A-13
pga_data_values... A-14

B Gateway RPC Interface

Calling Gateway Functions to Execute Transaction Programs... B-1

viii

PGAINIT and PGAINIT_SEC ... B-1
PGAXFER ... B-4
PGATERM... B-5

PGATCTL... B-5
PGATRAC .. B-6

C The UTL_PG Interface

UTL_PG Functions .. C-1
Common Parameters .. C-2

Common Input Parameters .. C-2
Common Output Parameter .. C-2

RAW_TO_NUMBER... C-3
NUMBER_TO_RAW... C-4
MAKE_RAW_TO_NUMBER_FORMAT... C-5
MAKE_NUMBER_TO_RAW_FORMAT... C-6
RAW_TO_NUMBER_FORMAT ... C-8
NUMBER_TO_RAW_FORMAT ... C-8
WMSGCNT .. C-9
WMSG... C-10

NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values.. C-11

D Datatype Conversions

Length Checking .. D-1
Parameters Over 32K in Length.. D-2

Conversion.. D-2
USAGE(PASS) ... D-2
USAGE(ASIS)... D-7
USAGE(SKIP) .. D-7
PL/SQL Naming Algorithms.. D-8

E Tip Internals

Background Reading .. E-1
PL/SQL Package and TIP File Separation... E-2

Independent TIP Body Changes ... E-2
Determine if a Specification Has Remained Valid .. E-2

Dependent TIP Body or Specification Changes.. E-3
Recompile the TIP Body.. E-4

Inadvertent Alteration of TIP Specification... E-4

F Administration Utility Samples

Sample PGAU DEFINE DATA Statements ... F-1
Sample PGAU DEFINE CALL Statements... F-2
Sample PGAU DEFINE TRANSACTION Statement .. F-2
Sample PGAU GENERATE Statement ... F-2
Sample Implicit Versioning Definitions .. F-3
Sample PGAU REDEFINE DATA Statements .. F-6

ix

Sample PGAU UNDEFINE Statements .. F-6

Index

x

xi

Preface

The Oracle Database Gateway for APPC provides Oracle applications seamless access
to virtually any APPC-enabled system, including IBM mainframe data and services
through Remote Procedure Call (RPC) processing.

Intended Audience
Read this guide if you are responsible for tasks such as:

■ determining hardware and software requirements

■ installing, configuring, or administering an Oracle Database Gateway for APPC

■ developing applications that access remote host databases through the Oracle
Database Gateway for APPC using the SNA Communication Protocol or the
TCP/IP communication protocol

■ determining security requirements

■ determining and resolving problems

Before using this guide to administer the gateway, you should understand the
fundamentals of your operating system and Oracle Database Gateways.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
The Oracle Database Gateway for APPC User's Guide is included as part of your product
shipment. Also included is:

■ Oracle Database Gateway for APPC Installation and Configuration Guide for IBM AIX
on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and
HP-UX Itanium

xii

■ Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft
Windows

You might also need Oracle Database 11g and Oracle Net documentation. The
following is a useful list of the Oracle publications that may be referenced in this book:

■ Oracle Database Installation Guide

■ Oracle Database Administrator's Guide

■ Oracle Database Concepts

■ Oracle Database Error Messages

■ Oracle Database Net Services Administrator's Guide

Refer to the Oracle Technical Publications Catalog and Price Guide for a complete list of
documentation provided for Oracle products.

Legacy Compilers
Examples in this guide use the compiler name parameter value IBMVSCOBOLII, which
represents the IBM VS COBOL II compiler. Although the IBM VS COBOL II compiler
is no longer supported, the string IBMVSCOBOLII should still be used and the
supported COBOL compiler will be called.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction to Oracle Database Gateway for APPC 1-1

1 Introduction to Oracle Database Gateway for
APPC

The Oracle Database Gateway for APPC enables users to initiate transaction program
execution on remote online transaction processors (OLTPs). The Oracle Database
Gateway for APPC can establish connection with OLTP using the SNA communication
protocol. The gateway can also use TCP/IP for IMS Connect to establish
communication with IMS/TM through TCP/IP. The gateway provides Oracle
applications with seamless access to IBM mainframe data and services through
Remote Procedural Call (RPC) processing.

Refer to the Oracle Database Installation Guide and to the certification matrix on the My
Oracle Support Web site for the most up-to-date list of certified hardware platforms
and operating system versions. The My Oracle Support Web site can be found at:

https://support.oracle.com

This chapter describes the architecture, uses, and features of the Oracle Database
Gateway for APPC.

This chapter contains the following sections:

■ Overview of the Gateway

■ Features of the Gateway

■ Terms

■ Examples and Sample Files for the Gateway

■ Architecture of the Gateway

■ Communication with the Gateway

■ RPC Functions

■ Overview of a Gateway Using SNA

■ Overview of a Gateway Using TCP/IP

Overview of the Gateway
The Oracle Database Gateway for APPC extends the RPC facilities available with the
Oracle database. The gateway enables any client application to use PL/SQL to request
execution of a remote transaction program (RTP) residing on a host. The gateway
provides RPC processing to systems using the SNA Advanced Program-to-Program
Communication (APPC) protocol and to IMS/TM systems using TCP/IP support for
IMS Connect. This architecture allows efficient access to data and transactions
available on the IBM mainframe and IMS, respectively.

Features of the Gateway

1-2 Oracle Database Gateway for APPC User's Guide

The gateway requires no Oracle software on the remote host system. Thus, the
gateway uses existing transactions with little or no programming effort on the remote
host.

For gateways using SNA only:
The use of a generic and standard protocol, APPC, allows the gateway to access
numerous systems. The gateway can communicate with virtually any APPC-enabled
system, including IBM Corporation’s CICS on any platform and IBM Corporation’s
IMS and APPC/MVS. These transaction monitors provide access to a broad range of
systems, allowing the gateway to access many datastores, including VSAM, DB2 (static
SQL), IMS, and others.

The gateway can access any application capable of using the CPI-C API, either directly
or through a TP monitor such as CICS.

Features of the Gateway
The Oracle Database Gateway for APPC provides the following benefits:

■ Fast interface

The gateway is optimized so that remote execution of a program is achieved with
minimum network traffic. The interface to the gateway is an optimized PL/SQL
stored procedure specification (called the TIP or transaction interface package)
precompiled in the Oracle database. Because there are no additional software
layers on the remote host, overhead occurs only when your program executes.

■ Location transparency

Client applications need not be operating system-specific. For example, your
application can call a program in a CICS Transaction Server for z/OS. If you move
the program to a CICS region on AIX, then you need not change the application.

■ Application transparency

Users calling applications that execute a remote transaction program are unaware
that a request is sent to a host.

■ Flexible interface

You can use the gateway to interface with existing procedural logic or to integrate
new procedural logic into an Oracle database environment.

■ Oracle database integration

The integration of the Oracle database with the gateway enables the gateway to
benefit from existing and future Oracle database features. For example, the
gateway can be called from an Oracle stored procedure or database trigger.

■ Transactional support

The gateway and the Oracle database allow remote transfer updates and Oracle
database updates to be performed in a coordinated fashion.

■ Wide selection of tools

The gateway supports any tool or application that supports PL/SQL.

■ PL/SQL code generator

The Oracle Database Gateway for APPC provides a powerful development
environment, including:

– a data dictionary to store information relevant to the remote transaction

Terms

Introduction to Oracle Database Gateway for APPC 1-3

– a tool to generate the PL/SQL Transaction Interface Package, or TIP

– a report utility to view the information stored in the gateway dictionary

– a complete set of tracing and debugging facilities

– a wide set of samples to demonstrate the use of the product against datastores
such as DB2, IMS, and CICS.

■ Site autonomy and security

The gateway provides site autonomy, allowing you to do such things as
authenticate users. It also provides role-based security compatible with any
security package running on your mainframe computer.

■ Automatic conversion

Through the TIP, the following conversions are performed:

– ASCII to and from EBCDIC

– remote transaction program datatypes to and from PL/SQL datatypes

– national language support for many languages

■ Globalization Support

■ TCP/IP support for IMS Connect

This release of the gateway includes TCP/IP support for IMS Connect, giving
users a choice of whether to use an SNA or TCP/IP communication protocol. IMS
Connect is an IBM product which allows TCP/IP clients to trigger execution of
IMS transactions. The gateway can use a TCP/IP communication protocol to
access IMS Connect, which triggers execution of IMS transactions. There is no
SNA involvement with this configuration.

Related to this feature of the gateway is:

■ The gateway mapping tool. This release of the gateway includes a tool
(pg4tcpmap) whose purpose is to map the information from your SNA Side
Profile Name to the TCP/IP host name and Port Number.

Terms
The following terms and definitions are used throughout this guide:

Gateway Initialization File
This file is known as initsid.ora and it contains parameters that govern the operation
of the gateway. If you are using the SNA protocol, refer to Appendix A, "Gateway
Initialization Parameters for SNA Protocol" in the Oracle Database Gateway for APPC
Installation and Configuration Guide for IBM AIX on POWER Systems (64-Bit), Linux
x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX Itanium or Oracle Database Gateway
for APPC Installation and Configuration Guide for Microsoft Windows for more
information. If your protocol is TCP/IP, refer to Appendix B, "Gateway Initialization
Parameters for TCP/IP Communication Protocol" in the Oracle Database Gateway for
APPC Installation and Configuration Guide for IBM AIX on POWER Systems (64-Bit),
Linux x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX Itanium or Oracle Database
Gateway for APPC Installation and Configuration Guide for Microsoft Windows.

Note: When your communications protocol is TCP/IP, only IMS is
supported as the OLTP.

Terms

1-4 Oracle Database Gateway for APPC User's Guide

Gateway Remote Procedure
The Oracle Database Gateway for APPC provides prebuilt remote procedures. In
general, the following three remote procedures are used:

■ PGAINIT, which initializes transactions

■ PGAXFER, which transfers data

■ PGATERM, which terminates transactions

Refer to Appendix B, "Gateway RPC Interface" in this guide and to "Remote
Procedural Call Functions" in Chapter 1 of the Oracle Database Gateway for APPC
Installation and Configuration Guide for IBM AIX on POWER Systems (64-Bit), Linux
x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX Itanium or Oracle Database Gateway
for APPC Installation and Configuration Guide for Microsoft Windows for more
information about gateway remote procedures.

dg4pwd
dg4pwd is a utility which encrypts passwords that are normally stored in the gateway
initialization file. Passwords are stored in an encrypted form in the password file,
making the information more secure. Refer to "Passwords in the Gateway Initialization
File" in the security requirements chapter of the Oracle Database Gateway for APPC
Installation and Configuration Guide for IBM AIX on POWER Systems (64-Bit), Linux
x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX Itanium and Oracle Database
Gateway for APPC Installation and Configuration Guide for Microsoft Windows for detailed
information about how the dg4pwd utility works.

pg4tcpmap Tool
This tool is applicable only when the gateway is using TCP/IP support for IMS
Connect. Its function is to map SNA parameters (such as Side Profile Name) to TCP/IP
parameters (such as OLTP host name, IMS Connect port number and IMS destination
ID).

PGA (Procedural Gateway Administration)
PGA is a general reference within this guide to all or most components comprising the
Oracle Database Gateway for APPC. This term is used when references to a specific
product or component are too narrow.

PGDL (Procedural Gateway Definition Language)
PGDL is the collection of statements used to define transactions and data to the PGAU.

PL/SQL Stored Procedure Specification (PL/SQL package)
This is a precompiled PL/SQL procedure that is stored in Oracle database.

UTL_RAW PL/SQL Package (the UTL_RAW Functions)
This component of the gateway represents a series of data conversion functions for
PL/SQL RAW variables and remote host data. The types of conversions performed
depend on the language of the remote host data. Refer to Appendix D, "Datatype
Conversions" in this guide for more information.

UTL_PG PL/SQL Package (the UTL_PG Functions)
This component of the gateway represents a series of COBOL numeric data conversion
functions. Refer to "NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values"
in Appendix C of this guide for supported numeric datatype conversions.

Terms

Introduction to Oracle Database Gateway for APPC 1-5

Oracle Database
This is any Oracle database instance that communicates with the gateway for purposes
of performing RPCs to execute RTP. The Oracle database can be on the same system as
the gateway or on a different system. If it is on a different system, then Oracle Net is
required on both systems. Refer to Figure 1–2, "Gateway Architecture Featuring SNA
or TCP/IP Protocol" for a view of the gateway architecture.

OLTP (Online Transaction Processor)
OLTP is any of a number of online transaction processors available from other
vendors, including CICS Transaction Server for z/OS and IMS/TM.

PGAU (Procedural Gateway Administration Utility)
PGAU is the tool that is used to define and generate PL/SQL transaction interface
packages (TIPs). Refer to Chapter 2, "Procedural Gateway Administration Utility" in
this guide for more information about PGAU.

PG DD (Procedural Gateway Data Dictionary)
This component of the gateway is a repository of remote host transaction definitions
and data definitions. PGAU accesses definitions in the PG DD when generating TIPs.
The PG DD has datatype dependencies because it supports the PGAU and is not
intended to be directly accessed by the customer. Refer to Appendix A, "Database
Gateway for APPC Data Dictionary" in this guide for a list of PG DD tables.

RPC (Remote Procedural Call)
RPC is a programming call that executes program logic on one system in response to a
request from another system. Refer to "Gateway Remote Procedure" in Appendix C of
the Oracle Database Gateway for APPC Installation and Configuration Guide for IBM AIX on
POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX
Itaniumor Oracle Database Gateway for APPC Installation and Configuration Guide for
Microsoft Windows , and to Appendix B, "Gateway RPC Interface" in this guide for
more information.

RTP (Remote Transaction Program)
A remote transaction program is a customer-written transaction, running under the
control of an OLTP, which the user invokes remotely using a PL/SQL procedure. To
execute a remote transaction program through the gateway, you must use RPC to
execute a PL/SQL program to call the gateway functions.

TIP (Transaction Interface Package)
A TIP is an Oracle PL/SQL package that exists between your application and the
remote transaction program. The transaction interface package, or TIP, is a set of
PL/SQL stored procedures that invoke the RTP through the gateway. TIPs perform the
conversion and reformatting of remote host data using PL/SQL and UTL_RAW/UTL_PG
functions.

Figure 1–1 illustrates where the terminology discussed in the preceding sections
applies to the gateway’s architecture.

Note: When your communications protocol is TCP/IP, only IMS is
supported as the OLTP.

Examples and Sample Files for the Gateway

1-6 Oracle Database Gateway for APPC User's Guide

Figure 1–1 Relationship of Gateway and Oracle Database

Examples and Sample Files for the Gateway
The following sample files and examples are referred to for illustration purposes
throughout this guide. There are different example and sample files for a gateway
using the SNA protocol than for a gateway using TCP/IP for IMS Connect.

Examples and Sample Files for Gateway Using SNA
For gateways using the SNA communication protocol, this guide uses a CICS-DB2
inquiry as an example. Transaction Interface Packages (TIPs) pgadb2i.pkb and
pgadb2i.pkh send an employee number, empno, to a DB2 application and receive an
employee record, emprec.

The CICS-DB2 inquiry sample and its associated PGAU commands are also available
in the %ORACLE_HOME%\dg4appc\demo\CICS directory on Windows platform and
$ORACLE_HOME/dg4appc/demo/CICS directory on UNIX platforms. The sample
CICS-DB2 inquiry used as an example in this chapter is in files pgadb2i.pkh and
pgadb2i.pkb. Refer to the README.doc file in the same directory for information about
installing and using the samples. It can be found in the
%ORACLE_HOME%\dg4appc\demo\CICS directory for Windows and $ORACLE_
HOME/dg4appc/demo/CICS directory for UNIX.

Examples and Sample Files for Gateway Using TCP/IP
If your gateway is using the TCP/IP communication protocol, this guide uses an IMS
inquiry as an example. Transaction Interface Packages (TIPs) pgtflip.pkh and
pgtflip.pkb send input to IMS, through IMS Connect, and receive the flipped input as
the output.

The IMS inquiry sample (FLIP) and its associated PGAU commands are located in the
%ORACLE_HOME%\dg4appc\demo\IMS directory for Windows and $ORACLE_
HOME/dg4appc/demo/IMS directory for UNIX. The sample IMS inquiry used as an
example for a gateway using TCP/IP is located in files pgtflip.pkh and pgtflip.pkb.

SNA or TCP/IP

Client

Transaction
Interface Package

PG DD
Data Dictionary

Oracle Database Operating System

Gateway Remote
Procedure Calls

PGAU

Oracle Net

OLTP

Remote
Transaction

Program

Mainframe

Architecture of the Gateway

Introduction to Oracle Database Gateway for APPC 1-7

Refer to the README.doc file for more information about installing and using other IMS
samples. It can be found in the %ORACLE_HOME%\dg4appc\demo\IMS directory for
Windows and $ORACLE_HOME/dg4appc/demo/IMS directory for UNIX.

Architecture of the Gateway
The architecture of Oracle Database Gateway for APPC consists of several
components:

1. Oracle database

Refer to the configuration chapter corresponding to your communications protocol
in the Oracle Database Gateway for APPC Installation and Configuration Guide for IBM
AIX on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and
HP-UX Itanium or Oracle Database Gateway for APPC Installation and Configuration
Guide for Microsoft Windowsfor a description of the various methods for
establishing the gateway-Oracle database relationship.

The Oracle database can also be used for non-gateway applications.

2. The gateway

Oracle Database Gateway for APPC must be installed on a server that can run the
required version of the operating system.

3. An OLTP

The OLTP must be accessible from the gateway using your SNA or TCP/IP
communication protocol. Multiple Oracle databases can access the same gateway.
A single system gateway installation can be configured to access more than one
OLTP.

– For gateways using TCP/IP: The only OLTP that is supported through TCP/IP is
IMS through IMS Connect.

– The OLTP must be accessible to the system using the TCP/IP protocol.
Multiple Oracle databases can access the same gateway. A single system
gateway installation can be configured to access more than one OLTP. Multiple
IMS systems can be accessed from an IMS Connect. If you have a number of
IMS Connect systems available, any of these may be connected to one or more
IMS systems.

Figure 1–2 illustrates the architecture of the Oracle Database Gateway for APPC using
SNA or TCP/IP, as described in the previous section.

Communication with the Gateway

1-8 Oracle Database Gateway for APPC User's Guide

Figure 1–2 Gateway Architecture Featuring SNA or TCP/IP Protocol

Communication with the Gateway
All the communication between the user or client program and the gateway is handled
through a TIP which executes on an Oracle database. The TIP is a standard PL/SQL
package that provides the following functions:

■ declares the PL/SQL variables that can be exchanged with a remote transaction
program;

■ calls the gateway packages that handle the communications for starting the
conversation, exchanging data, and terminating the conversation;

■ handles all datatype conversions between PL/SQL datatypes and the target
program datatypes.

The PGAU, provided with the gateway, automatically generates the TIP specification.

The gateway is identified to the Oracle database using a database link. The database
link is the same construct used to identify other Oracle databases. The functions in the
gateway are referenced in PL/SQL as:

function_name@dblink_name

RPC Functions
The Oracle Database Gateway for APPC provides a set of functions that are called by
the client through RPC. These functions direct the gateway to initiate, transfer data
with, and terminate RTP running under an OLTP on another system.

Table 1–1 lists the RPC functions and the correlating commands that are invoked in the
gateway and remote host.

APPC

Oracle Database

Oracle Net

Client

Other Options:
CICS/400
CICS/VSE

APPC

TCP/IP

CICS

IMS/TM

VTAM - APPC

Other
Databases

VSAM

DB2

IMS/DB

APPLICATION

TCP/IP

SNA Server
- APPC

Oracle
Database
Gateway

Oracle Net

Operating System

TCP/IP IMS CONNECT IMS/TM

RPC Functions

Introduction to Oracle Database Gateway for APPC 1-9

TIP Function
The following sections describe how a TIP works by first establishing a connection to
the remote host, then exchanging data from the target transaction program and finally,
terminating a conversation.

Remote Transaction Initiation
The TIP initiates a connection to the remote host using one of the gateway functions,
PGAINIT.

When the communication protocol is SNA: PGAINIT provides, as input, the required
SNA parameters to start a conversation with the target transaction program. These
parameters are sent across the SNA network, which returns a conversation identifier to
PGAINIT. Future calls to the target program use the conversation identifier as an input
parameter.

When the communication protocol is TCP/IP: PGAINIT provides, as input, the
required TCP/IP parameters.These parameters are sent across the TCP/IP network to
start the conversation with the target transaction program. The TCP/IP network
returns a socket file descriptor to PGAINIT. Future calls, such as PGAXFER and PGATERM,
use this same socket file descriptor as an input parameter.

Data Exchange
After the conversation is established, a database gateway function called PGAXFER can
exchange data in the form of input and output variables. PGAXFER sends and receives
buffers to and from the target transaction program. The gateway sees a buffer as only a
RAW stream of bytes. The TIP that resides in the Oracle database is responsible for
converting PL/SQL datatypes of the application to RAW before sending the buffer to
the gateway. It is also responsible for converting RAW to PL/SQL datatypes before
returning the results to the application.

Remote Transaction Termination
When communication with the remote program is complete, the gateway function
PGATERM terminates the conversation between the gateway and the remote host.

When the communication protocol is SNA: PGATERM uses the conversation identifier
as an input parameter to request conversation termination.

When the communication protocol is TCP/IP: PGATERM uses the socket file descriptor
for TCP/IP as an input parameter to request conversation termination.

Table 1–1 RPC Functions and Commands in the Gateway and Remote Host

Applications Oracle TIP Gateway Remote Host

call tip_init tip_init

call pgainit@gateway

PGAINIT Initiate program

call tip_main tip_main

call pgaxfer@gateway

PGAXFER Exchange data

call tip_term tip_term

call pgaterm@gateway

PGATERM Terminate program

Overview of a Gateway Using SNA

1-10 Oracle Database Gateway for APPC User's Guide

Overview of a Gateway Using SNA
If you are using the SNA communication protocol, read the following sections to
develop an understanding of how the gateway communicates with the Oracle
database and with the mainframe, as well as transaction types unique to your gateway
and writing TIPs.

Transaction Types for a Gateway Using SNA
The Oracle Database Gateway for APPC supports three types of transactions that read
data from and write data to remote host systems:

■ one-shot

In a one-shot transaction, the application starts the connection, exchanges data,
and terminates the connection, all in a single call.

■ persistent

In a persistent transaction, multiple calls to exchange data with the remote
transaction can be executed before terminating the conversation.

■ multi-conversational

In a multi-conversational transaction, the database gateway server can be used to
exchange multiple records in one call to the remote transaction program.

Refer to "Remote Host Transaction Types" in Chapter 4, "Client Application
Development (SNA Only)" of this guide for more information about transaction types.

The following list demonstrates examples of the power of the Oracle Database
Gateway for APPC:

■ You can initiate a CICS transaction on the mainframe to retrieve data from a
VSAM file for a PC application.

■ You can modify and monitor the operation of a remote process control computer.

■ You can initiate an IMS/TM transaction that executes static SQL in DB2.

■ You can initiate a CICS transaction that returns a large number of records in a
single call.

Simple Gateway Communication with the Oracle Database (SNA)
This section describes simple communication between the mainframe and the Oracle
database on a gateway using the SNA communication protocol. The Oracle Database
Gateway for APPC lets you write your own procedures to begin transferring
information between the Oracle database and a variety of programs on an IBM
mainframe, including IBM CICS, IMS, and APPC/MVS.

For an illustration of the communications function of the Oracle Database Gateway for
APPC, refer to %ORACLE_HOME%\dg4appc\demo\CICS\pgacics.sql on Microsoft
Windows or $ORACLE_HOME/dg4appc/demo/CICS/pgacics.sql on UNIX based

Note: At this point, if your communication protocol is SNA, then
proceed to the following section, Section , "Overview of a Gateway
Using SNA" on page 1-10.

If your gateway communication protocol is TCP/IP, then proceed to
Section , "Overview of a Gateway Using TCP/IP" on page 1-14.

Overview of a Gateway Using SNA

Introduction to Oracle Database Gateway for APPC 1-11

platforms. This is a sample communication between the Oracle database and CICS
Transaction Server for z/OS. Executing this simple PL/SQL procedure pgacics.sql,
causes the Oracle database to invoke the database gateway, which uses SNA to
converse with the FLIP transaction in CICS. These steps are described in detail in
Section , "Steps to Communicate Between Gateway and Mainframe Using SNA". Note
that you will already have compiled and linked the stored procedure when you
configured the gateway.

Steps to Communicate Between Gateway and Mainframe Using SNA
The following steps describe the Windows-to-mainframe communications process
illustrated in Figure 1–3, "Communication Between the Oracle Database and the
Mainframe, Using SNA" when your communication protocol is SNA to communicate
between the gateway and the mainframe:

1. From SQL*Plus, execute pgacics. This invokes the PL/SQL stored procedure in
the Oracle database.

For Microsoft Windows:

C:\> sqlplus <userid>/<password>@<database_specification_string>
SQL> execute pgacics(’==< .SCIC htiw gnitacinummoc si yawetag ruoy
,snoitalutargnoC >==’);

For UNIX Based platforms:

$ sqlplus <userid>/<password>@<database_specification_string>
SQL> execute pgacics(’==< .SCIC htiw gnitacinummoc si yawetag ruoy
,snoitalutargnoC >==’);

2. The pgacics PL/SQL stored procedure will start up the gateway. The gateway
will start up communication with CICS Transaction Server for z/OS through SNA
and will call FLIP.

3. FLIP processes the input, generates the output and sends the output back to the
database gateway.

4. Finally, the database gateway will send the output back to the PL/SQL stored
procedure in the Oracle database. The result is displayed in SQL*Plus:

==> Congratulations, your gateway is communicating with CICS. <==
PL/SQL procedure successfully completed.

Figure 1–3, "Communication Between the Oracle Database and the Mainframe,
Using SNA" illustrates the communications process described in steps 1 through 4.

Overview of a Gateway Using SNA

1-12 Oracle Database Gateway for APPC User's Guide

Figure 1–3 Communication Between the Oracle Database and the Mainframe, Using SNA

Writing TIPs to Generate PL/SQL Programs Using SNA
Most transactions using SNA communication protocol are much larger and more
complex than the sample pgacics.sql file referred to in Figure 1–3, "Communication
Between the Oracle Database and the Mainframe, Using SNA". Additionally,
communication with a normal-sized RTP would require you to create an extremely
long PL/SQL file. PGAU function generates the PL/SQL procedure for you.

The following is a brief description of the four steps necessary for you to generate a
TIP. Refer to Chapter 3, "Creating a TIP" for detailed information about this procedure,
and refer to Chapter 2, "Procedural Gateway Administration Utility" for more
information about PGAU.

All parameter names in this section are taken from a file called pgadb2i.ctl in the
%ORACLE_HOME%\pga4appc\demo\CICS directory on Microsoft Windows or in the
$ORACLE_HOME/pga4appc/demo/CICS directory on UNIX Based systems.

Steps to Writing a TIP on a Gateway Using SNA
Follow these steps to write a TIP.

Step 1 Create a control file:
The user writes the control files. The control file has four main types of PGAU
commands:

1. DEFINE DATA. This is used to define input and output fields, using COBOL data
definitions.

■ Sample define data:

define data empno plsdname(empno) usage(pass) language(ibmvscobolii)
infile("empno.cob");

2 3

...

...

...

...

FLIP

CICS

Mainframe

Client

Oracle Database

SQL>execute pgacics ‘(snoitalutargnoC)’
Congratulations
PL/SQL procedure successfully completed

PGAINIT@PGA (...);
PGAXFER@PGA (...);
PGATERM@PGA (...);
...

Oracle Database Gateway

1

4

APPC

Operating System

Overview of a Gateway Using SNA

Introduction to Oracle Database Gateway for APPC 1-13

2. DEFINE CALL. This is used to define PL/SQL functions calls to be generated as part
of the package.

■ Sample define call:

define call db2imain pkgcall(pgadb2i_main)
parms((empno in),(emprec out));

3. DEFINE TRANSACTION. This is used to group the preceding functions and specify
other parameters on which the TIP depends.

■ Sample define transaction:

define transaction db2i call(db2imain,db2idiag)
sideprofile(CICSPGA)
tpname(DB2I)
logmode(oraplu62)
synclevel(0)
nls_language("american_america.we8ebcdic37c");

4. GENERATE. This is used to generate the TIP specification files from the previously
stored data, call, and transaction definitions.

■ Sample generate transaction:

generate db2i pkgname(pgadb2i) pganode(pga) outfile("pgadb2i");

Step 2 Execute the control file within PGAU
Running the control file within PGAU will create PG DD entries for the data, call, and
transaction definitions, and will generate the specification files (For example,
pgadb2i.pkh and pgadb2i.pkb):

For Microsoft Windows:

C:\> pgau
PGAU> CONNECT<userid>/<password>@<database>_specification_string>
PGAU> @pgadb2i.ctl

For UNIX based systems:

$ pgau
PGAU> CONNECT<userid>/<password>@<database>_specification_string>
PGAU> @pgadb2i.ctl

Step 3 Execute the specification files
Running the specification files will create the PL/SQL stored procedures. Note that the
header specification file (for example, pgadb2i.pkh) must be run first:

For Microsoft Windows:

C:\> sqlplus<userid>/<password>@<database_specification_string>
SQL> @pgadb2i.pkh;
SQL> @pgadb2i.pkb;

For UNIX based systems:

$ sqlplus<userid>/<password>@<database_specification_string>
SQL> @pgadb2i.pkh;
SQL> @pgadb2i.pkb;

Overview of a Gateway Using TCP/IP

1-14 Oracle Database Gateway for APPC User's Guide

Step 4 Create a driver procedure to run the TIP
The TIP is now ready for use. For convenience, it will usually be called using a driver
procedure (for example, db2idriv). This driver will then call the individual stored
procedures in the correct order. Create the driver procedure and run it:

For Microsoft Windows:

C:\> sqlplus <userid>/<password>@<database_specification string>
SQL> @pgadb2id.sql
SQL> execute db2idriv(’000320’);

For UNIX based systems:

$ sqlplus <userid>/<password>@<database_specification string>
SQL> @pgadb2id.sql
SQL> execute db2idriv(’000320’);

Overview of a Gateway Using TCP/IP
If you are using the TCP/IP communication protocol, read the following sections to
develop an understanding of how the gateway communicates with the Oracle
database and with the mainframe, as well as transaction types unique to your gateway
and writing TIPs.

Transaction Types for a Gateway Using TCP/IP
The Oracle Database Gateway for APPC using TCP/IP support for IMS Connect
supports three types of transaction socket connections:

■ transaction socket

The socket connection lasts across a single transaction.

■ persistent socket

The socket connection lasts across multiple transactions.

■ nonpersistent socket

The socket connection lasts across a single exchange consisting of one input and
one output.

Refer to the section about pg4tcpmap commands in Chapter 6, "PG4TCPMAP
Commands (TCP/IP Only)" of this guide for more information about the function
and use of these parameters.

You can initiate an IMS/TM transaction that executes static SQL in DB2. This
illustrates the power of the Oracle Database Gateway for APPC’s feature
supporting TCP/IP for IMS Connect.

Simple Gateway Communication with the Oracle Database (TCP/IP)
This section describes simple communication between IMS and the Oracle database
whenTCP/IP for IMS Connect is being used as the communication protocol between

Note: Do not use the nonpersistent socket type if you plan to
implement conversational transactions because multiple connections
and disconnections will occur.

Overview of a Gateway Using TCP/IP

Introduction to Oracle Database Gateway for APPC 1-15

the gateway and the remote host (IMS). The Oracle Database Gateway for APPC lets
you write your own procedures to begin transferring information between the Oracle
database and I/O PCB programs on IMS.

For an illustration of the communications function of the gateway using TCP/IP for
IMS Connect, refer to the %ORACLE_HOME%\dg4appc\demo\IMS\pgaims.sql file on
Microsoft Windows or $ORACLE_HOME/dg4appc/demo/IMS/pgaims.sql on UNIX based
systems.

Executing the simple PL/SQL procedure pgaims.sql causes the Oracle database to call
the gateway, which uses TCP/IP to converse with the sample transaction FLIP in IMS.
The communication steps that take place when you execute the PL/SQL procedure are
described in detail in Section , "Steps to Communication Between the Gateway and
IMS, Using TCP/IP". Note that you will already have compiled and linked the stored
procedure when you configured the gateway.

Preparing the Gateway to Communicate Using TCP/IP
If your gateway is using TCP/IP support for IMS Connect, then you must use the
pg4tcpmap tool to create the required mapping between PGAINIT parameters and the
target system network address information. The pg4tcpmap tool maps the Side Profile
Name specified in a DEFINE TRANSACTION to TCP/IP and IMS Connect attributes, such
as port number, IP address (host name) and IMS subsystem ID. The TCP/IP
parameters are used to start a conversation with the target transaction program.

The pg4tcpmap tool must be run in order to populate the PGA_TCP_IMSC table before
executing any TIPs which rely on TPC/IP support for IMS Connect.

■ Refer to Chapter 6, "PG4TCPMAP Commands (TCP/IP Only)" in this guide for
complete instructions for setting up and executing pg4tcpmap commands to
populate the PGA_TCP_IMSC table. Chapter 6 also explains the content of the PGA_
TCP_IMSC table and an example of how to use the table.

■ A trace file from a sample pg4tcpmap execution is located in Chapter 8,
"Troubleshooting" in this guide.

■ A screen output file is located in Appendix B, "Gateway Initialization Parameters
for TCP/IP Communication Protocol" in the Oracle Database Gateway for APPC
Installation and Configuration Guide for IBM AIX on POWER Systems (64-Bit), Linux
x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX Itanium or Oracle Database
Gateway for APPC Installation and Configuration Guide for Microsoft Windows.

Steps to Communication Between the Gateway and IMS, Using TCP/IP
The following steps describe the communications process, as illustrated in Figure 1–4
when your communication protocol is TCP/IP:

1. From SQL*Plus, execute pgaims.sql. This invokes the PL/SQL stored procedure
in the Oracle database.

For Microsoft Windows:

C:\> sqlplus <userid>/<password>@<database_specification_string>
SQL> execute pgaims ’snoitalutargnoC’;

For UNIX based systems:

$ sqlplus <userid>/<password>@<database_specification_string>
SQL> execute pgaims ’snoitalutargnoC’;

The pgaims.sql stored procedure will start up the gateway.

Overview of a Gateway Using TCP/IP

1-16 Oracle Database Gateway for APPC User's Guide

2. The gateway which has the APPC information will call the mapping table
(PGA_TCP_IMSC). The mapping table will map the information so that it will have
the host name (TCP/IP address) and the port number.

3. When the gateway has the port number and host name, it will initiate
communication with IMS Connect through TCP/IP, and it will call FLIP through
IMS.

4. FLIP processes the input, generates the output, and sends the output back to the
gateway.

5. Finally, the gateway will send the output back to the PL/SQL stored procedure in
the Oracle database. The result is displayed in SQL*Plus:

Congratulations
PL/SQL procedure successfully completed.

Figure 1–4, "Communication Between Oracle Database and Mainframe, Using
TCP/IP" illustrates the communications process described in the previous Steps 1
through 5.

Note: Rather than insert, delete, or update the PGA_TCP_IMSC
mapping table manually, you should use the pg4tcpmap tool to do so.
You may use the SELECT statement to query the rows.

Overview of a Gateway Using TCP/IP

Introduction to Oracle Database Gateway for APPC 1-17

Figure 1–4 Communication Between Oracle Database and Mainframe, Using TCP/IP

Writing TIPs to Generate PL/SQL Programs Using TCP/IP
Most transactions are much larger and more complex than the sample pgaims.sql file
referred to in Figure 1–4, "Communication Between Oracle Database and Mainframe,
Using TCP/IP". Additionally, communication with a normal-sized RTP (remote
transaction program) would require you to create an extremely long PL/SQL file.
Oracle Database Gateway for APPC’s TIP function generates the PL/SQL procedure
for you.

The following is a brief description of the four steps necessary for you to generate a
TIP. Refer to Chapter 3, "Creating a TIP" for detailed information about this procedure,
and refer to Chapter 2, "Procedural Gateway Administration Utility" for more
information about PGAU.

All parameter names in this section are taken from a file calledpgtflip.ctl in the
%ORACLE_HOME%\pga4appc\demo\IMS directory on Microsoft Windows or $ORACLE_
HOME/pga4appc/demo/IMS directory on UNIX based systems.

Steps to Writing a TIP on a Gateway Using TCP/IP
Follow these steps to write a TIP.

Step 1 Create a control file:
The user writes the control files. The control file has four main types of PGAU
commands:

PGAINIT@PGA (...);
PGAXFER@PGA (...);
PGATERM@PGA (...);
...

Gateway

Oracle Database

SQL>execute pgaims ‘(snoitalutargnoC)’
Congratulations
PL/SQL procedure successfully completed

Mainframe

...

...

...

...

FLIP

IMS

IMS Connect

PGA_TCP_IMSCClient

TCP/IP

1

2 3

4

5

3

Operating System

Overview of a Gateway Using TCP/IP

1-18 Oracle Database Gateway for APPC User's Guide

1. DEFINE DATA. This is used to define input and output fields, using COBOL data
definitions.

■ Sample define data:

define data flipin plsdname(flipin) usage(pass) language(ibmvscobolii)
(

01 msgin pic x(20).
)

define data flipout plsdname(flipout) usage(pass) language(ibmvscobolii)
(

01 msgout pic x(20).
)

2. DEFINE CALL. This is used to define PL/SQL functions calls to be generated as part
of the package.

■ Sample define call:

define call flipmain pkgcall(pgtflip_main)
parms((flipin in),(flipout out));

3. DEFINE TRANSACTION. This is used to group the preceding functions and specify
other parameters on which the TIP depends.

■ Sample define transaction:

define transaction imsflip call(flipmain)
sideprofile(pgatcp)
tpname(flip)
nls_language("american_america.us7ascii");

4. GENERATE. This is used to generate the TIP specification files from the previously
stored data, call, and transaction definitions.

■ Sample generate transaction:

generate imsflip pkgname(pgtflip) pganode(pga10ia) outfile("pgtflip")
diagnose(pkgex(dc,dr));

Step 2 Execute the control file within PGAU
Running the control file within PGAU will create PG DD entries for the data, call, and
transaction definitions and will generate the specification files (for example,
pgtflip.pkh and pgtflip.pkb):

For Microsoft Windows:

C:\> cd %ORACLE_HOME%\dg4appc\demo\IMS
C:\> pgau
PGAU> CONNECT userid/password@database_specification_string
PGAU> @pgtflip.ctl

For UNIX based systems:

$ pgau

Note: On a gateway using TCP/IP, the side profile name value is
actually the TCP/IP unique name that was defined when the user
specified the value, host name, port number and many other IMS
Connect values during configuration of the network.

Overview of a Gateway Using TCP/IP

Introduction to Oracle Database Gateway for APPC 1-19

PGAU> CONNECT userid/password@database_specification_string
PGAU> @pgtflip.ctl

Step 3 Execute the specification files
Running the specification files will create the PL/SQL stored procedures. Note that the
header specification file (for example, pgtflip.pkh) must be run first:

For Microsoft Windows:

C:\> sqlplus userid/password@database_specification_string
SQL> @pgtflip.pkh;
SQL> @pgtflip.pkb;

For UNIX based systems:

$ sqlplus userid/password@database_specification_string
SQL> @pgtflip.pkh;
SQL> @pgtflip.pkb;

Step 4 Create a driver procedure to run the TIP
The TIP is now ready for use. For convenience, it will usually be called using a driver
procedure (for example, pgtflipd). This driver will then call the individual stored
procedures in the correct order. Create the driver procedure and run it:

For Microsoft Windows:

C:\> sqlplus <userid>/<password>@<database_specification string>
SQL> @pgtflip.sql
SQL> execute pgtflipd(’hello’);

For UNIX based system:

$ sqlplus <userid>/<password>@<database_specification string>
SQL> @pgtflip.sql
SQL> execute pgtflipd(’hello’);

Overview of a Gateway Using TCP/IP

1-20 Oracle Database Gateway for APPC User's Guide

2

Procedural Gateway Administration Utility 2-1

2 Procedural Gateway Administration Utility

The Procedural Gateway Administration Utility (PGAU) is a utility that assists the
PGA administrator or user to define the data which is to be exchanged with remote
transaction programs. It generates the PL/SQL Transaction Interface Packages (TIPs)
discussed in Chapter 3, "Creating a TIP", Appendix E, "Tip Internals" and, depending
upon your communication protocol, either Chapter 4, "Client Application
Development (SNA Only)" or Chapter 7, "Client Application Development (TCP/IP
Only)".

This chapter contains the following sections:

■ "Overview of PGAU" on page 2-1

■ "COMMIT/ROLLBACK Processing" on page 2-2

■ "Invoking PGAU" on page 2-3

■ "Definitions and Generation in PGAU" on page 2-3

■ "Process to Define and Test a TIP" on page 2-4

■ "PGAU Commands" on page 2-6

Overview of PGAU

PGAU maintains a data dictionary, PG DD, which is a collection of tables in an Oracle
database. These tables hold the definitions of the remote transaction data and how that
data is to be exchanged with the remote transaction program. Refer to "Ensuring TIP
and Remote Transaction Program Correspondence" on page 4-10 for a discussion of
the correlation between TIPs and their respective remote transaction programs. The
PG DD contents define this correlation.

The PGA administrator or user defines the correlation between TIPs and the remote
transaction program using the following PGAU commands (also called "statements"):

Note: If you have existing TIPs that were generated previously on a
gateway using the SNA protocol and you want to utilize the new
TCP/IP feature, then the TIPs will have to be regenerated by PGAU
with mandatory NLS_LANGUAGE and Side Profile Settings. Specify the
appropriate ASCII character set in the DEFINE TRANSACTION command.

This is due to the fact that the gateway assumes that the appropriate
"user exit" in IMS Connect is being used, which would translate
between the appropriate ASCII and EBCDIC character sets.

COMMIT/ROLLBACK Processing

2-2 Oracle Database Gateway for APPC User's Guide

■ PGAU DEFINE DATA statements, which describe the data to be exchanged.

■ PGAU DEFINE CALL statements, which describe the exchange sequences.

■ PGAU DEFINE TRANSACTION statements, which group the preceding CALL and
DATA commands together and describe certain aspects unique to the remote
transaction program, such as its network name or location.

■ PGAU GENERATE statement, which the PGA administrator or user uses to specify
and create the TIP specifications, after the TIP/transaction correlation has been
defined in the PG DD. Additional PGAU commands needed to alter and delete
definitions in the PG DD are described in "PGAU Commands" later in this chapter.

The PGAU commands are known collectively as Procedural Gateway Definition
Language (PGDL). Any references to PGDL are to the collection of PGAU commands
defined in this chapter.

PGAU provides editing and spooling facilities and the ability to issue SQL commands.

Alternatively, PGAU commands can be supplied in a control file. The control file
contains one or more PGAU commands for manipulating the PG DD or generating TIP
specifications.

PGAU issues status messages on each operation. The message text is provided
through Globalization Support message support. PGAU processes each command in
sequence. An error on a single command causes PGAU to skip that command.

To run PGAU, the PG DD tables must already have been created. Refer to the gateway
configuration chapters corresponding to your communications protocol in the Oracle
Database Gateway for APPC Installation and Configuration Guide for IBM AIX on POWER
Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX Itanium or
Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft
Windows.

COMMIT/ROLLBACK Processing
The following sections provide information on COMMIT/ROLLBACK processing.

COMMIT Processing
PGAU never issues COMMIT commands. As the user, it is your responsibility to COMMIT
PG DD changes when all the changes are implemented. Otherwise Oracle issues a
COMMIT command by default when you exit the PGAU session. If PG DD changes are
not to be committed, you must run a ROLLBACK command before exiting.

ROLLBACK Processing
PGAU sets a savepoint at the beginning of each PGAU command that alters the
PG DD and at the beginning of a PGAU GROUP. PGAU rolls back to the savepoint upon
any PGAU command or group failure.

You can code COMMIT or ROLLBACK commands within PGAU scripts, or interactively in
PGAU, but not within a GROUP.

Neither COMMIT nor ROLLBACK is issued for PGAU GENERATE or REPORT commands.

Caution: Do not use PGAU instead of SQL*Plus for general database
administration.

Definitions and Generation in PGAU

Procedural Gateway Administration Utility 2-3

For information about grouping PGAU commands together to roll back changes in
case of failure, refer to the discussion of the PGAU "GROUP" command on page 2-18
later in this chapter.

Invoking PGAU
Before you can invoke PGAU, your Oracle database should already be set up. If it is
not, refer to the chapter on configuring your Oracle Database Gateway for APPC, in
the Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft
Windows or Oracle Database Gateway for APPC Installation and Configuration Guide for
IBM AIX on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and
HP-UX Itanium.

Before executing PGAU, you must set the ORACLE_HOME environment variable to the
directory into which the gateway server was installed.

If you want to receive PGAU messages in a language other than English, set the
LANGUAGE environment variable to the appropriate value.

PGAU is invoked by entering the pgau command. You can run prepared scripts of
PGAU commands directly from the operating system prompt by specifying a
command string on the command line using the following syntax:

For Microsoft Windows:

C:\> pgau @command_file
C:\> pgau command=@command_file
C:\> pgau command="@command_file"

For UNIX based systems:

$ pgau @command_file
$ pgau command=@command_file
$ pgau command="@command_file"

The default extension is .sql. Use the last form if the command filename contains
non-alphanumeric characters.

To perform PG DD maintenance and PL/SQL package generation, you must connect
to the Oracle database from PGAU as user PGAADMIN, using the CONNECT command. The
"PGAU Commands" section on page 2-6 discusses how to use the "CONNECT"
command.

Definitions and Generation in PGAU
This version of PGAU supports the definition of remote transaction data in COBOL,
entered interactively or in a file. File input is supported for the DEFINE and REDEFINE
DATA commands, and standard COBOL data division macros or "copybooks" can be
supplied.

PGAU and the PG DD support different versions of user data and remote transaction
definitions. This facilitates alteration and testing of data formats and transactions
without affecting production usage.

Multiple versions of any data or transaction definitions might exist. You must ensure
that versions stored and used in the PG DD are synchronized with the remote
transactions. Neither the gateway, PGAU, nor generated TIPs provide this
synchronization, but they will issue messages as error conditions are detected.

Process to Define and Test a TIP

2-4 Oracle Database Gateway for APPC User's Guide

Data definitions must exist before being referenced by call definitions. Call definitions
must exist before being referenced by transaction definitions.

Process to Define and Test a TIP
The general process for defining and testing a TIP for a given transaction is as follows:

1. Define input and output using COBOL data definitions.

2. Redefine the default datanames and PL/SQL variable names created by the above
process (optional).

3. Define PL/SQL FUNCTION calls to be generated as part of the PL/SQL package.

4. Define a transaction that groups the above functions.

5. Generate the TIP specifications from the previously stored TRANSACTION, CALL, and
DATA definitions.

6. Generate the TIP PL/SQL stored procedures.

7. Test the TIP by calling it from a high-level application.

Refer to Chapter 3, "Creating a TIP" for more information about TIPs.

Definition Names
Definition names are unique identifiers that you designate through PGAU. The name
is a string of 1 to 30 bytes. If punctuation or white space is included, the name must be
specified within double quotes.

Names are assumed to be unique within the PG DD, except when duplicate names are
intentionally distinguished by a unique version number. It is your responsibility to
ensure name uniqueness.

Valid characters for PG DD definition names are:

■ A through Z

■ a through z

■ 0 through 9

■ #

■ $

■ _ (underscore)

Note that unless defaults are overridden, transaction definition names might be
PL/SQL package names, and transaction call names might be PL/SQL procedure
names. Therefore, choose names that are syntactically correct for PL/SQL, making
certain that they are also unique names within that system. As the user, it is your
responsibility to ensure PL/SQL name compatibility.

Note: It is your responsibility to ensure that the data transaction
definition versions that are stored and used in the PG DD are
synchronized with the remote transactions. The gateway, PGAU and
generated TIPs do not provide this synchronization, but issue
messages as error conditions are detected.

Process to Define and Test a TIP

Procedural Gateway Administration Utility 2-5

Definition Versioning
The PG Data Dictionary tables contain the descriptions of transactions and data
structures. There might be more than one version of a definition. Old versions are
retained indefinitely.

In all PG DD operations, a definition or package is referred to by its name. That name
can be qualified by a specific version number.

All version numbers:

■ are supplied by Oracle Sequence Objects

■ are purely numeric

■ must be free from user alteration, suffixing, or prefixing

Refer to Appendix A, "Database Gateway for APPC Data Dictionary" and the
pgddcr8.sql file in the %ORACLE_HOME%\dg4appc\admin directory on Microsoft
Windows or $ORACLE_HOME/dg4appc/admin directory on UNIX based systems for the
specific names of the Oracle Sequence Objects used for version number generation.

If an explicit version number is specified, it is presumed to be the version number of
an existing definition, not a new definition. Such explicit references are used when:

■ generating a TIP from a specific remote transaction version

■ defining a remote transaction based on a specific data version

If no explicit version is specified:

■ The latest (highest number) is assumed when a definition is being referenced. This
is the MAX value selected from the VERSION column for all rows with the same
definition name, not the CURRVAL number.

■ The next (NEXTVAL number) is assumed when a definition is being added.

Version numbers might not be contiguous. Although version numbers are always
increasing, multiple versions of a given definition might skip numbers. This is because
the sequence object is shared for all definitions of the same type (TRANSACTION, CALL, or
DATA), and sequence object NEXTVAL is not restored in event of an Oracle database
transaction ROLLBACK. Thus, NEXTVAL might be assigned to a different definition before
the next version of the same definition.

Examples of valid definition names:

DEFINE TRANSACTION|CALL|DATA
payroll (new or latest definition)
payroll_xaction (new or latest definition)
payroll_xaction VERSION(3)...(an existing definition)

No attempt is made by PGAU to synchronize versions. Although the existence of
dependent items is assured at definition time, deletion is done without reference to
dependencies. For example, generating a TIP requires prior definition of the
transaction, which requires prior definition of the calls, which require prior definition
of the data. But nothing prevents PGAU from deleting an active data definition while a
call definition still references it.

Keywords
All PGAU keywords can be specified in upper or lower case and are not reserved
words. Reservation is not necessary because all keywords have known spelling and
appear in predictable places, and because all data is delimited by parentheses,
apostrophes, quotes, or blanks.

PGAU Commands

2-6 Oracle Database Gateway for APPC User's Guide

Note that all unquoted values specified by keywords are stored in the PG Data
Dictionary in uppercase unless otherwise specified in the keyword description.

PGAU Commands
PGAU allows you to enter Procedural Gateway Administration commands
(commands), such as DEFINE, UNDEFINE, REDEFINE, and GENERATE, in addition to normal
SQL commands. The SET and SHOW commands are also implemented. In addition, the
PGAU commands listed in the following section are available to you.

CONNECT

Purpose
This command enables you to make a connection to PGAU. Use the CONNECT command
to log on to an Oracle database, optionally specifying the user ID and password in
addition to the Oracle instance. The CONNECT command has the following syntax:

Syntax
For Microsoft Windows:

CONNECT [username|username/password|username@connect-string|username\password@connect-string

For UNIX based systems:

CONNECT [username|username/password|username@connect-string|username/password@connect-string

Parameters
username\password for Microsoft Windows and username/password for UNIX based
systems are the usernames and passwords used to connect to PGAU,

and

connect-string specifies the service name of the remote database.

Refer to the Oracle Database Net Services Administrator's Guide Services Administrator’s
Guide for more information about specifying remote databases.

Examples
CONNECT
CONNECT SCOTT/TIGER
CONNECT SCOTT@OTHERSYS

CONNECT Usage Notes
■ Before connecting, you must set ORACLE_SID to the database SIDname.

■ If you want to connect to a remote database, you must set TNS_ADMIN to the full
pathname of the directory in which the file tnsnames.ora is stored.

■ You do not need to place a semi colon (;) at the end of the command.

PGAU Commands

Procedural Gateway Administration Utility 2-7

DEFINE CALL

Purpose
This command creates a new version of the PL/SQL call definition in the PG Data
Dictionary.

Syntax
DEFINE CALL cname

[PKGCALL(pcname)]
[PARMS((dname

{IN | OUT | IN OUT}
[VERSion(datavers)]), ...)];

Where Table 2–1 describes the parameters in this syntax:

Examples
Refer to "Sample PGAU DEFINE CALL Statements" on page F-2 in Appendix F for
examples of DEFINE CALL commands.

DEFINE CALL Usage Notes
■ Version of the CALL definition is not specified and defaults to NEXTVAL of the Oracle

Sequence Object for CALL.

Table 2–1 DEFINE CALL Parameter Descriptions

Parameter Definition

CALL cname is a mandatory parameter. It is the name of
the call definition to be created.

PKGCALL (pcname) is an optional parameter. It specifies the
name of the PL/SQL package procedure or
function by which the application might
invoke the call. The default value, cname, is
assumed if this operand is omitted, in
which case cname must also be valid in
PL/SQL syntax and unique within the
transactions and TIPs referencing this call.

PARMS((dname

{IN|OUT|IN OUT} [

VERSION(datavers)]), . . .)

is an optional parameter. It specifies a list of
previously defined data input to and output
from this PL/SQL function call, and the
type of each parameter (input to the call,
output from, or both). The order in which
the parameters are specified determines the
order in which they must appear in
subsequent calls to the TIP from an
application.

Each dname specifies a previously defined
data item, and is mandatory.
{IN | OUT | IN OUT} specifies the
PL/SQL call mode of the parameter and
indicates whether the dname data is sent,
received, or both in the exchange with the
remote transaction program. One must be
chosen. VERS(datavers) is an optional
specific version number of the dname data
definition, if not the latest. If this operand is
omitted, it is assumed that the call takes no
parameters.

PGAU Commands

2-8 Oracle Database Gateway for APPC User's Guide

■ PKGCALL and PARMS can be specified in either order.

■ You need to place a semi colon (;) at the end of the command.

DEFINE DATA

Purpose
This command creates a new version of the data definition in the PG DD.

Syntax
DEFINE DATA dname

[PLSDNAME(plsdvar)]
[USAGE({PASS|ASIS|SKIP})]
[COMPOPTS (’options’)]
LANGUAGE(language)
{(definition)|INFILE("filespec")};

Parameters
Table 2–2 describes the DEFINE DATA parameters:

Table 2–2 DEFINE DATA Parameter Descriptions

Parameter Description

DATA dname is a mandatory parameter. It is the name of the data definition
to be created.

PLSDNAME (plsdvar) is an optional parameter. It is the name of the PL/SQL variable
associated with dname. It becomes the name of a PL/SQL
variable if the dname item is atomic data, or a PL/SQL record
variable if the dname item is aggregate data (such as a record or
structure), when the TIP is generated.

USAGE({PASS|ASIS|

SKIP})

is an optional parameter. It specifies the way the TIP handles
the data items when exchanged in calls with the remote
transaction.

PASS indicates that the item should be translated and
exchanged with the transaction.

ASIS indicates the item is binary and, though exchanged,
should not be translated.

SKIP indicates the item should be deleted from all exchanges.

The default value, PASS, is assumed if this parameter is
omitted.

The USAGE(NULL) keyword on DEFINE or REDEFINE DATA PGAU
statements is not supported.

COMPOPTS

(’options’)

is an optional parameter. It specifies the compiler options used
when compiling the data definition on the remote host. The
only option currently supported is ’TRUNC(BIN)’. Note that the
options must be enclosed in apostrophes (’) or quotes (").
TRUNC(BIN) is a COBOL option that affects the way halfword
and fullword binary values are handled.

Refer to "DEFINE DATA Usage Notes" on page 2-9 for further
information on this option.

LANGUAGE

(language)

is a mandatory parameter. It specifies the name of the
programming language in the supplied definition. PGAU
presently supports only COBOL.

PGAU Commands

Procedural Gateway Administration Utility 2-9

Examples
Refer to "Sample PGAU DEFINE DATA Statements" in Appendix F for examples of
DEFINE DATA commands.

DEFINE DATA Usage Notes
■ Version of the DATA definition is not specified and defaults to NEXTVAL of the Oracle

Sequence Object for DATA.

■ PLSDNAME, USAGE, and LANGUAGE can be specified in any order.

■ INFILE ("filespec") is a platform-specific designation of a disk file.

■ COMPOPTS (’TRUNC(BIN)’) should be used only when the remote host transaction
was compiled using COBOL with the TRUNC(BIN) compiler option specified. When
this option is used, binary data items defined as PIC 9(4) or PIC S9(4) can
actually contain values with 5 digits, and binary data items defined as PIC 9(9) or
PIC S9(9) can actually contain values with 10 digits. Without COMPOPTS
(’TRUNC(BIN)’), PGAU generates NUMBER(4,0) or NUMBER(9,0) fields for these
data items, resulting in possible truncation of the values.

When COMPOPTS (’TRUNC(BIN)’) is specified, PGAU generates NUMBER(5,0) or
NUMBER(10, 0) fields for these data items, avoiding any truncation of the values.
Care must be taken when writing the client application to ensure that invalid
values are not sent to the remote host transaction.

For a PIC 9(4) the value must be within the range 0 to 32767, for a PIC S9(4) the
value must be within the range -32767 to +32767, for a PIC 9(9) the value must be
within the range 0 to 2,147,483,647, and for a PIC S9(9) the value must be
within the range -2,147,483,647 to +2,147,483,647. COBOL always reserves the
high-order bit of binary fields for a sign, so the value ranges for unsigned fields
are limited to the absolute values of the value ranges for signed fields. For further
information, refer to the appropriate IBM COBOL programming manuals.

■ Refer to "USAGE(PASS)" in Appendix D, "Datatype Conversions" for information
about how PGAU converts COBOL statements.

(definition) is mutually exclusive with the INFILE parameter. It is an inline
description of the data. The description must be provided in
COBOL syntax, as indicated above. This inline description
must begin with an opening parenthesis and end with a
closing parenthesis. The opening parenthesis must be the last
non-blank character on the line and the COBOL data definition
must start on a new line, following the standard COBOL rules
for column usage and continuations. The closing parenthesis
and terminating semicolon must be on a separate line
following the last line of the COBOL data definition. In
COBOL, the specification is a COBOL data item or structure,
defined in accordance with COBOL. Margins are assumed to
be standard, and explicit or implicit continuation is supported.
Datanames containing invalid characters (for example, "-") for
PL/SQL use are translated to their closest equivalent and
truncated as required.

INFILE ("filespec") is mutually exclusive with the (definition) parameter. It
indicates that the definition is to be read from the user disk file
described by filespec, instead of an inline definition
described by (definition).

Note that filespec must be enclosed in double quotes.

Table 2–2 (Cont.) DEFINE DATA Parameter Descriptions

Parameter Description

PGAU Commands

2-10 Oracle Database Gateway for APPC User's Guide

■ You need to place a semi colon (;) at the end of the command.

DEFINE TRANSACTION

Purpose
This command creates a new version of the transaction definition in the PG Data
Dictionary.

Syntax
DEFINE TRANSACTION tname
CALL(cname [VERS(callvers)], ...

[ENVIRONMENT(name)]
{SIDEPROFILE(name) [LUNAME(name)] [TPNAME(name)]

[LOGMODE(name)] |
LUNAME(name) TPNAME(name) LOGMODE(name)}
[SYNCLEVEL(0|1|2)]
[NLS_LANGUAGE("nlsname")];
[REMOTE_MBCS("nlsname")]
[LOCAL_MBCS("nlsname")];

Parameters
Table 2–3 describes the DEFINE TRANSACTION parameters:

Table 2–3 DEFINE TRANSACTION Parameter Descriptions

Parameter Description

TRANSACTION tname A mandatory parameter. It is the name of the transaction
definition to be created. If you do not specify a package name
(TIP name) in the GENERATE statement, the transaction name
specified here will become the package name, by default. In
that case, the tname must be unique and must be in valid
PL/SQL syntax within the database containing the PL/SQL
packages.

CALL(cname
[VERS(callvers)], ...)

A mandatory parameter. It specifies a list of previously defined
calls (created with DEFINE CALL) which, taken together,
comprise this transaction. The order in which the calls are
specified here determines the order in which they are created
by GENERATE, but not necessarily the order in which they might
be called by an application. VERS(callvers) is an optional
specific version number of the call definition, if not the latest.

The relative position of each cname in its left-to-right sequence
is the seq# column in pga_trans_calls. For example:

CALL (cname1, cname2,cname3)

pga_trans_calls(seq#) = 1

2 3

ENVIRONMENT (name) Specifies the name of the host environment for this transaction,
for example, IBM370. If this parameter is omitted, IBM370 is
assumed. IBM370 is the only environment supported by this
version of PGAU.

PGAU Commands

Procedural Gateway Administration Utility 2-11

SIDEPROFILE (name) This parameter is optional for a gateway using SNA, but if
omitted, the user must specify the parameters for LUNAME,
TPNAME, and LOGMODE. It specifies the name of an SNA Side
Information Profile which directs the APPC connection to the
transaction manager. This name can be 1 to 8 characters in
length. Name values can be alphanumeric with’@’, ’#’, and ’$’
characters only if unquoted. Quoted values can contain any
character, and delimited by quotes ("), or apostrophes (’). Case
is preserved for all values.

This parameter is mandatory for a gateway using the TCP/IP
connection. It has no comparable SNA meaning.

You need to run the pg4tcpmap tool to map this name to the
hostname, port number, subsystem ID and any other desired
attribute of IMS Connect.

This name represents a group of IMS transactions with similar
IMS Connect attributes. You can re-use the same name as long
as they share the same IMS Connect attributes, such as
subsystem ID, TIME delay or socket type. Refer to Chapter 6,
"PG4TCPMAP Commands (TCP/IP Only)" for details.

LUNAME(name) This parameter is optional on a gateway using SNA:
Overrides the LUNAME within the Side Information Profile, if
the Side Information Profile was specified. It specifies the SNA
Logical Unit name of the transaction manager (OLTP).

This is either the fully-qualified LU name, 3 to 17 characters in
length, or an LU alias 1 to 8 characters in length (when the
SNA software on your gateway system supports LU aliases).

Name values can be alphanumeric with’@’, ’#’, and’$’
characters and a single period ’.’, to delimit the network from
the LU, as in netname.luname, if fully qualified. Quoted values
can contain any character, and delimited by quotes ("), or
apostrophes (’). Case is preserved for all values.

This parameter is not applicable when using the TCP/IP
communication protocol.

TPNAME (name) This parameter is optional on a gateway using SNA:
Overrides the TPNAME within the Side Profile, if the Side profile
was specified. It specifies the partner Transaction Program
name to be invoked.

■ For CICS, this must be the CICS Transaction ID and is 1 to
4 characters in length.

■ For IMS, this must be the IMS Transaction Name and is 1
to 8 characters in length.

■ For AS/400, this must be specified as "library/program"
and cannot exceed 21 bytes.

Name values can be alphanumeric with’@’, ’#’, and’$’
characters only if unquoted. Quoted values can contain any
character, and delimited by quotes ("), or apostrophes (’). Case
is preserved for all values.

This parameter is required for a gateway using TCP/IP
support for IMS Connect. It must be the IMS Transaction
Name.

■ The IMS Transaction Name must be 1 to 8 characters in
length.

Table 2–3 (Cont.) DEFINE TRANSACTION Parameter Descriptions

Parameter Description

PGAU Commands

2-12 Oracle Database Gateway for APPC User's Guide

Examples
Refer to "Sample PGAU DEFINE TRANSACTION Statement" in Appendix F for
examples of DEFINE TRANSACTIONs commands.

DEFINE TRANSACTION Usage Notes:
■ NLS_LANGUAGE and the Oracle database’s LANGUAGE specify default character sets to

be used for conversion of all single-byte character fields for the entire transaction.
These defaults can be overridden for each SBCS field by the REDEFINE DATA
REMOTE_LANGUAGE or LOCAL_LANGUAGE parameters.

■ The version of the TRANSACTION definition is not specified and defaults to NEXTVAL
of the Oracle Sequence Object for TRANS.

■ REMOTE_MBCS and LOCAL_MBCS specify the default multi-byte character sets to be
used for conversion of all DBCS or MBCS fields for the entire transaction. This

LOGMODE(name) This parameter is optional on a gateway using SNA:
Overrides the LOGMODE within the Side Information Profile, if
the Side Information Profile was specified. It specifies the name
of a VTAM logmode table entry to be used to communicate
with this transaction, and is 1-8 characters in length.

Name values can be alphanumeric with ’@’, ’#’, and ’$’
characters only. Values cannot be quoted. Case is not preserved
and always translated to upper case.

This parameter is not applicable when using the TCP/IP
communication protocol.

SYNCLEVEL (0|1) This parameter is optional on a gateway using SNA: It
specifies the APPC SYNCLEVEL of this transaction (’0’ or ’1’).
The default value of 0 is assumed if this operand is omitted,
indicating the remote transaction program does not support
synchronization. A value of ’1’ indicates that CONFIRM is
supported.

On a gateway using TCP/IP: The default of this parameter is
’0’, which is the only accepted value.

NLS_LANGUAGE
("nlsname")

This is an optional parameter. The default value is
"american_america.we8ebcdic37c". It is an Globalization
Support name in the language_territory.charset format. It
specifies the Globalization Support name in which the remote
host data for all single-byte character set fields in the
transaction are encoded.

Note that if you are using TCP/IP, make sure that you set this
parameter to "american_america.us7ascii".

REMOTE_MBCS ("nlsname") This is an optional parameter. The default value is
"japanese_japan.jal6dbcs". It is an Globalization Support
name in the language_territory.charset format. It specifies
the Globalization Support name in which the remote host data
for all multi-byte character set fields in the transaction are
encoded.

LOCAL_MBCS

("nlsname")

This is an optional parameter. The default value is
"japanese_japan.jal6dbcs". It is an Globalization Support
name in the language_territory.charset format. It specifies
the Globalization Support name in which the local host data
for all multi-byte character set fields in the transaction are
encoded.

Table 2–3 (Cont.) DEFINE TRANSACTION Parameter Descriptions

Parameter Description

PGAU Commands

Procedural Gateway Administration Utility 2-13

default can be overridden for each DBCS or MBCS field by the REDEFINE DATA
REMOTE_LANGUAGE or LOCAL_LANGUAGE parameters.

■ You must place ";" at the end of the command.

DESCRIBE

Purpose
Use this command to describe a table, view, stored procedure, or function. If neither
TABLE, VIEW, nor PROCEDURE are explicitly specified, the table or view with the specified
name is described.

Syntax
The DESCRIBE command has the following syntax:

DESCRIBE [TABLE table|VIEW view|PROCEDURE proc|some_name]

Parameters
Table 2–4 describes the DESCRIBE parameter:

Examples
DESCRIBE PROCEDURE SCOTT.ADDEMP
DESCRIBE SYS.DUAL
DESCRIBE TABLE SCOTT.PERSONNEL
DESCRIBE VIEW SCOTT.PVIEW

DESCRIBE Usage Notes
■ You do not need to place ";" at the end of the command.

DISCONNECT

Purpose
Use this command to disconnect from an Oracle database.

Syntax
The DISCONNECT command has the following syntax:

DISCONNECT

Parameters
None

Table 2–4 DESCRIBE Parameter Descriptions

Parameter Description

table is the tablename

view is the viewname

proc is the procedurename

PGAU Commands

2-14 Oracle Database Gateway for APPC User's Guide

Examples
None

DISCONNECT Usage Notes
■ You do not need to place ";" at the end of the command.

EXECUTE

Purpose
Use this command to execute a one-line PL/SQL statement.

Syntax
The EXECUTE command has the following syntax:

EXECUTE pl/sql block

Parameters
pl/sql block is any valid pl/sql block. Refer to the Oracle Database PL/SQL Language
Reference for more information.

Examples
EXECUTE :balance := get_balance(333)

EXECUTE Usage Notes
■ You do not need to place ";" at the end of the command

EXIT

Purpose
Use this command to terminate PGAU.

Syntax
The EXIT command has the syntax:

EXIT

Parameters
None

Examples
None

EXIT Usage Notes
■ You do not need to place ";" at the end of the command.

■ The "quit" command is not a valid statement in PGAU.

PGAU Commands

Procedural Gateway Administration Utility 2-15

GENERATE

Purpose
A PL/SQL package is built and written to the indicated output files. The PG Data
Dictionary is not updated by this command.

Syntax
GENERATE tname

[VERSion(tranvers)]
[PKGNAME(pname)]
[PGANODE(dblink_name)]
[OUTFILE("[specpath]{specname}[.{spectype}]")]

[,"[bodypath]{bodyname}[.{bodytype}]]")
[DIAGNOSE ({[TRACE({[SE] [,IT] [,QM] [,IO] [,OC] [,DD] [,TG] })]

[PKGEX({[DC][,DR]})])};

Parameters
Table 2–5 describes the GENERATE parameters:

Table 2–5 GENERATE Parameter Descriptions

Parameter Description

tname is a mandatory parameter. It is the transaction name
defined in a DEFINE TRANSACTION statement.

VERSion(transvers) is an optional parameter. It specifies which transaction
definition is to be used. The VERsion parameter defaults to
highest numbered transaction if not specified.

PKGNAME(pname) is an optional parameter. It specifies the name of the
PL/SQL package to be created. If this operand is omitted,
the package name is assumed to be the same as the
transaction name.

PGANODE (dblink_name) is an optional parameter. It specifies the Oracle database
link name to the gateway server. If this operand is omitted,
"PGA" is assumed to be the dblink_name.

OUTFILE is an optional parameter. If this parameter is specified,
specname must also be specified.

specpath is the optional directory path of the TIP specification and
the TIP content documentation. It defaults to the current
directory. The value must end with a backslash (\) for
Microsoft Windows and a slash (/) for UNIX based
systems.

specname is the filename of the TIP specification and the TIP content
documentation. It defaults to pname, if specified, or else
pgau.

spectype is the optional file extension of the TIP specification and
defaults to pkh.

bodypath is the optional directory path of the TIP body. It defaults to
specpath, if specified, or else the current directory. The
value must end with a backslash (\) for Microsoft Windows
and a slash (/) for UNIX based systems.

PGAU Commands

2-16 Oracle Database Gateway for APPC User's Guide

bodyname is the optional file name of the TIP body. It defaults to
specname, if specified, or else pname, if specified, or else
pgau. If bodyname defaults to specname, the leftmost period
of specname is used to extract bodyname when specname
contains multiple qualifiers.

bodytype is the optional file extension of the TIP body and defaults to
pkb.

The TIP Content output path defaults to specpath or else
the current directory. The file id defaults to specname, if
specified, or else pname, if specified, or else pgau, and
always has an extension of .doc.

Refer to the "GENERATE Usage Notes:" on page 2-18 for
more examples, and Appendix E, "Tip Internals" for more
information.

DIAGNOSE is an optional parameter with two options, TRACE and
PKGEX.

TRACE specifies that an internal trace of the execution of PGAU is
written to output file pgau.trc in the user’s current
directory.

TRACE suboptions are delimited by commas.

Trace messages are provided as a diagnostic tool to Oracle
Support Services and other Oracle representatives to assist
them in diagnosing customer problems when generating
TIPs. They are part of an Oracle reserved function for
which the usage, interface, and documentation might
change without notice at Oracle’s sole discretion. This
information is provided so customers might document
problem symptoms.

■ SE - Subroutine Entry/Exit

Messages are written tracing subroutine name and
arguments upon entry, and subroutine name and
conditions at exit.

■ IT - Initialization/Termination

Messages are written tracing PGAU initialization and
termination functions.

■ QM - Queue Management

Messages are written tracing control block allocation,
queuing, searching, dequeuing, and deletion.

■ IO - Input/Output

Messages are written tracing input, output, and control
operations for .dat input files and .wrk and package
output files.

Table 2–5 (Cont.) GENERATE Parameter Descriptions

Parameter Description

PGAU Commands

Procedural Gateway Administration Utility 2-17

■ DD - PG DD Definitions

Messages are written tracing the loading of transaction,
call, data parameter, field, attribute, environment and
compiler information from the PG DD.

■ OC - Oracle Calls

Messages are written tracing the Oracle UPI call results for
SQL statement processing and SELECTs from the PG DD.

■ TG - TIP Generation

Messages are written tracing steps completed in TIP
Generation, typically a record for each call, parameter, and
data field for which a PL/SQL code segment has been
generated.

PKGEX causes additional TIP execution time diagnostic logic to be
included within the generated PL/SQL package.

PKGEX suboptions are delimited by commas.

■ DC - Data Conversion

Enables runtime checking of repeating group limits and the
raising of exceptions when such limits are exceeded.

Enables warning messages to be passed from the UTL_PG
data conversion functions:

■ NUMBER_TO_RAW

■ RAW_TO_NUMBER

■ MAKE_NUMBER_TO_RAW_FORMAT

■ MAKE_RAW_TO_NUMBER_FORMAT

The additional logic checks for the existence of warnings
and, if present, causes them to be displayed using
DBMS_OUTPUT calls.

The TIP generation default is to suppress such warnings on
the presumption that a TIP has been tested with production
data and that data conversion anomalies either do not exist,
or are known and to be ignored.

If errors occur which might be due to data conversion
problems, regeneration of the TIP with PKGEX(DC) enabled
might provide additional information.

Note: A runtime switch is also required to execute the
warning logic. PKGEX(DC) only causes the warning logic to
be included in the TIP. Refer to "Controlling TIP Runtime
Conversion Warnings" on page 8-6 in Chapter 8,
"Troubleshooting".

Additional messages are written to a named pipe for
tracing the data conversion steps performed by the TIP as it
executes.

This option only causes the trace logic to be generated in
the TIP. It must be enabled when the TIP is initialized.

Refer to"Controlling TIP Runtime Conversion Warnings" in
Chapter 8, "Troubleshooting" for more information.

■ DR - Dictionary Reference

PL/SQL single line Comments are included in TIPs which
reference the PG DD id numbers for the definitions causing
the TIP function calls and conversions.

Table 2–5 (Cont.) GENERATE Parameter Descriptions

Parameter Description

PGAU Commands

2-18 Oracle Database Gateway for APPC User's Guide

Examples
Refer to "Sample PGAU GENERATE Statement" in Appendix F for examples of
GENERATE commands.

GENERATE Usage Notes:
■ All PGAU GENERATE trace messages are designated PGU-39nnn. Refer to the

%ORACLE_HOME%\dg4appc\mesg\pguus.msg file on Microsoft Windows or $ORACLE_
HOME/dg4appc/mesg/pguus.msg on UNIX based systems for further information on
any given trace message.

■ The pgau.trc trace message output file is overwritten by the next invocation of
GENERATE, regardless of the TRACE specification. A trace header record is always
written to the pgau.trc file. If a particular trace file is to be saved, it must be
copied to another file before the next invocation of GENERATE.

■ TRACE options can be specified in any order or combination, and can also be
specified with PKGEX operand on the same GENERATE statement.

■ You must place ";" at the end of the command.

GROUP

Purpose
Multiple PGAU commands can be grouped together for purposes of updating the PG
DD, and for rolling back all changes resulting from the commands in the group, if any
one statement fails.

No COMMIT processing is performed, even if all commands within the group succeed.
You perform the COMMIT either by coding COMMIT commands in the PGAU script,
outside of GROUPs, or by issuing COMMIT interactively to PGAU.

PGAU issues a savepoint ROLLBACK to conditions before processing the group if any
statement within the group fails.

Syntax
GROUP (pgaustmt1; pgaustmt2; ... pgaustmtN);

Parameters
pgaustmtN: is a PGAU DEFINE, REDEFINE, or UNDEFINE statement

Examples
GROUP (

DEFINE DATA EMPNO
PLSDNAME (EMPNO)
USAGE (PASS)
LANGUAGE (IBMVSCOBOLII)
(
01 EMP-NO PIC X(6).
);

DEFINE CALL DB2IMAIN
PKGCALL (PGADB2I_MAIN)
PARMS ((EMPNO IN),

(EMPREC OUT));

DEFINE TRANSACTION DB2I

PGAU Commands

Procedural Gateway Administration Utility 2-19

CALL (DB2IMAIN,
DB2IDIAG)

SIDEPROFILE(CICSPROD)
TPNAME(DB2I)
LOGMODE(ORAPLU62)

SYNCLEVEL(0)
NLS_LANGUAGE("AMERICAN_AMERICA.WE8EBCDIC37C");

GENERATE DB2I
PKGNAME(PGADB2I)
OUTFILE("pgadb2i"););

GROUP Usage Notes:
■ No non-PGAU commands, such as ORACLE or SQL, can be placed inside the

parentheses delimiting the group.

■ A PGAU script can contain multiple GROUPs. Each GROUP can be interspersed with
SQL commands, such as COMMIT or SELECT or with PGAU commands, such as
GENERATE or REPORT.

■ The first failing PGAU statement within the group causes a savepoint ROLLBACK to
conditions at the beginning of the group. All subsequent commands within the
group are flushed and not examined. PGAU execution resumes with the statement
following the group. If that statement is a COMMIT, all PG DD changes made before
the failing group are committed.

■ You must place ";" at the end of the command.

HOST

Purpose
Use this command to execute an operating system command without exiting PGAU.

Syntax
The HOST command has the syntax:

HOST host_command

Parameters
host_command is any valid operating system command.

Examples
HOST vi log.out
HOST ls -la
HOST pwd

HOST Usage Notes
■ Using the HOST command starts a new command shell under which to execute the

specified operating system command. This means that any environment changes
caused by the executed command affect only the new command shell started by
PGAU, and not the command shell under which PGAU itself is executing. For
example, a "cd" command executed by the HOST command does not change the
current directory in the PGAU execution environment.

■ You do not need to place ";" at the end of the command.

PGAU Commands

2-20 Oracle Database Gateway for APPC User's Guide

PRINT

Purpose
Use this command to print the value of a variable defined with the VARIABLE
command.

Syntax
The PRINT command has the syntax:

PRINT varname

Parameters
varname is a variable name which is defined by a variable command.

Examples
PRINT ename
PRINT balance

PRINT Usage Notes
■ You do not need to place ";" at the end of the command.

REDEFINE DATA

Purpose
The existing data definition in the PG Data Dictionary is modified. PG DD column
values for DATA#, FLD#, and POS remain the same for redefined data items. This
permits existing CALL and DATA definitions to utilize the redefined data. REDEFINE does
not create a different version of a data definition and the version number is not
updated.

Syntax
REDEFINE DATA dname

[VERSion(datavers)]
[PLSDNAME(plsdvar)]
[FIELD(fname) [PLSFNAME(plsfvar)]]
[USAGE({PASS|ASIS|SKIP})]
[COMPOPTS (’options’)]
[REMOTE_LANGUAGE("nlsname")]
[LOCAL_LANGUAGE("nlsname")]
LANGUAGE(language)
<(definition) | INFILE("filespec")>;

Parameters
Table 2–6 describes the REDEFINE DATA parameters:

Table 2–6 REDEFINE DATA Parameter Descriptions

Parameter Description

DATA dname is a mandatory parameter. It is the name of the data definition
to be modified.

PGAU Commands

Procedural Gateway Administration Utility 2-21

VERSion(datavers) is an optional parameter. It specifies which version of dname is
to be modified, and if specified, the updated dname information
retains the same version number; a new version is not created.
It defaults to the highest version if omitted.

PLSDNAME(plsdvar) is an optional parameter. It is the name of the PL/SQL variable
associated with the dname above. It becomes the name of a
PL/SQL variable if the dname item is atomic data, or a PL/SQL
record variable if the dname item is aggregate data (such as a
record or structure), when the TIP is generated. This name
replaces any plsdvar name previously specified by DEFINE
DATA into pga_data(plsdvar) of the PG DD.

FIELD(fname) is an optional parameter. It is the name of a field or group
within the dname item, if aggregate data is being redefined
(such as changing a field within a record).

PLSFNAME(plsfvar) is an optional parameter if FIELD is specified. It is the name of
the PL/SQL variable associated with the fname above. It
becomes the name of a PL/SQL field variable within a PL/SQL
record variable when the TIP is generated. This name replaces
any plsfvar name previously specified by REDEFINE DATA into
pga_data(plsfvar) of the PG DD.

USAGE({PASS|ASIS

|SKIP})

is optional. If omitted, the last usage specified is retained. It
specifies the way the TIP handles the data items when
exchanged in calls with the remote transaction:

■ PASS indicates that the item should be translated and
exchanged with the transaction.

■ ASIS indicates the item is binary and, though exchanged,
should not be translated.

■ SKIP indicates the item should be deleted from all
exchanges.

If specified, all affected fields are updated with the same USAGE
value. (Refer to the notes pertaining to single or multiple field
redefinition, under FIELD).

The USAGE(NULL) keyword on DEFINE or REDEFINE DATA PGAU
statements is not supported.

COMPOPTS (’options’) is optional. If omitted, the last options specified are retained. If
specified as a null string (’’) then the last options specified are
removed. If a non-null value is specified, then the last options
specified are all replaced with the new options. The only
option currently supported is ’TRUNC(BIN)’. Note that the
options must be enclosed in apostrophes (’) or quotes (").
TRUNC(BIN) is a COBOL option that affects the way halfword
and fullword binary values are handled. Refer to "REDEFINE
DATA Usage Notes:" on page 2-22 for further information on
this option.

REMOTE_LANGUAGE
("nlsname")

is an optional parameter. The default value is
"american_america.we8ebcdic37c" or as overridden by the
NLS_LANGUAGE parameter of DEFINE TRANSACTION. It is an
Globalization Support name in the language_
territory.charset format. It specifies the Globalization
Support name in which the remote host data for the specific
character field being redefined is encoded. The field can be
single byte or multi-byte character data.

Table 2–6 (Cont.) REDEFINE DATA Parameter Descriptions

Parameter Description

PGAU Commands

2-22 Oracle Database Gateway for APPC User's Guide

Examples
Refer to "Sample PGAU REDEFINE DATA Statements" in Appendix F for examples of
REDEFINE commands.

REDEFINE DATA Usage Notes:
■ Specification of either PLSDNAME, FIELD, or PLSFNAME allows redefinition of a single

data item’s names while the (definition) parameter redefines the named data
item’s content.

■ The presence of FIELD denotes only a single data field (single PG DD row uniquely
identified by dname, fname, and version) is updated. The absence of FIELD denotes
that multiple data fields (multiple PG DD rows identified by dname and version)
are updated or replaced by the definition input.

■ REMOTE_LANGUAGE and LOCAL_LANGUAGE override the character sets used for
conversion of any individual SBCS, DBCS, or MBCS character data field.

■ LANGUAGE (language) and (definition)|INFILE("filespec") are mandatory as a
group. If data definitions are to be supplied, then a LANGUAGE parameter must be
specified and then either the inline definition or INFILE must also be specified.

■ The presence of (definition) | INFILE("filespec") denotes that multiple data
fields (those PG DD rows identified by dname and version) are updated or replaced
by the definition input. Fewer, equal, or greater numbers of fields might result
from the replacement.

LOCAL_LANGUAGE
("nlsname")

is an optional parameter. The default value is initialized from
the LANGUAGE variable of the local Oracle database when the
TIP executes. It is an Globalization Support name in the
language_territory.charset format. It specifies the
Globalization Support name in which the local Oracle data for
the specific character field being redefined is encoded. The
field can be single byte or multi-byte character data.

LANGUAGE ("language") is a mandatory parameter if definition input is specified. It
specifies the name of the programming language in the
supplied definition. PGAU presently supports only COBOL.

(definition) is mutually exclusive with the INFILE parameter. It is an inline
description of the data. The description must be provided in
COBOL syntax. This inline description must begin with an
opening parenthesis and end with a closing parenthesis. The
opening parenthesis must be the last non-blank character on
the line and the COBOL data definition must start on a new
line, following the standard COBOL rules for column usage
and continuations. The closing parenthesis and terminating
semicolon must be on a separate line following the last line of
the COBOL data definition. If in COBOL, the specification is a
COBOL data item or structure, defined according to the rules
for COBOL. Margins are assumed to be standard, explicit or
implicit continuation is supported. Datanames containing
invalid characters (for example, "-") for PL/SQL use are
translated to their closest equivalent and truncated as required.

INFILE ("filespec") is mutually exclusive with the (definition) parameter. It
indicates that the definition is to be read from the operating
system file described by filespec, instead of an inline
definition described by (definition).

Note that "filespec" must be enclosed in double quotes.

Table 2–6 (Cont.) REDEFINE DATA Parameter Descriptions

Parameter Description

PGAU Commands

Procedural Gateway Administration Utility 2-23

■ INFILE("filespec") is a platform-specific designation of a disk file.

■ COMPOPTS (’TRUNC(BIN)’) should be used only when the remote host transaction
was compiled using COBOL with the TRUNC(BIN) compiler option specified. When
this option is used, binary data items defined as PIC 9(4) or PIC S9(4) can
actually contain values with 5 digits, and binary data items defined as PIC 9(9) or
PIC S9(9) can actually contain values with 10 digits. Without COMPOPTS
(’TRUNC(BIN)’), PGAU generates NUMBER(4,0) or NUMBER(9,0) fields for these
data items, resulting in possible truncation of the values. When COMPOPTS
(’TRUNC(BIN)’) is specified, PGAU generates NUMBER(5,0) or NUMBER(10, 0)
fields for these data items, avoiding any truncation of the values. Care must be
taken when writing the client application to ensure that invalid values are not sent
to the remote host transaction. For a PIC 9(4) the value must be within the range
0 to 32767, for a PIC S9(4) the value must be within the range -32767 to +32767,
for a PIC 9(9) the value must be within the range 0 to 2,147,483,647, and for a
PIC S9(9) the value must be within the range -2,147,483,647 to +2,147,483,647.
COBOL always reserves the high-order bit of binary fields for a sign, so the value
ranges for unsigned fields are limited to the absolute values of the value ranges for
signed fields. For further information, refer to the appropriate IBM COBOL
programming manuals.

■ Refer to "USAGE(PASS)" in Appendix D, "Datatype Conversions" for information
about how PGAU converts COBOL statements.

■ You must place ";" at the end of the command.

REM

Purpose
Comments can either be introduced by the REM command or started with the
two-character sequence /* and terminated with the two-character sequence */.

Use the REM command to start a Comment line.

Syntax
The REM command has the syntax:

REM Comment

Parameters
Comment is any strings.

Examples
REM This is a Comment....

REM Usage Notes
You do not need to place ";" at the end of the command.

REPORT

Purpose
This command produces a report of selected data from the PG Data Dictionary.
Selection criteria might determine that:

PGAU Commands

2-24 Oracle Database Gateway for APPC User's Guide

■ a single TRANSACTION, CALL, or DATA entity (with or without an explicit version) is
reported, or

■ that all TRANSACTION, CALL, or DATA entities with a given name be reported or that
all entities in the PG DD be reported, or

■ that all invalid TRANSACTIONs or CALLs and all unreferenced CALLs, or DATA entities
be reported.

Syntax
REPORT { { TRANSACTION tname | CALL cname | DATA dname } [VERSION(ver1...)]

| ALL { TRANSACTIONS [tname] | CALLS [cname] | DATA [dname] } }
[WITH { CALLS | DATA | DEBUG } ...]
| ISOLATED;

Parameters
Table 2–7 describes the REPORT parameter:

Table 2–7 REPORT Parameters Descriptions

Parameter Description

TRANSACTION tname Reports the PG DD contents for the latest or selected versions
of the transaction tname.

CALL cname Reports the PG DD contents for the latest or selected versions
of the call cname.

DATA dname Reports the PG DD contents for the latest or selected versions
of the data dname.

VERSION(ver1, [ver2
...])

Reports selected versions of the indicated entry and is
mutually exclusive with ALL.

ALL TRANSACTIONS
[tname]

Reports the PG DD contents for all existing versions of every
transaction entry or optionally a specific transaction tname, and
is mutually exclusive with TRANSACTION.

ALL CALLS [cname] Reports the PG DD contents for all existing versions of every
call entry or optionally a specific call cname, and is mutually
exclusive with CALL.

ALL DATA [dname] Reports the PG DD contents for all existing versions of every
data entry or optionally a specific data dname, and is mutually
exclusive with DATA.

WITH CALLS Reports call entries associated with the specified transactions.

WITH DATA Reports data entries associated with the specified calls, and
when specified for transactions, implies WITH CALLS.

WITH DEBUG Reports PG DD column values for tran#, call#, parm#, data#,
and attr# as appropriate, depending on the type of items
being reported.

This report is useful with TIPs generated with PG DD
Diagnostic references. Refer to the GENERATE DIAGNOSE
PGEX(OR) option for more information.

ISOLATED Mutually exclusive with all other parameters. All unreferenced
CALL and DATA entries are reported along with TRANSACTIONs
that reference missing CALLs and DATA and CALLs that reference
missing DATA.

PGAU Commands

Procedural Gateway Administration Utility 2-25

REPORT Usage Notes:
■ Report output is to the terminal and can be spooled, saved, and printed.

■ Data reports are formatted according to their original compiler language, and
preceded by a PGAU DEFINE DATA command which defines the data to the PG
DD.

■ CALL and TRANSACTION reports are formatted as PGAU DEFINE CALL or
TRANSACTION commands (also called "statements"), which effectively define the
entry to the PG DD.

■ The following command reports the single most recent data definition specified by
data name dname, or optionally, for those specific versions given.

REPORT DATA dname;
REPORT DATA dname VERSION(version#1,version#2);

This command reports all data definitions specified by data name dname:

REPORT ALL DATA dname;

■ The following command reports the single most recent call definitions specified by
call name cname, or optionally for those specific versions given.

REPORT CALL cname;
REPORT CALL cname VERSION(version#1,version#2) WITH DATA;

This command reports all call definitions specified by call name cname:

REPORT ALL CALLS cname WITH DATA;

This command reports all call definitions in the PG DD:

REPORT ALL CALLS WITH DATA;

When WITH DATA is specified, all the data definitions associated with each selected
call are also reported. The data definitions precede each corresponding selected
call in the report output.

■ The following command reports the single most recent transaction definitions
specified by transaction name tname, or optionally for those specific versions
given.

REPORT TRANSACTION tname
REPORT TRANSACTION tname VERSION(version#1,version#2)
WITH DATA WITH CALLS;

This command reports all transaction definitions specified by transaction name
tname:

REPORT ALL TRANSACTIONS tname WITH DATA WITH CALLS;

This command reports all transaction definitions in the PG DD:

REPORT ALL TRANSACTIONS WITH DATA WITH CALLS;

When WITH CALLS option is specified, all call definitions associated with each
selected transaction are also reported (the call definitions precede each
corresponding selected transaction in the report output).

When WITH DATA is specified, all the data definitions associated with each selected
call are also reported (the data definitions precede each corresponding selected call
in the report output).

PGAU Commands

2-26 Oracle Database Gateway for APPC User's Guide

For transaction reports, specification of WITH DATA implies specification of WITH
CALL.

■ The following command reports any unreferenced CALL or DATA definitions. It also
reports any TRANSACTION or CALL definitions that reference missing CALL or DATA
definitions respectively.

REPORT ISOLATED;

■ The following command reports all definitions in the PG DD.

REPORT ALL;

Data definitions are reported, followed by their associated call definitions,
followed by the associated transaction definition.

This sequence is repeated for every defined call and transaction in the PG DD.

■ You must place ";" at the end of the command.

SET

Parameters
Table 2–8 describes the SET parameters:

Table 2–8 SET Parameter Descriptions

Parameter Description

ARRAYSIZE [n] Sets the number of rows fetched at a time from the database.
The default is 20.

CHARWIDTH [n] Sets the column display width for CHAR data. If entered with no
argument, it returns the setting to 9, which is the default.

DATEWIDTH Sets the column display width for DATE data. If entered with no
argument, it returns the setting to 9, which is the default.

ECHO {ON|OFF} Sets echoing of commands entered from command files to ON
or OFF. The default is OFF.

FETCHROWS [n] Sets the number of rows returned by a query. This is useful
with ordered queries for finding a certain number of items in a
category, the top ten items for example. It is also useful with
unordered queries for finding the first n records that satisfy a
certain criteria.

LONGWIDTH [n] Sets the column display width for LONG data. If entered with no
argument, it returns the setting to 80, which is the default.

MAXDATA [n] Sets the maximum data size. It indicates the maximum data
that can be received in a single fetch during a SELECT
command. The default is 20480 bytes (20K).

NUMWIDTH [n] Sets the column display width for NUMBER data. If entered with
no argument, it returns the setting to 10, which is the default.

SERVEROUTPUT {OFF|ON
[SIZE n|n]}

Sets debugging output from stored procedures that use DBMS_
OUTPUT PUT and PUT_LINE commands to ON or OFF. You can
specify the size in bytes of the message buffer using SIZE n.
The size specified is the total number of bytes of all messages
sent that can be accumulated at one time. The minimum is
2000 bytes. If the buffer fills before calls to the get-message
routines make room for additional message bytes, an error is
returned to the program sending the message. SERVEROUTPUT
with no parameters is the same as SERVEROUTPUT ON.

PGAU Commands

Procedural Gateway Administration Utility 2-27

Examples
PGAU> set arraysize 30

PGAU> set CHARWIDTH

SET Usage Notes
■ You do not need to place ";" at the end of the command.

SHOW

Parameters
Table 2–9 describes the SHOW parameters:

STOPONERROR {ON|OFF} Indicates whether execution of a command file should stop if
an error occurs. Specifying OFF disables STOPONERROR.

TERMOUT {ON|OFF} Enables or disables terminal output for SQL commands. It is
useful for preventing output to the terminal when spooling
output to files. The default is OFF, which disables terminal
output.

TIMING {ON|OFF} Enables or disables display of parse, execute, and fetch times
(both CPU and elapsed) for each executed SQL statement. The
default is OFF, which disables the TIMING display.

Table 2–9 SHOW Parameter Descriptions

Parameters Description

ALL Shows all valid SET parameters

ARRAYSIZE Shows the number of rows fetched at a time from the database.

CHARWIDTH Shows the column display width for CHAR data.

DATEWIDTH Shows the column display width for DATE data.

ECHO Shows echoing of commands entered from command files to ON
or OFF.

FETCHROWS Shows the number of rows returned by a query.

LONGWIDTH Shows the column display width for LONG data.

MAXDATA Shows the maximum data size.

NUMWIDTH Shows the column display width for NUMBER data.

SERVEROUTPUT Shows debugging output from stored procedures that use
DBMS_OUTPUT PUT and PUT_LINE commands.

STOPONERROR Indicates whether execution of a command file should stop if
an error occurs.

TERMOUT Shows whether the terminal output for SQL commands is
enabled or disabled.

TIMING Shows whether display of parse, execute, and fetch times (both
CPU and elapsed) for each executed SQL statement is enabled
or disabled.

Table 2–8 (Cont.) SET Parameter Descriptions

Parameter Description

PGAU Commands

2-28 Oracle Database Gateway for APPC User's Guide

Examples
Note that when you issue a SET command, there will be no output if it is successful. If
you want to check whether your statement was executed successfully, issue a SHOW
command like the following:

PGAU> show arraysize
Arraysize 30

PGAU> show CHARWIDTH
Charwidth 80

PGAU> show all
Instance local
Spool OFF
Timing OFF
Termout ON
Echo OFF
Stoponerror OFF
Maxdata 20480
Arraysize 20
Fetchrows 100

Numwidth 10
Charwidth 80
Longwidth 80
Datewidth 9
ServerOutput OFF

SHOW Usage Notes
■ You do not need to place ";" at the end of the command.

SPOOL

Purpose
Use this command to specify a filename that captures PGAU output. All output is
directed to the terminal unless TERMOUT is off.

Syntax
The SPOOL command has the syntax:

SPOOL [filename|OFF]

Parameters
If a simple filename is specified, with no periods, then .log is appended to the
filename.

filename is where the output of your executed commands is placed.

VAR Is the same as the PRINT command; in addition, it shows all
variables and their datatypes.

Table 2–9 (Cont.) SHOW Parameter Descriptions

Parameters Description

PGAU Commands

Procedural Gateway Administration Utility 2-29

Examples
SPOOL log.outfile
SPOOL out
SPOOL OFF

SPOOL Usage Notes
■ You do not need to place ";" at the end of the command.

UNDEFINE CALL

Purpose
Use this command to remove an occurrence of the CALL definition from PG DD.

Syntax
UNDEFINE CALL cname [VERSion(callvers|ALL)];

Parameters
Table 2–10 describes the UNDEFINE CALL parameters:

Examples
Refer to "Sample PGAU UNDEFINE Statements" in Appendix F for examples of
UNDEFINE CALL commands.

UNDEFINE CALL Usage Notes:
■ Removing definitions only prevents PL/SQL packages from being subsequently

generated. TIPs can still be recreated if the .pkh and .pkb specification files exist
and those previous TIPS can be invoked if they remain in the database of the
Oracle database. Whether such TIPs execute successfully depends on whether the
corresponding remote transaction programs are still active.

■ Remove a CALL definition only after all TRANSACTIONs which reference it are
removed. No integrity checking is done.

■ You must place ";" at the end of the command.

UNDEFINE DATA

Purpose
Use this command to remove an occurrence of the DATA definition in the PG Data
Dictionary.

Table 2–10 UNDEFINE CALL Parameter Descriptions

Parameter Description

CALL cname| A mandatory parameter. It specifies the name associated with
the item to be dropped; if no version is specified only the latest
(highest numbered) version is removed.

VERSion({datavers|

callvers|

transvers|ALL})

An optional parameter. It specifies which singular version of a
definition is to be removed, or if ALL, then all definitions are
removed, for the given definition named. The default of the
highest numbered version of the named definition is assumed
if VERSION is omitted.

PGAU Commands

2-30 Oracle Database Gateway for APPC User's Guide

Syntax
UNDEFINE DATA dname [VERSion(datavers|ALL)];

Parameters
Table 2–11 describes the UNDEFINE DATA parameters:

Examples
Refer to "Sample PGAU UNDEFINE Statements" in Appendix F for examples of
UNDEFINE DATA commands.

UNDEFINE DATA Usage Notes
■ Removing definitions only prevents PL/SQL packages (TIPs) from being

subsequently generated. Previously generated TIPs can still be recreated if the
.pkh and .pkb specification files remain in existence. Previously created TIPs can
still be invoked if they remain in the database of the Oracle database. Whether
such TIPs execute successfully depends on whether the corresponding remote
transaction programs are still active.

■ Remove a DATA definition only after all CALLs and all TRANSACTIONs which
reference it are removed. No integrity checking is done.

■ You must place ";" at the end of the command.

UNDEFINE TRANSACTION

Purpose
This command removes an occurrence of the TRANSACTION definition in the PG Data
Dictionary.

Syntax
UNDEFINE TRANSACTION tname [VERSion(tranvers|ALL)];

Parameters
Table 2–12 describes the UNDEFINE TRANSACTION parameters:

Table 2–11 UNDEFINE DATA Parameter Descriptions

Parameter Description

DATA dname| A mandatory parameter. It specifies the name associated with
the item to be dropped. If no version is specified, only the
latest (highest numbered) version is removed.

VERSion({datavers|

callvers|

transvers|ALL})

An optional parameter. It specifies which singular version of a
definition is to be removed, or if ALL, then all definitions are
removed, for the given definition named. The default of the
highest numbered version of the named definition is assumed
if VERSION is omitted.

Table 2–12 UNDEFINE TRANSACTION Parameter Descriptions

Parameter Description

TRANSACTION tname} Mandatory parameter. It specifies the name associated with the
item to be dropped. If no version is specified, only the latest
(highest numbered) version is removed.

PGAU Commands

Procedural Gateway Administration Utility 2-31

Examples
Refer to "Sample PGAU UNDEFINE Statements" in Appendix F for examples of
UNDEFINE TRANSACTION commands.

UNDEFINE TRANSACTION Usage Notes
■ Removing definitions only prevents PL/SQL packages from being subsequently

generated. TIPs can still be recreated if the .pkh and .pkb specification files remain
in existence. Previously created TIPs can be invoked if they remain in the database
of the Oracle database. Whether such TIPs execute successfully depends on
whether the corresponding remote transaction programs are still active.

■ A TRANSACTION definition can be removed at any time.

■ You must place ";" at the end of the command.

VARIABLE

Purpose
Use this command to declare a bind variable for use in the current session with the
EXECUTE or PRINT command, or for use with a PL/SQL block.

Syntax
The VARIABLE command has the syntax:

VARIABLE name type

Parameters
Table 2–13 describes the VARIABLE parameters.

Examples
VARIABLE balance NUMBER
VARIABLE emp_name VARCHAR2

VARIABLE Usage Notes
■ You do not need to place ";" at the end of the command.

VERSion({datavers|

callvers|

transvers|ALL})

Optional parameter. It specifies which singular version of a
definition is to be removed, or if ALL, then all definitions are
removed, for the given definition named. The default of the
highest numbered version of the named definition is assumed
if VERSION is omitted.

Table 2–13 VARIABLE Parameter Descriptions

Parameter Description

name Is a variable name.

type Is the variable datatype

Table 2–12 (Cont.) UNDEFINE TRANSACTION Parameter Descriptions

Parameter Description

PGAU Commands

2-32 Oracle Database Gateway for APPC User's Guide

3

Creating a TIP 3-1

3 Creating a TIP

This chapter shows in detail how you can define, generate and compile a Transaction
Interface Package (TIP). It assumes that a remote host transaction program (RTP)
already exists. This transaction program has operational characteristics that dictate
how the TIP is defined and how the TIP is used by the client application.

This chapter contains the following sections:

■ "Granting Privileges for TIP Creators" on page 3-1

■ "Evaluating the RHT" on page 3-2

■ "Defining and Generating the TIP" on page 3-6

■ "Compiling the TIP" on page 3-7

■ "TIP Content Documentation (tipname.doc)" on page 3-8

The following steps create a TIP for use with a remote host transaction (RHT):

■ evaluating the RHT

■ preparing the PGAU statements

■ defining and generating the TIP

■ compiling the TIP

This chapter also discusses the generated TIP content file.

Granting Privileges for TIP Creators
Every TIP developer requires access to the following PL/SQL packages, which are
shipped with the Oracle database:

For Microsoft Windows:

■ DBMS_PIPE in %ORACLE_HOME%\rdbms\admin

■ UTL_RAW in %ORACLE_HOME%\rdbms\admin

■ UTL_PG in %ORACLE_HOME%\rdbms\admin

For UNIX based systems:

■ DBMS_PIPE in $ORACLE_HOME/rdbms/admin

■ UTL_RAW in $ORACLE_HOME/rdbms/admin

■ UTL_PG in $ORACLE_HOME/rdbms/admin

If anyone other than user PGAADMIN will be developing TIPs, they will need explicit
grants to perform these operations. Refer to the "Optional Configuration Steps" section

Evaluating the RHT

3-2 Oracle Database Gateway for APPC User's Guide

in the configuration chapter appropriate to your communication protocol in the Oracle
Database Gateway for APPC Installation and Configuration Guide for IBM AIX on POWER
Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX Itanium or
Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft
Windows or more information about private and public grants.

Evaluating the RHT
Follow the steps below to identify and become familiar with your remote host
transaction data exchanges.

Identify the Remote Host Transaction
You must first identify the RHT data exchange steps. These are the send and receive
calls embedded within the RHT program.

If your gateway is using the SNA communication protocol:
The RHT data exchange steps are identified under the following languages:

■ You may use COBOL for:

– CICS

– IMS

■ You may use IBM 370 Assembler for:

– CICS

– IMS

■ You may use IBM REXX for:

– CICS

– IMS

– z/OS

If your gateway is using the TCP/IP communication protocol:
IMS is the only OLTP that is supported when the gateway is using TCP/IP support for
IMS Connect. The RHT programs must use embedded I/O PCB function calls. The
function is identified only under the COBOL and Assembler languages.

PGAU DEFINE CALL Command
Make a call list of every data exchange. This list dictates a series of PGAU DEFINE CALL
statements. Refer to "DEFINE CALL" in Chapter 2, "Procedural Gateway
Administration Utility" for more information about this PGAU command.

The three important parameters that you will use for each call are:

■ cname: the name of the call definition to be created;

■ dname: the name of the data structure to be exchanged; and

■ whether it is send (OUT) or receive (IN)

RHT send corresponds to a TIP OUT and RHT receive corresponds to a TIP IN.

If your communication protocol is SNA: Refer to Section , "Flexible Call Sequence" on
page 4-12 for more information about PGAU DEFINE CALL commands.

Evaluating the RHT

Creating a TIP 3-3

If your communication protocol is TCP/IP: Refer to Section , "Flexible Call Sequence"
on page 7-6 for more information about PGAU DEFINE CALL commands.

PGAU call entries are only defined once, so eliminate any duplicates.

This call list defines the TIP function calls, not the order in which they are used. Note
that the order in which each call is made is a behavior of the transaction and dictates
the order of calls made by the high-level application to the TIP, which then calls the
RHT through the Database Gateway server. While this calling sequence is critical to
maintaining the synchronization between the application and the RHT, the TIP is only
an access method for the application and has no knowledge of higher level sequencing
of calls.

PGAU DEFINE DATA Command
For each call in the RHT call list, identify the RHT data structures being sent or
received in the call buffers.

Make a data list of every such structure. This list dictates a series of PGAU DEFINE
DATA statements.

The two important parameters that you will use for DEFINE DATA are:

■ dname: the name of the data definition to be created; and

■ dname.ext: the file in which the data definition is stored.

PGAU data entries are only defined once, so eliminate any duplicates.

PGAU DEFINE TRANSACTION Command on a Gateway Using SNA
Determine the network address information for the RHT program. Your network or
OLTP system programmer can provide you with this information.

The five important parameters that you will use for PGAU DEFINE TRANSACTION are:

■ Side Profile name

■ TP name

■ LU name

■ LOGMODE

■ SYNCLEVEL

You must also identify the Globalization Support character set (charset) for the
language in which the OLTP expects the data.

At this point, if your gateway is using SNA, then proceed to Section , "Writing the
PGAU Statements".

Note: Move COBOL record layouts (copybooks) to the gateway
system.

PGAU can use copybooks as input when defining the data items.
Once you have identified the data items to be exchanged, use a file
transfer program to download the copybooks to the gateway system.
The copybooks are later used to define the data items. The sample
copybook used in the example is documented in Appendix F,
"Administration Utility Samples".

Evaluating the RHT

3-4 Oracle Database Gateway for APPC User's Guide

PGAU DEFINE TRANSACTION Command on a Gateway Using TCP/IP
Before you use this command, you will need to know the IMS Connect hostname (or
TCP/IP address), port number and the other IMS Connect parameters that are defined
as columns within the PGA_TCP_IMSC table. Refer to Chapter 6, "PG4TCPMAP
Commands (TCP/IP Only)" for complete information about preparation for mapping
parameters to TCP/IP using the pg4tcpmap tool.

When you run the pg4tcpmap tool you need to specify a unique name (Side Profile
Name). That name must be the same name that you are using here to create your TIP.

If you are converting your gateway from the SNA to a TCP/IP communications
protocol to invoke IMS transactions: You need to regenerate the TIPs. Refer to
Chapter 2, "Procedural Gateway Administration Utility" for details.

Writing the PGAU Statements
After evaluating the RHT, define the TIP to PGAU for placement in the PG DD.

1. Write a DEFINE DATA statement for each entry in your data list. If, for example,
your RHT had three different data structures, your data definitions might be:

DEFINE DATA dname1 LANGUAGE(IBMVSCOBOLII) INFILE(dnamel.ext);
DEFINE DATA dname2 LANGUAGE(IBMVSCOBOLII) INFILE(dname2.ext);
DEFINE DATA dname3 LANGUAGE(IBMVSCOBOLII) INFILE(dname3.ext);

Then you must copy or transfer the source file containing these data definitions to
the directory where PGAU can read them as input.

2. Write a DEFINE CALL statement for each entry in your call list. If, for example, your
RHT had a receive send receive send sequence, your call definitions would be:

DEFINE CALL cname1 PARMS((dnamel IN));
DEFINE CALL cname2 PARMS((dname2 OUT));
DEFINE CALL cname3 PARMS((dname3 IN));
DEFINE CALL cname4 PARMS((dname2 OUT));

Evaluating the RHT

Creating a TIP 3-5

3. Write a DEFINE TRANSACTION statement that contains every call, specifying the
network address and Globalization Support information:

DEFINE TRANSACTION tname CALLS(cname1
cname2,
cnameN)

ENVIRONMENT(IBM370)
SIDEPROF(profname) |

TPNAME(tpid) LUNAME(luname) LOGMODE(mode)
SYNCLEVEL(n)
NLS_LANGUAGE(charset);

4. You can add a GENERATE statement to create the TIP specification:

GENERATE tname

Writing a PGAU Script File
The previous section describes the steps you need to follow in order to execute PGAU
statements via your PGAU command line processor. As a time saving measure, you
can choose to write all of the statements (DEFINE DATA, DEFINE CALL and DEFINE
TRANSACTION) into a single PGAU script file named tname.ctl, in the following order:

1. define data

2. define call

Note: Optionally, you can rewrite your call definitions to consolidate
the data transmission into fewer exchanges, as long as you do not alter
the data transmission sequence. For example:

DEFINE CALL cname1 PARMS((dname1 IN),

(dname2 OUT));

DEFINE CALL cname3 PARMS((dname3 IN),

(dname2 OUT));

This reduces the calls between the application and the TIP from four
calls to two calls passing an IN and OUT parameter on each call.
Because TIPs always process IN parameters before OUT parameters, the
data transmission sequence is unchanged. However, this
consolidation is not always possible.

If your communication protocol is SNA: Refer to Section , "Flexible
Call Sequence" on page 4-12 for more information about PGAU
DEFINE CALL commands.

If your communication protocol is TCP/IP: Refer to Section , "Flexible
Call Sequence" on page 7-6 for more information about PGAU DEFINE
CALL commands.

Note: You can also add a REPORT statement to list the PG DD entries
for tname:

REPORT TRANSACTION tname with CALLS with DATA;

Also annotate the script with Comments:

REM this is a Comment

Defining and Generating the TIP

3-6 Oracle Database Gateway for APPC User's Guide

3. define transaction

4. generate

This is an example of a tname.ctl PGAU script file:

UNDEFINE TRANSACTION tname Version(all);
UNDEFINE CALL cname1 Version(all);
UNDEFINE CALL cname2 Version(all);
UNDEFINE DATA dname1 Version(all);
UNDEFINE DATA dname2 Version(all);
UNDEFINE DATA dname3 Version(all);
DEFINE DATA dname1 LANGUAGE(IBMVSCOBOLII) INFILE(dnamel.ext);
DEFINE DATA dname2 LANGUAGE(IBMVSCOBOLII) INFILE(dname2.ext);
DEFINE DATA dname3 LANGUAGE(IBMVSCOBOLII) INFILE(dname3.ext);
DEFINE CALL cname1 PARMS(dname1 IN),

(dname2 OUT));
DEFINE CALL cname2 PARMS(dname3 IN),

(dname2 OUT));
DEFINE TRANSACTION tname CALLS(cname1,

cname2,
cnameN)

ENVIRONMENT(IBM370)
SIDEPROF(profname) |

TPNAME(tpid) LUNAME(luname) LOGMODE(mode)
SYNCLEVEL(n)
NLS_LANGUAGE(charset);

Generate tname

Defining and Generating the TIP
After you have created your control file, use PGAU to create the PG DD entries and
the TIP specification files.

Invoke PGAU against your PG DD stored in the Oracle Database Gateway for APPC
Administrator’s user ID:

For Microsoft Windows:

C:\> pgau
PGAU> connect pgaadmin\pw@database_specification_string

For UNIX based systems:

$ pgau
PGAU> connect pgaadmin/pw@database_specification_string

Caution: Because you will probably run this script more than once,
you should include UNDEFINE statements first to remove any previous
entries in the PG DD.

Note: The user ID under which you run PGAU must have:

■ write access to output the specification files (pgau.pkh, pgau.pkb,
and pgau.doc), where pgau is the default name; and

■ read access to the data definition source files (dname.ext), where
dname.ext will be specified in PGAU DEFINE DATA statement(s).

Compiling the TIP

Creating a TIP 3-7

Issue the following commands:

PGAU> set echo on
PGAU> spool tname.def
PGAU> @tname.ctl
PGAU> spool off

The TIP is now ready to be compiled. By default, the GENERATE statement writes your
TIP specifications to the following output files in your current directory:

pgau.pkh (TIP Header)
pgau.pkb (TIP Body)
pgau.doc (TIP content documentation)

Compiling the TIP
Exit PGAU. Remain in your current directory and invoke SQL*Plus.

For Microsoft Windows:

C:\> sqlplus userid/pw@database_specification_string
SQL> set echo on
SQL> @pgau.pkh
SQL> @pgau.pkb

For UNIX based systems:

$ sqlplus userid/pw@database_specification_string
SQL> set echo on
SQL> @pgau.pkh
SQL> @pgau.pkb

The last two commands compile the TIP specification and body, respectively.

You have now compiled a TIP which can be called by your client application. If your
client application is already written you can begin testing.

For more information about designing your client application and compiling a TIP,
refer to Chapter 1, "Introduction to Oracle Database Gateway for APPC" and
Appendix E, "Tip Internals".

If your gateway is using SNA: Refer to Chapter 4, "Client Application Development
(SNA Only)" for information about PGAU statement syntax and usage.

If your gateway is using TCP/IP support for IMS Connect: Refer to Chapter 7, "Client
Application Development (TCP/IP Only)" for information about PGAU statement
syntax and usage.

Note: You can optionally add spool and echo to your script
(tname.ctl) or make other enhancements, such as using PG DD roles
and the PGAU GROUP statement for shared PG DDs.

■ If your gateway is using SNA: Refer to Chapter 4, "Client
Application Development (SNA Only)" for more information.

■ If your gateway is using TCP/IP support for IMS Connect: Refer
to Chapter 7, "Client Application Development (TCP/IP Only)"
for more information.

TIP Content Documentation (tipname.doc)

3-8 Oracle Database Gateway for APPC User's Guide

TIP Content Documentation (tipname.doc)
This section discusses the TIP documentation file that is produced when the user
issues a PGAU GENERATE command. This TIP content file describes the function calls
and PL/SQL variables and datatypes available in the TIP.

PGAU GENERATE always produces a TIP content file named tipname.doc. The filename
is the name of the transaction that was specified in the PGAU GENERATE command, and
the filetype is always .doc. This TIP content file contains the following sections:

■ GENERATION Status

This section contains the status under which the TIP is generated.

■ TIP Transaction

This section identifies the defined transaction attributes. These result from the
PGAU DEFINE TRANSACTION definition.

■ TIP Default Calls

This section identifies the syntax of the calls made by the user’s application to
initialize and terminate the transaction. PGAU generates these calls into every TIP
regardless of how the TIP or transaction is defined.

■ TIP User Calls

This section identifies the syntax of the calls which the user defines for the
application to interact with the transaction.

■ TIP User Declarations

This section identifies the TIP package public datatype declarations, implied by
the user’s data definition specified in each call parameter.

■ TIP User Variables

This section contains TIP variables that can be referred to by applications or
referenced by applications.

4

Client Application Development (SNA Only) 4-1

4 Client Application Development (SNA Only)

This chapter discusses how you will call a TIP and control a remote host transaction. It
also provides you with the steps for preparing and executing a gateway transaction.
This chapter assumes:

■ a remote host transaction (RHT) has already been written;

■ a TIP corresponding to the RHT has already been defined using the steps
described in Chapter 3, "Creating a TIP".

This chapter contains the following sections:

■ "Overview of Client Application" on page 4-1

■ "Preparing the Client Application" on page 4-3

■ "Understanding the Remote Host Transaction Requirements" on page 4-3

■ "Customized TIPs for Each Remote Host Transaction" on page 4-6

■ "Client Application Requirements" on page 4-6

■ "Ensuring TIP and Remote Transaction Program Correspondence" on page 4-10

■ "Calling the TIP from the Client Application" on page 4-14

■ "Exchanging Data" on page 4-19

■ "Executing the Application" on page 4-20

■ "APPC Conversation Sharing" on page 4-20

■ "Application Development with Multi-Byte Character Set Support" on page 4-25

■ "Modifying a Terminal-Oriented Transaction to Use APPC" on page 4-26

■ "Privileges Needed to Use TIPs" on page 4-27

Overview of Client Application
The Procedural Gateway Administration Utility (PGAU) generates a complete TIP
using definitions you provide. The client application can then call the TIP to access the
remote host transaction. Chapter 2, "Procedural Gateway Administration Utility",
discusses the use of PGAU in detail.

Note: If your gateway uses the TCP/IP support for IMS Connect,
refer to Chapter 7, "Client Application Development (TCP/IP Only)"
for information about calling a TIP and controlling a remote host
transaction.

Overview of Client Application

4-2 Oracle Database Gateway for APPC User's Guide

This overview explains what you must do in order to call a TIP and control a remote
host transaction.

The gateway receives PL/SQL calls from the Oracle database and issues APPC calls to
communicate with a remote transaction program. The following three application
programs make this possible:

1. an APPC-enabled remote host transaction program

2. a Transaction Interface Package, or TIP. A TIP is a PL/SQL package that handles
communication between the client and the gateway and performs datatype
conversions between COBOL and PL/SQL.

PGAU generates the TIP specification for you. In the shipped samples, the
PGAU-generated package is called pgadb2i.pkb. This generated TIP includes at
least three function calls that map to the remote transaction program:

– pgadb2i_init initializes the conversation with the remote transaction program

– pgadb2i_main exchanges application data with the remote transaction
program

– pgadb2i_term terminates the conversation with the remote transaction
program

Refer to Appendix E, "Tip Internals" for more information about TIPs, if you are
writing your own TIP or debugging.

3. a client application that calls the TIP.

The client application calls the three TIP functions with input and output
arguments. In the example, the client application passes empno, an employee
number to the remote transaction and the remote transaction sends back emprec an
employee record.

Table 4–1 demonstrates the logic flow between the PL/SQL driver, the TIP, and the
gateway using the example CICS-DB2 transaction.

A client application which utilizes the gateway to exchange data with a remote host
transaction performs some tasks for itself and instructs the TIP to perform other tasks
on its behalf. The client application designer must consequently know the behavior of
the remote transaction and how the TIP facilitates the exchange.

The following sections provide an overview of remote host transaction behavior, how
this behavior is controlled by the client application and how TIP function calls and

Table 4–1 Logic Flow of CICS-DB2 Example

Client Application Oracle TIP

Procedures Established Between the
Gateway and the Remote Transaction
(mainframe)

calls tip_init Calls PGAINIT Gateway sets up control blocks and
issues APPC ALLOCATE. Mainframe
program initiates.

calls tip_main Calls PGAXFER to send
empno and receive emprec

Gateway issues APPC SEND to the
mainframe. Mainframe RECEIVE
completes. Mainframe performs
application logic and issues APPC SEND
back to gateway. The gateway- issues
APPC RECEIVE; receive completes.
Mainframe issues APPC TERM.

calls tip_term Call PGATERM Gateway cleans up control blocks.

Understanding the Remote Host Transaction Requirements

Client Application Development (SNA Only) 4-3

data declarations support the client application to control the remote host transaction.
These sections also provide background information about what the TIP does for the
client application and how the TIP calls exchange data with the remote host
transaction.

Preparing the Client Application
To prepare the client application for execution you must understand the remote host
transaction requirements and then perform these steps:

1. Move relevant COBOL records layout (copybooks) to the gateway system for
input to PGAU.

2. Describe the remote host transaction data and calls to the PG Data Dictionary
(PG DD) with DEFINE DATA, DEFINE CALL, and DEFINE TRANSACTION statements.

3. Generate the TIP in the Oracle database, using GENERATE.

4. Create the client application that calls the TIP public functions.

5. Grant privileges on the newly created package.

Understanding the Remote Host Transaction Requirements
Browse through the remote host transaction program (RTP) to determine:

■ the PL/SQL parameters required on the various client application to TIP calls

■ the order in which the calls are made

Identify the remote host transaction program (RTP) facilities to be called and the data
to be exchanged on each call. You will then define the following, and store them in the
PG DD:

■ DEFINE DATA

■ DEFINE CALL

■ DEFINE TRANSACTION

Refer to Chapter 3, "Creating a TIP" for specific definition steps and for the actual
creation and generation of a TIP.

TIP Content and Purpose
The content of a PGAU-generated TIP reflects the calls available to the remote host
transaction and the data that has been exchanged. Understanding this content helps
when designing and debugging client applications that call the TIP.

A TIP is a PL/SQL package, and accordingly has two sections:

1. A Package Specification containing:

■ Public function prototypes and parameters, and

2. A Package Body containing:

■ Private functions and internal control variables

■ Public functions

■ Package initialization following the last public function.

The purpose of the TIP is to provide a PL/SQL callable public function for every
allowed remote transaction program interaction. A remote transaction program

Understanding the Remote Host Transaction Requirements

4-4 Oracle Database Gateway for APPC User's Guide

interaction is a logically related group of data exchanges through one or more PGAXFER
RPC calls. This is conceptually similar to a screen or menu interaction in which several
fields are filled in, the enter key is pressed, and several fields are returned to the user.
Carrying the analogy further:

■ the user might be likened to the TIP or client application

■ fields to be filled in are IN parameters on the TIP function call

■ fields returned are OUT parameters on the TIP function call

■ screen or menu is the group of IN and OUT parameters combined

■ a pressed enter key is likened to the PGAXFER remote procedural call (RPC)

The actual grouping of parameters that constitute a transaction call is defined by the
user. The gateway places no restrictions on how a remote transaction program might
correspond to a collection of TIP function calls, each call having many IN and OUT
parameters.

PGA users typically have one TIP per remote transaction program. How the TIP
function calls are grouped and what data parameters are exchanged on each call
depends on the size, complexity and behavior of the remote transaction program.

Refer to Oracle’s Oracle Database PL/SQL Language Reference for a discussion of how
PL/SQL packages work. The following discussion covers the logic that must be
performed within a TIP. Refer to the sample TIP and driver supplied in the
%ORACLE_HOME%\dg4appc\demo\CICS directory for Microsoft Windows or $ORACLE_
HOME/dg4appc/demo/CICS directory for UNIX based systems, in files pgadb2i.pkh,
pgadb2i.pkb, and pgadb2id.sql.

Remote Host Transaction Types
From a database gateway application perspective, there are three main types of remote
host transactions:

■ one-shot

■ persistent

■ multi-conversational

One-Shot Transactions
A simple remote transaction program which receives one employee number and
returns the employee record could have a TIP which provides one call, passing the
employee number as an IN parameter and returning the employee record as an OUT
parameter. An additional two function calls must be provided by this and every TIP:

■ a remote transaction program init function call

■ a remote transaction program terminate function call

The most simple TIP has three public functions, such as tip_init, tip_main, and
tip_term.

The client application calls tip_init, tip_main, and tip_term in succession. The
corresponding activity at the remote site is remote transaction program start, data
exchange, and remote transaction program end.

The remote transaction program might even terminate itself before receiving a
terminate signal from the gateway. This sequence is usual and is handled normally by
gateway logic. This kind of remote transaction program is termed one-shot.

Understanding the Remote Host Transaction Requirements

Client Application Development (SNA Only) 4-5

Persistent Transactions
A more complex remote transaction program has two modes of behavior: an INQUIRY
or reporting mode, and an UPDATE mode. These modes can have two TIP data transfer
function calls: one for INQUIRY and one for UPDATE. Such a TIP might have five public
functions. For example:

■ tip_init

This initializes communications with the remote transaction program.

■ tip_mode

This accepts a mode selection parameter and puts the transaction program into
either inquiry or update mode.

■ tip_inqr

This returns an employee record for a given employee number.

■ tip_updt

This accepts an employee record for a given employee number.

■ tip_term

This terminates communications with the remote transaction program.

The client application calls tip_init and then tip_mode to place the remote
transaction program in inquiry mode which then scans employee records, searching
for some combination of attributes (known to the client application and end-user).
Some parameter on an inquiry call is then set to signal a change to update mode and
the client application calls tip_updt to update some record. The client application
finally calls tip_term to terminate the remote transaction program.

The corresponding activity at the remote site is:

■ remote transaction program start

■ mode selection exchange

■ loop reading records

■ switch to update mode

■ update one record

■ remote transaction program end

Such a remote transaction program is called persistent because it interacts until it is
signalled to terminate.

The remote transaction program can be written to permit a return to inquiry mode and
repeat the entire process indefinitely.

Multi-Conversational Transactions
A client application might need to get information from one transaction, tran_A, and
subsequently write or lookup information from another, tran_B. This is possible with a
properly written client application and TIPs for tran_A and tran_B. In fact, any
number of transactions might be concurrently controlled by a single client application.
All transactions could be read-only, with the client application retrieving data from
each and consolidating it into a local Oracle database or displaying it in an Oracle
Form.

Alternatively, a transaction could be capable of operating in different modes or
performing different services depending on what input selections were supplied by

Customized TIPs for Each Remote Host Transaction

4-6 Oracle Database Gateway for APPC User's Guide

the client application. For example, one instance of tran_C can perform one service
while a second instance of tran_C performs a second service. Each instance of
tran_C would have its own unique conversation with the client application and each
instance could have its own behavior (one-shot or persistent) depending on the nature
of the service being performed.

Customized TIPs for Each Remote Host Transaction
Each remote host system might have hundreds of remote transaction programs (RTPs)
which a user might want to call. Each remote transaction program is different, passes
different data, and performs different functions. The interface between the user and
each remote transaction program must consequently be specialized and customized to
the user’s requirements for each remote transaction program. The Transaction
Interface Package provides this customized interface.

Example
Assume that the remote site has a transaction program which manages employee
information in an employee database or other file system. The remote transaction
program’s name, in the remote host, is EMPT for Employee Tracking. EMPT provides
both inquiry and update facilities, and different Oracle users are required to access and
use these EMPT facilities.

Some users might be restricted to inquiry-only use of EMPT, while others might have
update requirements. In support of the Oracle users’ client applications, at least three
possible TIPs could exist:

1. EMP_MGMT to provide access to all facilities of the EMPT remote transaction program.

2. EMP_UPDT to access only the update functions of the EMPT remote transaction
program.

3. EMP_INQR to access only the lookup functions of the EMPT remote transaction
program.

End-user access to these TIPs is controlled by Oracle privileges. Additional security
might be imposed on the end-user by the remote host.

Each TIP also has encoded within it the name of the remote transaction program
(EMPT) and network information sufficient to establish an APPC conversation with
EMPT.

Client Application Requirements
Using the TIP, the client application must correspond with and control the remote host
transaction. This involves:

1. client application initialization

2. user input and output

3. remote host transaction initialization using the TIP initialization functions (with
and without overrides)

4. remote host transaction control and data exchange using the TIP user functions

5. remote host transaction termination using the TIP termination function

6. exception handling

7. client application termination

Client Application Requirements

Client Application Development (SNA Only) 4-7

Steps 3, 4 and 5 vary, based on the requirements of the remote host transaction.

One-shot remote host transaction client applications must:
■ Declare RHT/TIP datatypes to be exchanged. All client applications must declare

variables to be exchanged with the RHTs using TIPs. PL/SQL datatypes for such
variables have already been defined in the TIP corresponding to each RHT and the
client application need only reference the TIP datatype in its declaration. Refer
also to "Declaring TIP Variables" on page 4-14 for more information. Also refer to
the TIP content documentation file for the specific TIP/RHT for more information
about the exact usage of these variables.

■ Initialize the RHT using the TIP initialization function. The TIP directs the
gateway server to initialize a conversation with the desired RHT, specifying either
default RHT identifying parameters (supplied when the RHT was defined in the
PG DD and encoded within the TIP when it was generated) or override RHT
identifying parameters supplied by the user or client application when the TIP
initialization function is called. Refer to "Initializing the Conversation" on
page 4-16 and "Overriding TIP Initializations" on page 4-17 for more details.

■ Exchange data with the RHT using the TIP user function (one call). As previously
discussed, a one-shot remote host transaction only accommodates a single data
exchange and upon completion of that exchange, the RHT terminates on its own.
The client application consequently needs only to execute a single call to the
user-defined TIP function to cause the data exchange.

Refer to the TIP content documentation file in
%ORACLE_HOME%\dg4appc\demo\CICS\ on Microsoft Windows or $ORACLE_
HOME/dg4appc/demo/CICS/ on UNIX based systems, for the specific TIP/RHT for
the exact syntax of this call.

The client application should initialize values into IN or IN OUT parameter values
before calling the TIP function call. These are the same variables that were
declared above, when you declared the RHT/TIP datatypes to be exchanged.

All TIP function calls return a 0 return code value and all returned user gateway
data values are exchanged in the function parameters. Any exception conditions
are raised as required and can be intercepted in an exception handler.

Upon return from the TIP function call, the client application can analyze and
operate on the IN OUT or OUT parameter values. These are the same variables that
were declared above, when you declared the RHT/TIP datatypes to be exchanged.

Refer to Appendix D, "Datatype Conversions" for details about how TIPs convert
the various types and formats of remote host data.

■ Terminate the RHT using the TIP termination function. Regardless of the type of
RHT being accessed, the TIP terminate function should be called to clean up and
terminate the conversation with the RHT. Conversations with one-shot RHTs can
be terminated from the gateway server before the RHT terminates. The TIP must
perform its cleanup as well. Cleanup is only performed at the termination request
of the client application.

The client application can request a normal or an aborted termination.

Refer to "Terminating the Conversation" on page 4-19 for more information.

Persistent remote host transaction client applications must:
■ Declare RHT/TIP datatypes to be exchanged. All client applications must declare

variables to be exchanged with the RHTs using TIPs. PL/SQL datatypes for such

Client Application Requirements

4-8 Oracle Database Gateway for APPC User's Guide

variables have already been defined in the TIP corresponding to each RHT; the
client application need only reference the TIP datatype in its declaration. Refer to
"Declaring TIP Variables" on page 4-14 for more information. Refer also to the TIP
content documentation file for the specific TIP/RHT for more information about
the exact usage of these variables.

■ Initialize the RHT using the TIP initialization function. The TIP directs the
gateway server to initialize a conversation with the desired RHT, specifying either
default RHT identifying parameters (supplied when the RHT was defined in the
PG DD and encoded within the TIP when it was generated) or override RHT
identifying parameters supplied by the user or client application when the TIP
initialization function is called. Refer to "Initializing the Conversation" on
page 4-16 and "Overriding TIP Initializations" on page 4-17 for more details.

■ Repetitively exchange data with RHT using the TIP user function(s). Remote host
transactions that provide or require ongoing or repetitive control sequences should
be controlled by the client application in the same manner that the RHT would be
operated by an interactive user or other control program. The intercession of the
TIP and gateway server does not alter the RHT behavior; instead, it extends
control of that behavior to the client application using the various function calls
defined in the TIP.

A persistent RHT can be controlled with one or more TIP function calls. The RHT
might be designed, for example, to loop and return output for every input until
the conversation is explicitly terminated. Or it could have been designed to accept
as input a count or list of operations to perform and return the results in multiple
exchanges for which the TIP function has only OUT parameters.

A persistent RHT can also be interactive, each output being specified by a
previous input selection and ending only when the conversation has been
explicitly terminated by the client application.

The TIP function calls available to the client applications and their specific syntax
is documented in the TIP Content documentation file for the specific TIP/RHT.

The manner in which the RHT interprets the TIP IN parameters and returns TIP
OUT parameters must be determined from the RHT or explained by the RHT
programmer. The TIP provides the function calls and the exchanged parameter
datatypes to facilitate the client application’s control of the RHT and imposes no
limitations or preconditions on the sequence of operations the RHT is directed to
perform. The TIP provides the client application with the calls and data
parameters the RHT was defined to accept in the PG DD.

■ Terminate the RHT using the TIP termination function. Regardless of the type of
RHT being accessed, the TIP terminate function should be called to clean up and
terminate the conversation with the RHT. Conversations with persistent RHTs can
be terminated from the gateway server before the RHT terminates, or the RHT
might have already terminated. The TIP must perform its cleanup as well and this
cleanup is only performed at the termination request of the client application.

The client application can request a normal or an aborted termination.

Refer to "Terminating the Conversation" on page 4-19 for more information.

Multi-conversational remote host transaction client applications must:
■ Declare RHT/TIP datatypes to be exchanged. All client applications must declare

variables to be exchanged with the RHTs using TIPs. PL/SQL datatypes for such
variables have already been defined in the TIP corresponding to each RHT, and
the client application need only reference the TIP datatype in its declaration. Refer

Client Application Requirements

Client Application Development (SNA Only) 4-9

to "Declaring TIP Variables" on page 4-14 for more information. Also refer to the
TIP content documentation file for the specific TIP/RHT for more information
about the exact usage of these variables.

■ Initialize each RHT involved, using the TIP initializing function. A specific
customized TIP exists for each RHT as defined in the PG DD. Client applications
that control multiple RHTs are multi-conversational and must start each RHT and
its associated conversation. This is done by calling each TIP initialization function
as before; but multiple TIPs are initialized.

If a single RHT is designed to perform multiple services for one or more callers
and if the client application is designed to use this RHT, the TIP corresponding to
that RHT can be initialized multiple times by the client application.

The client application subsequently distinguishes from active RHTs under its
control using:

– TIP schema tipname.callname when multiple TIP/RHTs are being controlled.
By encoding the same TIP schema name on TIP user calls, the client
application specifies to which RHT the call is being made.

– tranuse IN OUT parameter value when multiple instances of the same
TIP/RHT are being controlled. This is the value returned on the TIP
initialization function call and subsequently passed as an IN parameter on the
user-defined TIP function calls. The returned tranuse value corresponds to
that conversation connected to a given instance of an RHT. By supplying the
same tranuse value on TIP user calls, the client application specifies to which
RHT instance the given RHT call is being made.

Client application logic must keep track of which RHTs have been started and
which TIPs and tranuse values correspond to started RHTs.

■ Exchange data with each RHT, using the TIP user function(s), either once or
repetitively if the RHT is one-shot or persistent. Client application logic must
sequence the RHTs though their allowed steps in accordance with proper RHT
operation, as does a user operating the RHTs interactively.

Client application logic must also perform any cross-RHT result analysis or data
transfer that might be required. All TIPs execute in isolation from each other.

Output from one RHT intended as input to another RHT must be received in the
client application as an IN or IN OUT parameter from the first RHT and sent as an
IN or IN OUT parameter from the client application to the second RHT. All
TIP-to-RHT function calls must be performed by the client application and data
parameters exchanged must have been declared as variables by the client
application. The TIPs provide both the required datatype definitions and the RHT
function calls for the client application.

Refer to the TIP content documentation file for each specific TIP/RHT for the exact
syntax of the TIP function calls and definitions of the parameter datatypes
exchanged.

■ Terminate each initialized RHT, using the TIP termination function. To terminate
an RHT, its corresponding TIP termination function must be called to terminate
the RHT and its conversation and to initiate TIP cleanup. The RHT to be
terminated is specified by its TIP schema name (the same schema as for its data
exchange function calls) and the tranuse value when multiple instances of the
same RHT are being terminated.

Ensuring TIP and Remote Transaction Program Correspondence

4-10 Oracle Database Gateway for APPC User's Guide

RHTs and their corresponding TIPs can be terminated in any sequence desired by
the client application and do not have to be terminated in the same order in which
they are initialized.

Ensuring TIP and Remote Transaction Program Correspondence
A remote host transaction program and its related TIP with client application must
correspond on two key requirements:

■ Parameter datatype conversion, which results from the way in which transaction
DATA is defined. Refer to Appendix D, "Datatype Conversions" for a discussion of
how PGAU-generated TIPs convert data based on the data definitions.

■ APPC send/receive synchronization, which results from the way in which
transaction CALLs are defined

These DATA and CALL definitions are then included by reference in a TRANSACTION
definition.

DATA Correspondence
Using data definitions programmed in the language of the remote host transaction, the
PGAU DEFINE DATA command stores in the PG DD the information needed for PGAU
GENERATE to create the TIP function logic to perform:

■ all data conversion from PL/SQL IN parameters supplied by the receiving remote
host transaction

■ all buffering into the format expected by the receiving remote host transaction

■ all data unbuffering from the format supplied by the sending remote host
transaction

■ all data conversion to PL/SQL OUT parameters supplied by the sending remote
host transaction

PGAU determines the information needed to generate the conversion and buffering
logic from the data definitions included in the remote host transaction program.
PGAU DEFINE DATA reads this information from files, such as COBOL copy books, or
in-stream from scripts and saves it in the PG DD for repeated use. The gateway
Administrator needs to transfer these definition files from the remote host to the
Oracle host where PGAU runs.

From the data definitions stored in the PG DD, PGAU GENERATE determines the remote
host datatype and matches it to an appropriate PL/SQL datatype. It also determines
data lengths and offsets within records and buffers and generates the needed PL/SQL
logic into the TIP. Refer to the PGAU "DEFINE DATA" statement on page 2-2 in

Note: The specific syntax of the various TIP data exchange variables
function calls is the same as was previously defined in the PG DD for
the particular RHT and can be researched by examining the TIP
content documentation file (tipname.doc) or the TIP specification file
produced when the TIP was generated. If a TIP has not yet been
generated for the RHT being accessed, refer to Chapter 3, "Creating a
TIP", and "DATA Correspondence" on page 4-10, "CALL
Correspondence" on page 4-11, and "TRANSACTION
Correspondence" on page 4-13 for more information. It is preferable to
define and generate the TIP first, however, so that the client
application reference documentation is available to you when needed.

Ensuring TIP and Remote Transaction Program Correspondence

Client Application Development (SNA Only) 4-11

Chapter 2, "Procedural Gateway Administration Utility" and "Sample PGAU DEFINE
DATA Statements" in Appendix F, "Administration Utility Samples" for more
information.

All data that are referenced as parameters by subsequent calls must first be defined
using PGAU DEFINE DATA. Simple data items, such as single numbers or character
strings, and complex multi-field data aggregates, such as records or structures, can be
defined. PGAU automatically generates equivalent PL/SQL variables and records of
fields or tables for the client application to reference in its calls to the generated TIP.

As discussed, a parameter might be a simple data item, such as an employee number,
or a complex item, such as an employee record. PGAU DEFINE DATA automatically
extracts the datatype information it needs from the input program data definition files.

In this example, empno and emprec are the arguments to be exchanged.

pgadb2i_main(trannum,empno,emprec)

A PGAU DEFINE DATA statement must therefore be issued for each of these
parameters:

DEFINE DATA EMPNO
PLSDNAME (EMPNO)
USAGE (PASS)
LANGUAGE (IBMVSCOBOLII)
(
01 EMP-NO PIC X(6).
);

DEFINE DATA EMPREC
PLSDNAME (DCLEMP)
USAGE (PASS)
LANGUAGE (IBMVSCOBOLII)
INFILE("emp.cob");

Note that a definition is not required for the trannum argument. This is the APPC
conversation identifier and does not require a definition in PGAU.

CALL Correspondence
The requirement to synchronize APPC SENDs and RECEIVEs means that when the
remote transaction program expects data parameters to be input, it issues APPC
RECEIVEs to read the data parameters. Accordingly, the TIP must cause the gateway to
issue APPC SENDs to write the data parameters to the remote transaction program. The
TIP must also cause the gateway to issue APPC RECEIVEs when the remote transaction
program issues APPC SENDs.

The PGAU DEFINE CALL statement specifies how the generated TIP is to be called by
the client application and which data parameters are to be exchanged with the remote
host transaction for that call. Each PGAU DEFINE CALL statement might specify the
name of the TIP function, one or more data parameters, and the IN/OUT mode of each
data parameter. Data parameters must have been previously defined with PGAU
DEFINE DATA statements. Refer to "DEFINE CALL" on page 2-2 in Chapter 2,
"Procedural Gateway Administration Utility" and "Sample PGAU DEFINE CALL
Statements" in Appendix F, "Administration Utility Samples" for more information.

PGAU DEFINE CALL processing stores the specified information in the PG DD for later
use by PGAU GENERATE. PGAU GENERATE then creates the following in the TIP package
specification:

Ensuring TIP and Remote Transaction Program Correspondence

4-12 Oracle Database Gateway for APPC User's Guide

■ declarations of public PL/SQL functions for each CALL defined with PL/SQL
parameters for each DATA definition specified on the CALL

■ declarations of the public PL/SQL data parameters

The client application calls the TIP public function as a PL/SQL function call, using
the function name and parameter list specified in the PGAU DEFINE CALL statement.
The client application might also declare, by reference, private variables of the same
datatype as the TIP public data parameters to facilitate data passing and handling
within the client application, thus sharing the declarations created by PGAU GENERATE.

In this example, the following PGAU DEFINE CALL statement must be issued to define
the TIP public function:

DEFINE CALL DB2IMAIN
PKGCALL (pgadb2i_main)
PARMS ((empno IN),(emprec OUT));

Flexible Call Sequence
The number of data parameters exchanged between the TIP and the gateway on each
call can vary at the user’s discretion, as long as the remote transaction program’s
SEND/RECEIVE requests are satisfied. For example, the remote transaction program data
exchange sequence might be:

APPC SEND 5 fields (field1-field5)
APPC RECEIVE 1 fields (field6)
APPC SEND 1 field (field7)
APPC RECEIVE 3 fields (field8 - field10)

The resulting TIP/application call sequence could be:

tip_call1(parm1 OUT, <-- APPC SEND field1 from remote TP
parm2 OUT, <-- APPC SEND field2 from remote TP
parm3 OUT); <-- APPC SEND field3 from remote TP

tip_call2(parm4 OUT, <-- APPC SEND field4 from remote TP
parm5 OUT); <-- APPC SEND field5 from remote TP

tip_call3(parm6 IN OUT); --> APPC RECEIVE field6 in remote TP
<-- APPC SEND field7 from remote TP

tip_call4(parm8 IN, --> APPC RECEIVE field8 into remote TP
parm9 IN, --> APPC RECEIVE field9 into remote TP
parm10 IN); --> APPC RECEIVE field10 into remote TP

To define these four public functions to the TIP, four PGAU DEFINE CALL statements
must be issued, each specifying its unique public function name (tip_callx) and the
data parameter list to be exchanged. Once a data item is defined using DEFINE DATA, it
can be referenced in multiple calls in any mode (IN, OUT, or IN OUT). For example,
parm5 could be used a second time in place of parm6. This implies the same data is
being exchanged in both instances, received into the TIP and application on
tip_call2 and returned, possibly updated, to the remote host in tip_call4.

Notice also that the remote transaction program’s first five written fields are read by
two separate TIP function calls, tip_call1 and tip_call2. This could also have been
equivalently accomplished with five TIP function calls of one OUT parameter each or a
single TIP function call with five OUT parameters. Then the remote transaction
program’s first read field (field6) and subsequent written field (field7) correspond to
a single TIP function call (tip_call3) with a single IN OUT parameter (parm6).

Ensuring TIP and Remote Transaction Program Correspondence

Client Application Development (SNA Only) 4-13

This use of a single IN OUT parameter implies that the remote transaction program’s
datatype for field6 and field7 are both the same and correspond to the conversion
performed for the datatype of parm6. If field6 and field7 were of different datatypes,
then they have to correspond to different PL/SQL parameters (for example, parm6 IN
and parm7 OUT). They could still be exchanged as two parameters on a single TIP call or
one parameter each on two TIP calls, however.

Lastly, the remote transaction program’s remaining three RECEIVE fields are supplied
by tip_call4 parameters 8-10. They also could have been done with three TIP calls
passing one parameter each or two TIP calls passing one parameter on one call and
two parameters on the other, in either order. This flexibility permits the user to define
the correspondence between the remote transaction program’s operation and the TIP
function calls in whatever manner best suits the user.

Call Correspondence Order Restrictions
Each TIP public function first sends all IN parameters, before it receives any OUT
parameters. Thus, a remote transaction program expecting to send one field and then
receive one field must correspond to separate TIP calls.

For example:

tip_callO(parmO OUT); <-- APPC SEND outfield from remote TP

PGAXFER RPC checks first for parameters to send, but finds none and proceeds to
receive parameters:

tip_callI(parmI IN); --> APPC RECEIVE infield to remote TP

PGAXFER RPC processes parameters to send and then checks for parameters to receive,
but finds none and completes; therefore, a single TIP public function with an OUT
parameter followed by an IN parameter does not work, because the IN parameter is
processed first--regardless of its position in the parameter list.

TRANSACTION Correspondence
The remote host transaction is defined with the PGAU DEFINE TRANSACTION statement
with additional references to prior definitions of CALLs that the transaction supports.

You specify the remote host transaction attributes, such as:

■ transaction ID or name

■ network address or location

■ system type (such as IBM370)

■ Oracle National Language of the remote host

Calling the TIP from the Client Application

4-14 Oracle Database Gateway for APPC User's Guide

In this example, the following DEFINE TRANSACTION statements are used to define a
remote CICS transaction called DB2I:

DEFINE TRANSACTION DB2I
CALL (DB2IMAIN,

DB2IDIAG)
SIDEPROFILE(CICSPROD)
TPNAME(DB2I)
LOGMODE(ORAPLU62)
SYNCLEVEL(0)
NLS_LANGUAGE("AMERICAN_AMERICA.WE8EBCDIC37C");

Calling the TIP from the Client Application
Once a TIP is created, a client application must be written to interface with the TIP. A
client application that calls the TIP functions must include five logical sections:

■ declaring TIP variables

■ initializing the conversation

■ exchanging data

■ terminating the conversation

■ error handling

Declaring TIP Variables
The user declarations section of the tipname.doc file documents the required
declarations.

When passing PL/SQL parameters on calls to TIP functions, the client application
must use the exact same PL/SQL datatypes for TIP function arguments as are defined
by the TIP in its specification section. Assume, for example, the following is in the TIP
specification, or tipname.doc:

FUNCTION tip_call1 tranuse, IN BINARY_INTEGER,
tip_var1 io_mode pls_type1,
tip_record io_mode tran_rectype)

RETURN INTEGER;

TYPE tran_rectype is RECORD

Note: The PL/SQL package name is specified when the transaction
is defined; this is the name by which the TIP is referenced and which
the public function calls to be included within the TIP. Each public
function must have been previously defined with a PGAU DEFINE
CALL statement, which has been stored in the PG DD. If you do not
specify a package name (TIP name) in the GENERATE statement, the
transaction name you specified will become the package name by
default. In that case, the transaction name (tname) must be unique
and must be in valid PL/SQL syntax within the database containing
the PL/SQL packages.

For more information, refer to "DEFINE TRANSACTION" in
Chapter 2, "Procedural Gateway Administration Utility" and "Sample
PGAU DEFINE TRANSACTION Statement" in Appendix F,
"Administration Utility Samples".

Calling the TIP from the Client Application

Client Application Development (SNA Only) 4-15

(rec_field1 pls_type1,
...
rec_fieldN pls_typeN);

Table 4–2 provides a description of the function declarations:

In the client application PL/SQL atomic datatypes should be defined as the exact same
datatype of their corresponding arguments in the TIP function definition. The
following should be coded in the client application before the BEGIN command:

appl_var pls_type1; /* declare appl variable for */

TIP datatypes need not be redefined. They must be declared locally within the client
application, appearing in the client application before the BEGIN:

appl_record tipname.tran_rectype; /* declare appl record */

Table 4–3 describes the command line arguments:

Refer to the tipname.doc content file for a complete description of the user
declarations you can reference.

The client application calls the TIP public function as if it were any local PL/SQL
function:

rc = tip_call1(tranuse,
appl_var,
appl_record);

In the CICS-DB2 inquiry example, the PL/SQL driver pgadb2id.sql, which is located
in %ORACLE_HOME%\dg4appc\demo\CICS directory for Microsoft Windows and $ORACLE_

Table 4–2 Function Declarations

Item Description

tip_call1 The TIP function name as defined in the package specification.

tranuse The remote transaction instance parameter returned from the
TIP init function identifying the conversation on which this TIP
call is to exchange data.

tran_rectype The PL/SQL record datatype declared in the tipname TIP
specification. This is the same value as in the
TYPE tran_rectype is RECORD statement.

pls_typeN Is a PL/SQL atomic datatype.

rec_fieldN Is a PL/SQL record field corresponding to a remote transaction
program record field.

Table 4–3 Command Line Arguments

Item Description

tip_call1 The TIP function name as defined in the package specification.

tranuse The remote transaction instance parameter returned from the
TIP init function identifying the conversation on which this TIP
call is to exchange data.

tran_rectype The PL/SQL record datatype declared in the tipname TIP
specification. This is the same value as in the TYPE
tran_rectype is RECORD statement.

Calling the TIP from the Client Application

4-16 Oracle Database Gateway for APPC User's Guide

HOME/dg4appc/demo/CICS directory for UNIX based systems, is the client application
and includes the following declaration:

...

...
CREATE or REPLACE PROCEDURE db2idriv(empno IN CHAR) IS
tranuse INTEGER :=0 /* transaction usage number */
DCLEMP PGADB2I.DCLEMP_typ; /* DB2 EMP row definition */
DB2 PGADB2I.DB2_typ; /* DB2 diagnostic information */
rc INTEGER :=0 /* PGA RPC return codes */
line VARCHAR2(132); /* work buffer for output */
term INTEGER :=0; /* 1 if pgadb2i_term called */
...
...

Initializing the Conversation
The call to initialize the conversation serves several purposes:

■ To cause the PL/SQL package, the TIP, to be loaded and to perform the
initialization logic programmed in the TIP initialization section.

■ To cause the TIP init function to call the PGAINIT remote procedural call (RPC),
which in turn establishes communication with the remote transaction program
(RTP), and returns a transaction instance number to the application.

Optionally, calls to initialize the conversation can be used to:

■ Override default RHT/OLTP identification, network address attributes, and
conversation security user ID and password.

■ Specify what diagnostic traces the TIP is to produce. Refer to Chapter 8,
"Troubleshooting" for more information about diagnostic traces.

PGAU-generated TIPs provide four different initialization functions that client
applications can call. These are overloaded functions which all have the same name,
but vary in the types of parameters passed.

Three initialization parameters are passed:

■ The transaction instance number for RHT conversation identification. The tranuse
parameter is required on all TIP initializations.

■ TIP diagnostic flags for TIP runtime diagnostic controls. The tipdiag parameter is
optional. Refer to Chapter 8, "Troubleshooting" for a discussion of TIP diagnostics.

■ TIP default overrides for overriding OLTP and network attributes. The override
parameter is optional.

The following four functions are shown as they might appear in the TIP Content
documentation file. Examples of client application use are provided later.

TYPE override_Typ IS RECORD (
tranname VARCHAR2(255), /* Transaction Program */
transync BINARY_INTEGER, /* RESERVED */
trannls VARCHAR2(50), /* RESERVED */
oltpname VARCHAR2(255), /* Logical Unit */
oltpmode VARCHAR2(255), /* LOG Mode Entry */
netaddr VARCHAR2(255), /* Side Profile */
oltpuser VARCHAR2(8), /* userid for OLTP access */
oltppass VARCHAR2(8)); /* password for OLTP access*/

FUNCTION pgadb2i_init(/* init standard */
tranuse IN OUT BINARY_INTEGER)

Calling the TIP from the Client Application

Client Application Development (SNA Only) 4-17

RETURN INTEGER;

FUNCTION pgadb2i_init(/* init override */
tranuse IN OUT BINARY_INTEGER,
override IN override_Typ)
RETURN INTEGER;

FUNCTION pgadb2i_init(/* init diagnostic */
tranuse IN OUT BNARY_INTEGER,
tipdiag IN CHAR)
RETURN INTEGER;

FUNCTION pgadb2i_init(/* init over-diag */
tranuse IN OUT BINARY_INTEGER,
override IN override_Typ,
tipdiag IN CHAR)
RETURN INTEGER;

Transaction Instance Parameter
This transaction instance number (shown in examples as tranuse) must be passed to
subsequent TIP exchange and terminate functions. It identifies to the gateway on
which APPC conversation--and therefore which iteration of a remote transaction
program--the data is to be transmitted or communication terminated.

A single client application might control multiple instances of the same remote
transaction program or multiple different remote transaction programs, all
concurrently. The transaction instance number is the TIP‘s mechanism for routing the
client application call through the gateway to the intended remote transaction
program.

It is the responsibility of the client application to save the transaction instance number
of each active transaction and pass the correct one to each TIP function called for that
transaction.

The client application calls the TIP initialization function as if it were any local
PL/SQL function. For example:

...

...
tranuse INTEGER := 0;/* transaction usage number*/
...
...
BEGIN
rc := pgadb2i.pgadb2i_init(tranuse);

...

...

Overriding TIP Initializations
Note that in the preceding example the client application did not specify any remote
transaction program name, network connection, or security information. The TIP has
such information internally coded as defaults and the client application simply calls
the appropriate TIP for the chosen remote transaction program. The client application
can, however, optionally override some TIP defaults and supply security information.

You do not need to change any client applications that do not require overrides.

Calling the TIP from the Client Application

4-18 Oracle Database Gateway for APPC User's Guide

When the remote host transaction was defined in the PG DD, the DEFINE TRANSACTION
statement specified certain default OLTP and network identification attributes which
can be overridden:

■ TPname

■ LUname

■ LOGMODE

■ Side Profile

Refer to "DEFINE TRANSACTION" in Chapter 2, "Procedural Gateway
Administration Utility" for more information about the DEFINE TRANSACTION
statement.

These PG DD-defined transaction attributes are generated into TIPs as defaults and
can be overridden at TIP initialization time. This facilitates the use of one TIP, which
can be used with a test transaction or system, and can later be used with a production
transaction or system, without having to regenerate the TIP.

The override_Typ record datatype describes the various transaction attributes that can
be overridden by the client application. The following overrides are currently
supported:

■ tranname can be set to override the value that was specified by the TPNAME
parameter of the DEFINE TRANSACTION statement

■ oltpname can be set to override the value that was specified by the LUNAME
parameter of the DEFINE TRANSACTION statement

■ oltpmode can be set to override the value that was specified by the LOGMODE
parameter of the DEFINE TRANSACTION statement

■ netaddr can be set to override the value that was specified by the SIDEPROFILE
parameter of the DEFINE TRANSACTION statement

In addition to the transaction attributes defined in the PG DD, there are two
security-related parameters, conversation security user ID and conversation security
password, that can be overridden at TIP initialization time. The values for these
parameters normally come from either the database link used to access the gateway or
the Oracle database session. There are cases when the Oracle database user ID is not
sufficient for accessing the OLTP system. The user ID and password overrides provide
a way to specify those parameters to the OLTP system.

The following overrides are currently supported:

■ oltpuser can be set to override the user ID used to initialize the conversation with
the OLTP

■ oltppass can be set to override the password used to initialize the conversation
with the OLTP

The security overrides have an effect only if PGA_SECURITY_TYPE=PROGRAM is specified
in the gateway initialization file, and the OLTP system is configured to accept a
user ID and password on incoming conversation requests.

The transync (APPC SYNCLEVEL) and trannls (Globalization Support character set)
are defined in the override record datatype, but are reserved for future use. The RHT
SYNCLEVEL and Globalization Support name cannot be overridden.

The client application might override the default attributes at TIP initialization for the
following reasons:

■ to start a different version of the RHT (such as production instead of test)

Exchanging Data

Client Application Development (SNA Only) 4-19

■ to change the location of the OLTP containing the RHT (if the OLTP was moved
due to migration or a switch to backup configuration)

Client applications requiring overrides can use any combination of override and
initialization parameters and might alter the combination at any time without
regenerating the TIP or affecting applications that do not override parameters.

To override the TIP defaults, an additional client application record variable must be
declared as override_Typ datatype, values must be assigned to the override subfields,
and the override record variable must be passed on the TIP initialization call from the
client application.

For example:

...

...
my_overrides pgadb2i.override_Typ; -- declaration
...
...
my_overrides.oltpname := ’CICSPROD’; -- swap to production CICS
my_overrides.tranname := ’TNEW’; -- new transaction name

BEGIN
rc := pgadb2i.pgadb2i_init(tranuse,my_overrides); -- init
...
...

Within the TIP, override attributes are checked for syntax problems and passed to the
gateway server.

Security Considerations
The security requirements of the default and overridden OLTPs must be the same
because the same gateway server is used in either conversation, as dictated by the
database link names in the PGA RPC calls. The gateway server startup security mode
is set at gateway server initialization time and passed unchanged to the OLTP at TIP or
conversation initialization time.

Exchanging Data
The client application should pass the transaction instance number, returned from a
previous tip_init call, to identify which remote transaction program is affected and
to identify any client application data parameters to be exchanged with the remote
transaction program.

In this CICS-DB2 inquiry example, we pass an employee number and receive an
employee record back:

rc = pgadb2i.pgadb2i_main(tranuse, /* transfer data */
empno, /* employee number */
DCLEMP); /* return employee record*/

Terminating the Conversation
The client application calls the TIP termination function as if it were any local PL/SQL
function. For example:

...

...
term := 1; /* indicate term called* */
rc := pgadb2i.pgadb2i_term(tranuse,0); /* terminate normally */

Executing the Application

4-20 Oracle Database Gateway for APPC User's Guide

...

...

After a transaction instance number has been passed on a TIP terminate call to
terminate the transaction, or after the remote transaction program has abended, that
particular transaction instance number may be forgotten.

Error Handling
The client application should include an exception handler that can clean up any
active APPC conversations before the client application terminates. The sample client
application provided in pgadb2id.sql contains an example of exception handling.

Gateway exceptions are reported in the range PGA-20900 to PGA-20999. When an
exception occurs, the TIP termination function should be called for any active
conversations that have been started by prior calls to the TIP initialization function.

For example:

EXCEPTION
WHEN OTHERS THEN
IF term = 0 THEN /* terminate function not called yet */
rc := pgadb2i.pgadb2i_term(tranuse,1); /*terminate abnormally*/

END IF;
RAISE;

...

...

The remote transaction should also include provisions for error handling and
debugging, such as writing debugging information to the CICS temporary storage
queue area. Refer to the Oracle Database PL/SQL Language Reference for a discussion of
how to intercept and handle Oracle exceptions.

Granting Execute Authority
The TIP is a standard PL/SQL package and execute authority must be granted to users
who call the TIP from their client application. In this example, we grant execute on the
PGADB2I package to user SCOTT:

GRANT EXECUTE ON PGADB2I TO SCOTT

Refer to the Oracle Database Administrator's Guide for further information.

Executing the Application
Before executing the client application, ensure that a connection to the host is
established and that the receiving partner is available. In this example we use PL/SQL
driver DB2IDRIV to execute the CICS-DB2 inquiry. To execute this client application,
enter from SQL*Plus:

set serveroutput on
execute DB2IDRIV(’nnnnnn’);

APPC Conversation Sharing
Multiple TIPs can share the same APPC conversation with one or more Remote Host
Transactions (RHTs) which are also sharing that same conversation. Two benefits
derive from this feature:

APPC Conversation Sharing

Client Application Development (SNA Only) 4-21

■ Existing RHTs which rely upon passing control of a conversation are supported by
Oracle Database Gateway for APPC.

■ TIPs otherwise too large for PL/SQL compilation can be separated into multiple
smaller TIPs, each with fewer user-defined functions, providing the client
application with the same set of function calls and data definitions without any
change to the RHT.

APPC Conversation Sharing Concepts
Mainframe OLTPs, such as IMS, allow transactions to share a single APPC
conversation by passing it when the transaction calls another transaction. RHTs are
defined to PGAU as single transactions with calls, inputs and outputs for which
PGAU generates a single TIP with initialization, transfer and termination functions
corresponding to that specific RHT.

Logic generated into every TIP allows that TIP either:

■ to initiate a new conversation when its init function is called, or

■ to transfer data on an existing conversation when its user-defined functions are
called, or

■ to terminate an existing conversation when its "term" function is called.

An APPC conversation is treated as a resource shared and managed by multiple TIPs.
There is no requirement for any TIP to be the sole user of an APPC conversation.

Any TIP generated at 3.4.0 or later can perform any of the following combinations of
service:

■ initiate

■ initiate and transfer

■ initiate, transfer, and terminate (standard operation)

■ transfer

■ transfer and terminate

■ terminate

■ initiate and terminate (assumes other TIPs perform transfer)

A single APPC conversation can be shared in the following ways:

■ from one TIP to multiple RHTs

■ from multiple TIPs to one RHT

■ from multiple TIPs to multiple RHTs

Without APPC conversation sharing, a single TIP must be defined which contains all
functions and data for all RHTs which a client application might need to call. Creating
TIPs with a superset of RHTs often causes such TIPs to be too large for PL/SQL to
compile.

Conversely, with APPC conversation sharing, each RHT (or even each RHT data
exchange for those RHTs which perform multiple, different data exchange operations)
can be defined in a single TIP which is smaller and less likely to exceed PL/SQL
compilation limits.

APPC Conversation Sharing

4-22 Oracle Database Gateway for APPC User's Guide

APPC Conversation Sharing Usage
APPC conversation sharing is automatically available in every TIP generated at 3.4.0
or later. No TIPs generated before 3.4.0 can participate in APPC conversation sharing.
TIPs generated before 3.4.0 must be regenerated using PGAU 3.4.0. or later to
participate in APPC conversation sharing. PGAU is upward compatible and
regeneration should be transparent, provided only the regenerated TIP body
(tipname.pkb) is recompiled. If the TIP specification is also recompiled, the client
application needs recompilation as well. Refer to Appendix E, "Tip Internals" for more
detailed information.

Definition and generation of TIPs is accomplished as previously discussed in Chapters
1, 2, and 3. No additional options or parameters need be specified.

Run-time use of APPC conversation sharing is under the control of the client
application. It is accomplished simply by calling the init function of one of the TIPs
that share a conversation and passing the tranuse value returned to the other TIP
functions as each is called in its desired order. Any TIP init function can be used,
provided that all TIPs were defined with the same DEFINE TRANSACTION TPNAME or
SIDEPROFILE value. The TPNAME or SIDEPROFILE value specifies which RHT to
initialize.

When the init function of an APPC conversation sharing-capable TIP is called to
initialize a conversation, the tranuse value returned indicates conversation sharing is
enabled. By passing that same tranuse value when calling functions in other TIPs,
those other TIPs perform their transfers on the same conversation already initialized,
provided that all TIPs involved were generated at Version 3.4.0 or later.

APPC Conversation Sharing TIP Compatibility
TIPs generated at 3.4.0 or later of the database gateway use and expect different values
for tranuse than do pre-3.4.0 TIPs. If a pre-3.4.0 TIP is used to initialize a conversation
and its tranuse value is passed to a 3.4.0 or later generated TIP, the following
exception is raised:

ORA-20704 PGA_TIP: tranuse value cannot be shared

Pre-3.4.0 generated TIPs do not detect the different tranuse value for shared
conversations, however, and this can result in unpredictable errors.

The tranuse values are incompatible between pre-3.4.0 and 3.4.0 or later releases. This
should not pose a problem for you for the following reason: before 3.4.0, all RHT
functions defined in a TIP had to be called through that TIPs functions, and the init
function of that same TIP had to be called first to initialize the conversation. The
tranuse value was only valid for the TIP which initialized it. Thus, unless you make
programming changes, it is not possible for an existing application to accidentally mix
tranuse values.

Pre-3.4.0 TIPs and client applications can continue to be used without change and old
client applications can call new 3.4.0 or later TIPs without change. This is made
possible when an old TIP body is regenerated and compiled; the TIP now becomes

Caution: All TIPs called in a shared conversation must have been
generated at 3.4.0 or later.

No TIPs generated before 3.4.0 can participate in APPC conversation
sharing.

APPC Conversation Sharing

Client Application Development (SNA Only) 4-23

capable of APPC conversation sharing, even though the old client application has not
changed.

None of the functions of a pre-3.4.0 TIP can share an APPC conversation. However,
once a TIP is regenerated at 3.4.0 or later, any of its functions can share APPC
conversations.

APPC Conversation Sharing for TIPs That Are Too Large
You can use conversation sharing to circumvent a TIP that is too large to compile. This
is identified by 'PLS-00123 - package too large to compile', or some other
problem symptom such as PL/SQL compilation hanging. In this case you must choose
which function calls to remove from the former TIP and define into new TIPs.

Specifically, you must decide which PGAU DEFINE CALL statements and their related
DEFINE DATA statements should be moved from the old PGAU control file (.ctl) into
one or more new PGAU control files. In addition, you must decide which PGAU
DEFINE TRANSACTION statements should be included in each new PGAU control file
defining each new TIP.

You must consider several PGAU statements; refer to Table 4–4 for a list of the PGAU
statements and their descriptions:

APPC Conversation Sharing Example
Assume the existence of RHTs A, B and C, and that RHT A performs a menu selection
and calls RHT B for a query function or RHT C for an update followed by a select
function.

You could define the following DATA and CALLs:

■ DEFINE DATA choice ...

■ DEFINE DATA input ...

■ DEFINE DATA answer ...

■ DEFINE DATA record ...

Table 4–4 PGAU Statements

Statement Description

DEFINE DATA statements Must be unique. They can be shared by all affected PGAU
control files, provided they are defined to the Procedural
Gateway Data Dictionary (PG DD) before being referenced by
DEFINE CALL statements. No changes are needed to these
statements.

DEFINE CALL statements Must be unique. They need only be referenced by the new
DEFINE TRANSACTION statement of the TIP in which they are
included, provided they are defined to the PG DD before being
referenced by a DEFINE TRANSACTION statement. The DEFINE
CALL statements can optionally be moved to the new PGAU
control file of the TIP in which they are included.

DEFINE TRANSACTION
statements

Specified for each new TIP desired and will reference those call
definitions moved from the former large TIP to the new small
TIPs. No transaction attributes will change. This allows any
new TIP to perform the same initialization or termination with
the same RHT as the former large TIP. The old DEFINE
TRANSACTION statement (of the former large TIP) should now
exclude any call definitions which are being moved to new
small TIPs.

APPC Conversation Sharing

4-24 Oracle Database Gateway for APPC User's Guide

■ DEFINE CALL menu_A callname(pick) parms(choice in);

■ DEFINE CALL query_B callname(query) parms((input in),

(answer out));

■ DEFINE CALL update_C callname(update) parms(record in);

■ DEFINE CALL select_C callname(select) parms(record out);

The following example TIPs could be defined:

Example 1
This example does not use APPC conversation sharing, but is a valid TIP definition
created before release 3.4.0, combining the functions of RHTs A, B and C.

DEFINE TRANSACTION rhtABC calls(menu_A,
query_B,
update_C,
select_C)

tpname(RHTA);
This TIP includes all data definitions and calls, and might be too large to compile. This
TIP does not use APPC conversation sharing as there is only the one TIP, rhtABC. The
RHTs do, however, perform their normal sharing of the conversation at the remote
host. If the TIP was small enough to compile, the client application calls TIP functions
as follows:

rc := rhtABC.rhtABC_init(tranuse);
rc := rhtABC.pick(tranuse, choice);
rc := rhtABC.query(tranuse, input, answer);
rc := rhtABC.update(tranuse, record);
rc := rhtABC.select(tranuse, record);
rc := rhtABC.rhtABC_term(tranuse);

Example 2
This example demonstrates defining a set of TIPs with APPC conversation sharing,
separating the functions of RHTs A, B and C into three TIPs:

DEFINE TRANSACTION rhtA calls(menu_A) tpname(RHTA);
DEFINE TRANSACTION rhtB calls(query_B) tpname(RHTA);
DEFINE TRANSACTION rhtC calls(update_C,

select_C) tpname(RHTA);

Each TIP includes only the call and data it requires, and each TIP automatically
performs APPC conversation sharing. The client application calls these functions as
follows:

rc := rhtA.rhtA_init(tranuse);
rc := rhtA.pick(tranuse, choice);
rc := rhtB.query(tranuse, input, answer);
rc := rhtC.update(tranuse, record);
rc := rhtC.select(tranuse, record);
rc := rhtB.rhtB_term(tranuse);

The only client application difference between the two examples is in the schema
qualifier on each of the TIP calls. This is because the function being called is in a
different TIP which has a different package name in the database.

Only new DEFINE TRANSACTION statements were needed to make use of APPC
conversation sharing. The CALL and DATA definitions were used as-is. This means the
old TIP rhtABC is still defined as it was and might still be too large to compile.

Application Development with Multi-Byte Character Set Support

Client Application Development (SNA Only) 4-25

Example 3
If you performed Sample 2 but you still believe that the TIP may be too large to
compile, try this:

DEFINE TRANSACTION rhtABC calls(menu_A) tpname(RHTA);
DEFINE TRANSACTION rhtB calls(query_B) tpname(RHTA);
DEFINE TRANSACTION rhtCU calls(update_C) tpname(RHTA);
DEFINE TRANSACTION rhtCS calls(select_C) tpname(RHTA);

TIP rhtABC has had three functions removed so it is now smaller and more likely to
compile. TIP rhtB has one function and TIP rhtC has been separated into two TIPs
even though the corresponding host functions remain in a single RHT.

The client application calls these functions as follows:

rc := rhtB.rhtB_init(tranuse);
rc := rhtABC.pick(tranuse, choice);
rc := rhtB.query(tranuse, input);
rc := rhtCU.update(tranuse, record);
rc := rhtCS.select(tranuse, record);
rc := rhtABC.rhtABC_term(tranuse);

A different TIP is used for initialization, illustrating that all TIPs contain the init and
term functions, and because the DEFINE TRANSACTION statements all specified the
same tpname(RHTA), the same remote host transaction is always called for
initialization.

APPC Conversation Sharing Overrides and Diagnostics
TIP default override parameters are processed in the TIP init function which was
called to perform initialization. Once the APPC conversation is established, no further
sharing of overriding parameters is necessary. You need do nothing more than pass the
overrides to the TIP init function.

TIP diagnostic parameters are shared among all TIPs sharing a given conversation. In
effect, requesting diagnostics of the TIP performing initialization causes the same
diagnostics to be requested of all TIPs sharing the conversation. Requesting
diagnostics from only one TIP of several sharing a conversation is not possible. The
application designer or user need only pass the TIP runtime trace controls to the TIP
init function.

Application Development with Multi-Byte Character Set Support
COBOL presently only supports double byte character sets (DBCS) for PIC G
datatypes.

PGAU processes COBOLII PIC G datatypes as PL/SQL VARCHAR2 variables and
generates TIPs which automatically convert the data according to the
Oracle NLS_LANGUAGEs specified for the remote host data and the local Oracle data.

These Oracle NLS_LANGUAGEs can be specified as defaults for all PIC G data exchanged
by the TIP with the remote transaction (see DEFINE TRANSACTION ... REMOTE_MBCS or
LOCAL_MBCS). The Oracle NLS_LANGUAGEs for any individual PIC G data item can be
further overridden (see REDEFINE DATA ... REMOTE or LOCAL_LANGUAGE).

DBCS data can be encoded in any combination of supported DBCS character sets. For
example, a remote host application which allows different codepages for each field of
data in a record is supported by the Oracle Database Gateway MBCS support.

Modifying a Terminal-Oriented Transaction to Use APPC

4-26 Oracle Database Gateway for APPC User's Guide

Use of REDEFINE DATA ... REMOTE_LANGUAGE or LOCAL_LANGUAGE on PIC X items is
also supported. Thus a TIP can perform DBCS or MBCS conversions for specified PIC
X data fields, in addition to SBCS conversions by default for the remaining PIC X data
fields. Default SBCS conversion is according to the DEFINE TRANSACTION... NLS_
LANGUAGE and local Oracle default LANGUAGE environment values.

When PGAU is generating a TIP, the PIC G datatypes are converted to PL/SQL
VARCHAR2 datatypes. After conversion by the TIP, received ’PIC G’ VARCHAR2
datatypes can have a length less then the maximum due to deletion of shift-out and
shift-in meta characters, and sent ’PIC G’ RAWs will have the shift-out and shift-in
characters inserted as required by the remote host character set specified.

This is different from the conversions performed for PIC X data which is always a
known fixed-length and hence CHAR datatypes are used in TIPs for PIC X data fields.
However, even when the PIC X field contains DBCS or MBCS data, a CHAR variable is
still used and padded with blanks if needed.

Some remote host applications bracket a PIC G field with PIC X bytes used for
shift-out, shift-in meta-character insertion. Such a COBOL definition might look like:

01 MY_RECORD.
05 SO PIC X.
05 MY_SBCS_DATA PIC G(52).
05 SI PIC X.

This is not processed correctly by PGAU, because all three fields are defined, and
consequently treated, as separate data items when conversion is performed.

To be properly processed, the definition input to PGAU should be:

01 MY_RECORD.
05 MY_MBCS_DATA PIC G(51).

The PGAU REDEFINE DATA statement can redefine the 3-field definition to the 1-field
definition by specifying USAGE(SKIP) on fields SO and SI, and ’05 MY_MBCS_DATA PIC
G(51).’ to redefine MY_MBCS_DATA. The three REDEFINE statements can be placed in the
PGAU input control file, and thus the remote host definition need not be altered.

Modifying a Terminal-Oriented Transaction to Use APPC
The remote transaction program must include mapped APPC verbs to initiate,
communicate, and terminate the APPC conversation. However, when the remote
transaction program is terminal-oriented, the following options are available:

■ You can separate the terminal logic from the application and I/O logic. Once this
separation is achieved, a small front end remote transaction program can be
written to interface between the gateway calls and the transaction application
logic. For example, in CICS the CICS LINK is used to implement this technique.

■ You can modify your existing program so that APPC calls are embedded. In the
example, PGADB2I, we use CICS and its associated mapped APPC verbs as follows:

– EXEC CICS ASSIGN accepts the conversation initiated by the gateway.

– EXEC CICS RECEIVE receives the arguments.

– EXEC CICS SEND ends the results.

– EXEC CICS RETURN terminates the conversation.

■ If you do not want to modify your terminal-oriented transaction, you can insert an
APPC-capable interface, such as IBM Corporation’s FEPI for CICS Transaction

Privileges Needed to Use TIPs

Client Application Development (SNA Only) 4-27

Server for z/OS, between the terminal-oriented program and the gateway.

■ With IMS/TM, existing unmodified IMS transactions can be accessed with the
gateway using the implicit APPC facility. With implicit APPC, the standard DLI
GU, GN, and ISRT calls using the I/O PCB are automatically converted to
appropriate APPC send or receive calls when the IMS transaction is invoked
through APPC.

Privileges Needed to Use TIPs
Execute privileges must be explicitly granted to callers of TIPs or procedures. This
privilege cannot be granted through a role.

Any TIP user wanting to trace a TIP must be granted execute privileges on the rtrace
and ptrace procedures. Refer to the "Configuring PGAU" section in the chapter
appropriate for your communications protocol in the Oracle Database Gateway for APPC
Installation and Configuration Guide for IBM AIX on POWER Systems (64-Bit), Linux
x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX Itanium and Oracle Database
Gateway for APPC Installation and Configuration Guide for Microsoft Windows for more
information.

For example, on Microsoft Windows:

C:\> sqlplus pgaadmin\pw@database_specification_string
SQL> grant execute on pgaadmin.purge_trace to tip_user_userid;
SQL> grant execute on pgaadmin.read_trace to tip_user_userid;

On UNIX based systems:

$ sqlplus pgaadmin/pw@database_specification_string
SQL> grant execute on pgaadmin.purge_trace to tip_user_userid;
SQL> grant execute on pgaadmin.read_trace to tip_user_userid;

After a TIP has been developed, the TIP user must be granted execute privileges on the
TIP by the TIP owner. The TIP owner is usually PGAADMIN, but can be another user who
has been granted either the PGDDDEF or PGDDGEN roles.

For example, on Microsoft Windows:

C:\> sqlplus tip_owner\pw@database_specification_string
SQL> grant execute on tipname to tip_user_userid;

On UNIX based systems:

$ sqlplus tip_owner/pw@database_specification_string
SQL> grant execute on tipname to tip_user_userid;

where database_specification_string is the Oracle Net identifier for the Oracle
database where the gateway UTL_RAW and UTL_PG components were installed. This is
the same Oracle database where the TIPs are executed and where grants on the TIPs
are performed from the TIP owner user ID.

A SQL script for performing these grants is provided in the
%ORACLE_HOME%\dg4appc\admin directory on Microsoft Windows and in the $ORACLE_
HOME/dg4appc/admin directory on UNIX based system. The pgddausr.sql script
performs the grants for private access to the packages by a single TIP user. If private
grants are to be used, the pgddausr.sql script must be run once for each TIP user’s
user ID.

To run these scripts, use SQL*Plus to connect to the Oracle database as user PGAADMIN.
From SQL*Plus, run the pgddausr.sql script from the %ORACLE_

Privileges Needed to Use TIPs

4-28 Oracle Database Gateway for APPC User's Guide

HOME%\dg4appc\admin directory on Microsoft Windows or $ORACLE_
HOME/dg4appc/admin directory on UNIX based system. The script performs the
necessary grants as previously described. You are prompted for the required user IDs,
passwords, and database specification strings. If you are using private grants, repeat
this step for each user ID requiring access to the packages.

No script has been provided to perform public grants. To do this, issue the following
commands:

For Microsoft Windows:

C:\> sqlplus tip_owner\pw@database_specification_string
SQL> grant execute on tipname to PUBLIC;

For UNIX based systems:

$ sqlplus tip_owner/pw@database_specification_string
SQL> grant execute on tipname to PUBLIC;

5

Implementing Commit-Confirm (SNA Only) 5-1

5 Implementing Commit-Confirm (SNA Only)

Commit-confirm allows the updating of local Oracle resources to occur in the same
Oracle transaction as the updating of non-Oracle resources accessed through the
Oracle Database Gateway for APPC.

Read this chapter to familiarize yourself with the elements and functions of
commit-confirm.

You will find instructions for configuring gateway components for commit-confirm on
an SNA environment in the Oracle Database Gateway for APPC Installation and
Configuration Guide for IBM AIX on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris
on SPARC (64-Bit), and HP-UX Itanium or Oracle Database Gateway for APPC Installation
and Configuration Guide for Microsoft Windows. Refer to Chapter 5, "Configuring Your
Network" and Chapter 6, "Gateway Configuration Using the SNA Communications
Protocol" of the installation and configuration guides for specific information.

This chapter includes the following sections:

■ "Overview of Commit-Confirm" on page 5-1

■ "Supported OLTPs" on page 5-2

■ "Components Required to Support Commit-Confirm" on page 5-2

■ "Application Design Requirements" on page 5-4

■ "Commit-Confirm Architecture" on page 5-4

■ "Commit-Confirm Flow" on page 5-5

Overview of Commit-Confirm

Commit-confirm is a special implementation of two-phase commit that allows a
database or gateway that does not support full two-phase commit to participate in
distributed update transactions with other databases or gateways that do support full
two-phase commit. In this implementation, the commit-confirm site is always the first

Important: If you are planning to implement commit-confirm, then
you should already have configured the components. Depending on
your platform, refer to Chapter 12 of the Oracle Database Gateway for
APPC Installation and Configuration Guide for IBM AIX on POWER
Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and
HP-UX Itanium or Chapter 9 of the Oracle Database Gateway for APPC
Installation and Configuration Guide for Microsoft Windows for
instructions on its configuration.

Supported OLTPs

5-2 Oracle Database Gateway for APPC User's Guide

to be committed, after all other sites have been prepared. This allows all sites to be
kept in sync, because if the commit-confirm site fails to commit successfully, all other
sites can be rolled back.

Within an Oracle distributed transaction, all work associated with that transaction is
assigned a common identifier, known as the Oracle Global Transaction ID. This
identifier is guaranteed to be unique, so that it can be used to exclusively identify a
particular distributed transaction. The key requirement for commit-confirm support is
the ability for the commit-confirm site (in this case, the Oracle Database Gateway for
APPC) to be able to log the Oracle Global Transaction ID as part of its unit of work, so
that if a failure occurs, the gateway's recovery processing can determine the status of a
particular Oracle Global Transaction ID by the presence or absence of a log entry for
that transaction. A new Oracle Global Transaction ID is generated after every commit
or rollback operation.

The Oracle Database Gateway for APPC implements commit-confirm using LU6.2
SYNCLEVEL 1. This is similar to the implementation of single-site update, with the
added advantage that resources on both the Oracle site and the OLTP being accessed
by the gateway can be updated and kept in sync. The main difference is that the
commit-confirm implementation requires some additional programming in the OLTP
transaction to perform the transaction logging necessary for recovery support.

Supported OLTPs
Since commit-confirm uses LU6.2 SYNCLEVEL 1, it can be supported by any OLTP that
supports APPC, including CICS Transaction Server for z/OS and IMS/TM. The Oracle
Database Gateway for APPC provides sample commit-confirm applications for both
CICS Transaction Server for z/OS and IMS/TM.

With CICS Transaction Server for z/OS, the standard command-level EXEC CICS
interface can be used for all APPC communications. In addition, the CPI-C interface
can be used if it is preferred. A sample DB2 update transaction written in COBOL
using the EXEC CICS interface is provided with the gateway. Any language supported
by CICS Transaction Server for z/OS can be used for writing commit-confirm
transactions.

With IMS/TM, the CPI-C interface must be used, making the IMS transaction an
"explicit APPC transaction," as referred to in the IBM IMSCICS Transaction Server for
z/OS manuals. This is necessary because it is the only way that the LU6.2 SYNCLEVEL 1
control flows are accessible to the IMS transaction. When using "implied APPC" where
"GU" from the IOPCB and "ISRT" to the IOPCB are used for receiving and sending
data, there is no way for the IMS transaction to access the LU6.2 SYNCLEVEL 1 control
flow, making it impossible to use this method for commit-confirm. A sample DLI
database update transaction written in COBOL using the CPI-C APPC interface is
provided with the gateway. Any language supported by IMS and CPI-C can be used
for writing commit-confirm transactions.

Components Required to Support Commit-Confirm
The following components are required to support commit-confirm:

■ Oracle Database Gateway for APPC Server

The gateway server supports commit-confirm when
PGA_CAPABILITY=COMMIT_CONFIRM is specified in the gateway initialization file.
When the gateway server is running with commit-confirm enabled, it will connect
to a local Oracle database where it maintains a commit-confirm transaction log,
similar to the Oracle two-phase commit log stored in the DBA_2PC_PENDING table.

Components Required to Support Commit-Confirm

Implementing Commit-Confirm (SNA Only) 5-3

The gateway's transaction log is stored in the PGA_CC_PENDING table. A row is
stored in this table for each in-flight transaction and remains there until the
transaction has completed. The life span of rows in PGA_CC_PENDING is normally
quite short, lasting only from the time the commit is received by the gateway until
the time the Oracle database completes all commit processing and tells the
gateway to forget the transaction.

The commit-confirm gateway SID should be reserved for use only to invoke
update transactions that implement commit-confirm. There is some extra
overhead involved in the setup for logging when PGA_CAPABILITY is set to COMMIT_
CONFIRM. Read-only transactions should be invoked through a separate gateway
SID with PGA_CAPABILITY set to READ_ONLY so that they will not incur the extra
overhead.

■ Logging Server

An Oracle database must be available for use by the gateway server for storing the
PGA_CC_PENDING table. For maximum performance and reliability, Oracle
recommends that this Oracle database reside on the same system as the gateway
server.

■ OLTP Commit-Confirm Transaction Log

A commit-confirm transaction log database must be defined to the OLTP system
being accessed. This database must be recoverable and must be accessible by the
OLTP as part of the same unit of work as the OLTP application's databases, so that
updates to the transaction log database will be kept in sync with updates to the
application's databases in a single unit of work.

The commit-confirm transaction log database need contain only the Oracle Global
Transaction ID and a date/time stamp. The Oracle Global Transaction ID is 169
bytes long and must be the key field. The date/time stamp is used for purging old
entries that can be left in the log after certain failure scenarios.

For simplicity, all commit-confirm applications under a particular OLTP should
share the same commit-confirm transaction log.

■ OLTP Transaction Logging Code

Code must be added to each OLTP transaction invoked by a commit-confirm
gateway to perform the transaction logging required by the gateway's
commit-confirm implementation. This code must receive the Oracle Global
Transaction ID from the gateway and write that information into the OLTP
commit-confirm transaction log database. For maximum flexibility and ease of use,
this code can be written as a subroutine callable from any commit-confirm
transaction on your OLTP system.

This code must be executed at the beginning of each commit-confirm transaction
prior to the first APPC receive and then immediately after each COMMIT or
ROLLBACK in the transaction. This ensures that the logging is done at the beginning
of each unit of work.

■ OLTP Forget/Recovery Transaction

A separate APPC transaction must be created on the OLTP system that can be
started by the gateway to forget a transaction once it has been successfully
committed and to query a transaction's state during recovery processing. This
transaction deletes the entry for a particular Oracle Global Transaction ID from the
OLTP commit-confirm transaction log database during forget processing and
queries the entry for a particular Oracle Global Transaction ID from the OLTP
commit-confirm transaction log database during recovery processing.

Application Design Requirements

5-4 Oracle Database Gateway for APPC User's Guide

Application Design Requirements
When designing commit-confirm applications for use with the Oracle Database
Gateway for APPC, there are some requirements you must meet to provide the ability
for the gateway to determine the state of a transaction in the event of a failure. If these
requirements are not met, attempting to use an application with a commit-confirm
gateway will produce unpredictable results.

The first thing that must be done by an OLTP transaction invoked by a
commit-confirm gateway is to receive the Oracle Global Transaction ID from the
gateway and log it into the OLTP commit-confirm transaction log database. This must
be done before the normal data flow between the OLTP transaction and the Oracle
application begins. The gateway always sends the Oracle Global Transaction ID as the
very first data item.

If the OLTP transaction is a one-shot transaction, this is the only change needed. If the
transaction is a persistent transaction that performs more than one unit of work (issues
more than one commit or rollback), then a new Oracle Global Transaction ID must be
received and logged after every COMMIT or ROLLBACK.

The Oracle Global Transaction ID is sent by the gateway in a variable-length record
with a maximum length of 202 bytes. The first 32 bytes contain a special binary string
used to verify that the data came from the gateway and not from some other
application. The next 1 byte is a reserved field. The Oracle Global Transaction ID is
next, with a maximum length of 169 bytes. You must log the reserved field and the
Oracle Global Transaction ID, as well as a date/time stamp and any other information
you wish to log. Note that the Oracle Global Transaction ID must be the key field for
the log database so that the forget/recovery transaction can use the Oracle Global
Transaction ID to directly access a log entry.

Commit-Confirm Architecture
The architecture of the commit-confirm implementation in the Oracle Database
Gateway for APPC consists of three main components:

■ Oracle database

■ Oracle Database Gateway for APPC server (gateway server)

■ Logging server (an Oracle database holding the tables PGA_CC_PENDING and PGA_
CC_LOG)

Note: Make sure that the gateway initialization parameters and the
OLTP parameters are properly configured, as described in Chapter 11
of the Oracle Database Gateway for APPC Installation and Configuration
Guide for IBM AIX on POWER Systems (64-Bit), Linux x86-64, Oracle
Solaris on SPARC (64-Bit), and HP-UX Itanium or Chapter 8 of the
Oracle Database Gateway for APPC Installation and Configuration Guide
for Microsoft Windows depending on your platform.

Note: If your OLTP is IMS/TM, you must add a PCB for the
commit-confirm transaction log database to the PSB for each
transaction that you will use with a commit-confirm gateway. This
PCB must be the first PCB in the PSB.

Commit-Confirm Flow

Implementing Commit-Confirm (SNA Only) 5-5

This section describes the role each component plays in the operation of
commit-confirm and how these components interact.

Components
The Oracle database is the controlling component in the commit-confirm architecture.
It tells the gateway server when to commit a transaction and when to rollback a
transaction. It does the same with all other servers participating in a distributed
transaction. When a failure has occurred, it is the Oracle database acting as the
integrating server which drives the recovery process in each participating server,
including the gateway server.

The gateway server performs the task of converting instructions from the Oracle
database into LU6.2 operations and then logs the transaction into the logging server.
The gateway server stores the log information in a table called PGA_CC_PENDING on the
logging server. If a failure occurs during transaction processing, the gateway server
determines which error should be returned to the Oracle database.

The logging server is an Oracle database available to the gateway server for storing
and accessing its commit-confirm log information. The logging server need not be the
same Oracle database which acts as the integrating server. Because the logging server
is an integral component of gateway commit-confirm operations, the best place for it
to reside is on the same system as the gateway server. This allows the communication
between the gateway server and the logging server to use interprocess
communications, providing a high-speed, low overhead, local connection between the
components.

Interactions
There is a specific set of interactions that occur between the components. They are:

■ Oracle Database <--> Gateway Server

The Oracle database drives all actions by the gateway server. At the request of the
Oracle application, the integrating server can instruct the gateway server to begin
a new Oracle transaction, start a commit sequence, start a rollback sequence, or
start a forget sequence. It can also call gateway remote procedural call (RPC)
functions (PGAINIT, PGAXFER, PGATERM) on behalf of the Oracle application.

■ Gateway Server <--> Logging Server

The gateway server calls the logging server to insert and delete rows from its PGA_
CC_PENDING table. This is actually done by calling a PL/SQL stored procedure,
PGA_CC_LOG, in the logging server to reduce the number of open cursors required
by the gateway server for performing its logging. Only a single cursor is needed
by the gateway server for logging.

Commit-Confirm Flow
The flow of control for a successful commit between an Oracle application and an
OLTP transaction is described in the following section and illustrated in Figure 5–1,
"Commit-Confirm Flow with Synclevel 1". The figure assumes that both Oracle and
OLTP resources have been updated. The following steps in Section outline the
commit-confirm logic flow.

Commit-Confirm Logic Flow, Step by Step
1. The application issues a COMMIT to the Oracle database.

Commit-Confirm Flow

5-6 Oracle Database Gateway for APPC User's Guide

2. The Oracle database sends PREPARE to each participant in the distributed
transaction other than the gateway.

3. Each participant prepares its database updates and responds PREPARE OK to the
Oracle database.

4. The Oracle database sends COMMIT to the gateway. The gateway receives the
COMMIT from the Oracle database and inserts a new pending transaction row into
the PGA_CC_PENDING table.

5. The gateway sends an APPC CONFIRM to the OLTP application. The OLTP
application receives the CONFIRM request in the form of a status from the last APPC
RECEIVE.

6. The OLTP application issues a COMMIT using an appropriate OLTP function. The
OLTP commits all database updates made by the application since the last COMMIT,
including the commit-confirm transaction log update.

7. Once the database updates have been committed, the OLTP returns control to the
application with a return code indicating the status of the COMMIT.

8. The OLTP application sends an APPC CONFIRMED to the gateway.

9. The gateway receives the CONFIRMED and returns COMMIT OK to the Oracle database.

10. The Oracle database sends COMMIT to each participant in the distributed
transaction other than the gateway.

11. Each participant commits its database updates and responds COMMIT OK to the
Oracle database.

12. The Oracle database sends a FORGET to the gateway.

13. The gateway receives the FORGET and starts a new APPC conversation with the
FORGET/RECOVERY transaction at the OLTP, sends it a FORGET request and an APPC
CONFIRM. The FORGET/RECOVERY transaction receives the FORGET request and deletes
the entry from the commit-confirm transaction log for the current Oracle
transaction, and commits the delete.

14. The FORGET/RECOVERY transaction sends an APPC CONFIRMED to the gateway to
indicate that the FORGET was processed, and then terminates. The gateway receives
the CONFIRMED and deletes the pending transaction row from the PGA_CC_
PENDING table.

15. The gateway returns FORGET OK to the Oracle database.

16. The Oracle database returns control to the Oracle application.

Figure 5–1, "Commit-Confirm Flow with Synclevel 1" illustrates the Commit-Confirm
logic flow described in the previous section.

Commit-Confirm Flow

Implementing Commit-Confirm (SNA Only) 5-7

Figure 5–1 Commit-Confirm Flow with Synclevel 1

Gateway Server Commit-Confirm Transaction Log
The commit-confirm transaction log consists of a single table, PGA_CC_PENDING. This
table contains a row for each in-flight Oracle transaction that includes the
commit-confirm gateway. The table is maintained by the gateway server and is similar
in function to the Oracle database's DBA_2PC_PENDING table. Note that a row is not
inserted into this table until a COMMIT is received by the gateway and the row is deleted
when a FORGET is received by the gateway. There is no involvement by the gateway
during the PREPARE phase.

The PGA_CC_PENDING table contains the following columns:

■ GLOBAL_TRAN_ID

This is the Oracle Global Transaction ID for the transaction. It is identical to the
corresponding column in the DBA_2PC_PENDING table.

■ SIDE_NAME

This is the Side Information Profile name that was used by the gateway to
allocate the APPC conversation with the target LU. It corresponds to the SIDENAME
parameter passed to the PGAINIT gateway function.

■ LU_NAME

This is the fully-qualified partner LU name of the target LU. This value is either
the LU name from the Side Information Profile or the LUNAME parameter passed to
the PGAINIT gateway function. This name fully identifies the OLTP system on
which the transaction was executed.

■ MODE_NAME

This is the Mode name that was used by the gateway to allocate the APPC
conversation with the target LU. The value is either the Mode name from the Side

OLTP
Oracle

Database

PREPARE

COMMIT

COMMIT

FORGET

COMMIT

Application

COMMIT

Program
Continues

Gateway

CONFIRM

Commit
OK

FORGET

FORGET
OK

OLTP App

RECEIVE

CONFIRMED

(return
code)

COMMIT

Program
Continues

Forget/Recover
Transaction

DELETE
LOG
ENTRY

FORGET
OK

1
2

3

4 5
6

7

8
9

10

11

12
13

141516

Commit-Confirm Flow

5-8 Oracle Database Gateway for APPC User's Guide

Information Profile or the MODENAME parameter passed to the PGAINIT gateway
function.

■ TP_NAME

This is the transaction program name executed at the target LU. The value is either
the TP name from the Side Information Profile or the TPNAME parameter passed to
the PGAINIT gateway function. This name fully identifies the OLTP transaction
program that was executed.

6

PG4TCPMAP Commands (TCP/IP Only) 6-1

6 PG4TCPMAP Commands (TCP/IP Only)

This chapter contains the commands and instructions necessary to operate the
pg4tcpmap tool. This tool allows relevant parameters to map to a gateway using
TCP/IP support for IMS Connect. The tool will be used to populate the PGA_
TCP_IMSC table.

This chapter contains the following sections:

■ "Preparation for Populating the PGA_TCP_IMSC Table" on page 6-1

■ "Overview" on page 6-1

■ "Populating the PGA_TCP_IMSC Table" on page 6-2

■ "Before You Run the pg4tcpmap Tool" on page 6-4

■ "pg4tcpmap Tool Commands" on page 6-5

Preparation for Populating the PGA_TCP_IMSC Table
If your gateway is using TCP/IP support for IMS Connect, then you must use the
pg4tcpmap tool to prompt PGAINIT to provide the required TCP/IP parameters as
input.

The pg4tcpmap tool must be run before executing any PL/SQL gateway statements in
order to populate the PGA_TCP_IMSC table, which utilizes the corresponding TIPs.

Note that you do not need to rerun the pg4tcpmap tool for additional IMS transactions
if they share the same IMS Connect attributes.

The PGA_TCP_IMSC table was created when you executed the
%ORACLE_HOME%\dg4appc\admin\pgaimsc.sql script on Microsoft Windows or
$ORACLE_HOME/dg4appc/admin/pgaimsc.sql script on UNIX based systems during
your gateway configuration. If you need further information about creating the PGA_
TCP_IMSC table, then depending on your platform, refer to Chapter 13 of the Oracle
Database Gateway for APPC Installation and Configuration Guide for IBM AIX on POWER
Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX Itanium or
Chapter 10 of Oracle Database Gateway for APPC Installation and Configuration Guide for
Microsoft Windows .

Overview
In a PGAINIT procedure call, the user must specify a Side Profile Name and TP Name.
The values of these parameters will be inserted into a table named PGA_TCP_IMSC.

Populating the PGA_TCP_IMSC Table

6-2 Oracle Database Gateway for APPC User's Guide

Configure userid and password before running gateway mapping tool
Before executing the pg4tcpmap tool, you must configure a valid userid and password
and TNSNAMES alias for the Oracle database where the PGA_TCP_IMSC table resides. You
must specify the userid, password, and database in the PGA_TCP_USER, PGA_TCP_PASS,
and PGA_TCP_DB parameters, respectively, located in the gateway initialization file
%ORACLE_HOME%\dg4appc\admin\initsid.ora for Microsoft Windows and $ORACLE_
HOME/dg4appc/admin/initsid.ora for UNIX based systems.

Populating the PGA_TCP_IMSC Table
Table 6–1 describes the parameter information contained in the column names, types
and contents column found in the PGA_TCP_IMSC table.

Table 6–1 PGA_TCP_IMSC Table Columns

Column Name Type Content

SideProfileName varchar2(8) This parameter has no SNA implication.
It is simply a name that is defined in
the .ctl file for the PGAU utility. It
represents a group of IMS
transactions with similar IMS
Connect attributes, such as time
delay, socket type and IMS
subsystem ID.

Unique index.

HostName varchar2(169) NOT
NULL

The OLTP TCP/IP address or the
hostname.

PortNumber varchar2(17) NOT
NULL

The OLTP port number.

ANDRS char(1) NOT NULL ANDRS specifies whether the client is
sending:

A = ACK: Positive
Acknowledgement;

N = NAK: Negative
Acknowledgement;

D = DEALLOCATE: Deallocate
Connection;

R = RESUME: Resume TPIPE;

S = SENDONLY: Send only
Acknowledgment or Deallocate.

blank: no request for
Acknowledgement or Deallocate.

The default is "blank".

TIMER char(1) NOT NULL Time delay for the receive to the
datastore after an ACK or RESUME
TPIPE:

D = default value X’00’ .25 second;

S = short wait X’01’ through X’19’:
01 to .25 second

N = No Wait occurs

I = Receive waits indefinitely.

The default is "D".

Populating the PGA_TCP_IMSC Table

PG4TCPMAP Commands (TCP/IP Only) 6-3

SOCK char(1) NOT NULL Socket Connection Type

T = Transaction Socket:

P = Persistent Socket

N = Non-persistent Socket

The default is "T".

CLIENTID char(8) NOT NULL Specifies the name of the client ID
that is used by IMS Connect. The
default is ’null’.

COMMITMODE char(1) NOT NULL It specifies the commit mode:

0 = the commit mode is 0;

1 = the commit mode is 1

The default is "1".

IMSDESTID char(8) NOT NULL Specifies the datastore names (IMS
subsystem ID) 8 bytes.

This parameter must be specified.

LTERM char(8) NOT NULL Specifies the IMS LTERM override.
The default is "blank".

RACFGRPNAM char(8) NOT NULL Specifies the RACF group name.

The default is "blank".

You need to specify the RACF group
name if you have set
PGA_SECURITY_TYPE to PROGRAM.

Refer to "PGA_SECURITY_TYPE" in
Table B-1 "PGA Parameters on
Gateway Using TCP/IP for IMS
Connect" in the Oracle Database
Gateway for APPC Installation and
Configuration Guide for IBM AIX on
POWER Systems (64-Bit), Linux
x86-64, Oracle Solaris on SPARC
(64-Bit), and HP-UX Itanium or Oracle
Database Gateway for APPC
Installation and Configuration Guide
for Microsoft Windows..

Refer to "TCP/IP Security Option
SECURITY=PROGRAM" in
Chapter 14 of the Oracle Database
Gateway for APPC Installation and
Configuration Guide for IBM AIX on
POWER Systems (64-Bit), Linux
x86-64, Oracle Solaris on SPARC
(64-Bit), and HP-UX Itanium or
Chapter 11 of the Oracle Database
Gateway for APPC Installation and
Configuration Guide for Microsoft
Windows to learn more about how to
set the RACF userid and RACF
password.

Table 6–1 (Cont.) PGA_TCP_IMSC Table Columns

Column Name Type Content

Before You Run the pg4tcpmap Tool

6-4 Oracle Database Gateway for APPC User's Guide

Before You Run the pg4tcpmap Tool
Follow these steps to prepare for running the pg4tcpmap tool before you run the
gateway.

1. Set the ORACLE_HOME and ORACLE_SID for the Oracle database.

2. Make certain that the user, PGAADMIN, has been created in the Oracle database and
you can talk to the database. Issue

%ORACLE_HOME%\dg4appc\admin\pgacr8au.sql on Microsoft Windows.

Or,

$ORACLE_HOME/dg4appc/admin/pgacr8au.sql on UNIX based systems.

3. The initsid.ora file must contain appropriate parameters. Set the following
parameters:

– PGA_TCP_USER

– PGA_TCP_PASS

– PGA_TCP_DB

– If you intend to enable the tracing, you will also need to set the following
parameters:

– TRACE_LEVEL=255

– LOG_DESTINATION=<valid directory>

Refer to Chapter 8, "Troubleshooting" for information about tracing.

4. Make certain that the PGA_TCP_IMSC table has been created. Issue:

%ORACLE_HOME%\dg4appc\admin\pgaimsc.sql on Microsoft Windows.

Or,

$ORACLE_HOME/dg4appc/admin/pgaimsc.sql on UNIX based systems.

Figure 6–1 illustrates the relationship between the gateway, the database and the
pg4tcpmap tool in mapping the Side Profile Name to TCP/IP and IMS Connect
attributes in the PGA_TCP_IMSC table.

IRM_ID char(8) NOT NULL Specifes the IMS Connect user exit
IRM ID. If you do not specify this
parameter it will default to IRMREQ,
corresponding to the IBM HWSIMSO0
sample user exit.

LLLL char(1) NOT NULL Specifies whether the IMS Connect
user exit return data includes the
LLLL (total length) prefix field or not.
Supported values are:

Y - the exit return data includes the
LLLL prefix field

N - the exit return data does not
include the LLLL prefix field

The default value is N.

Table 6–1 (Cont.) PGA_TCP_IMSC Table Columns

Column Name Type Content

pg4tcpmap Tool Commands

PG4TCPMAP Commands (TCP/IP Only) 6-5

Figure 6–1 Mapping SNA Parameters to TCP/IP Using the pg4tcpmap Tool

A copy of the screen output file for the pg4tcpmap tool is located in Appendix B,
"Gateway Initialization Parameters for TCP/IP Communication Protocol" in the Oracle
Database Gateway for APPC Installation and Configuration Guide for IBM AIX on POWER
Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX Itanium or
Oracle Database Gateway for APPC Installation and Configuration Guide for Microsoft
Windows.

An example of a trace file from a sample pg4tcpmap execution can be found in
Chapter 8, "Troubleshooting".

pg4tcpmap Tool Commands
There are two commands for the pg4tcpmap tool:

■ one command inserts a row into the PGA_TCP_IMSC table;

■ the other command deletes a row from the table, and the user must specify the
predicate as "Side Profile Name".

Inserting a Row into the PGA_TCP_IMSC Table
ForMicrosoftWindows,issuethefollowingcommandfromthegatewayOraclehome
%ORACLE_HOME%\bin directory:

C:\> pg4tcpmap

For UNIX based systems, issue the following command from the gateway Oracle
home $ORACLE_HOME/bin directory:

$ pg4tcpmap

Database

PGA_TCP_IMSC
Table

Operating System

Gateway

C:\>pg4tcpmap
...
I
...
‘Side Profile name’ is ‘PGAIMST’
‘remote host name’ is ‘MVS08’
‘IMS Connect port number’ is ‘9900’
‘conversational protocol’ is “
‘Timer’ is ‘D’
‘socket connection type’ is ‘T’
...

Oracle Net

Operating System

pg4tcpmap Tool Commands

6-6 Oracle Database Gateway for APPC User's Guide

The gateway release number, copyright information, along with the following text
appears:

This tool takes the IMS Connect TCP/IP information, such as host name and port
number, and maps them to your TIPs.

You may use this tool to insert or delete IMS Connect TCP/IP information.
If you want to insert a row, Type "I"
If you want to delete a row, type "D"

Enter <i>, and after that, you need only enter the required parameters.

Deleting Rows from the PGA_TCP_IMSC Table
For Microsoft Windows, issue the following command from the gateway Oracle home
%ORACLE_HOME%\bin directory:

C:\> pg4tcpmap

For UNIX based systems, issue the following command from the gateway Oracle
home $ORACLE_HOME/bin directory:

$ pg4tcpmap

The gateway release number, copyright information, along with the following text
appears:

This tool takes the IMS Connect TCP/IP information, such as host name and port
number, and maps them to your TIPs.

You may use this tool to insert or delete IMS Connect TCP/IP information.
If you want to insert a row, Type "I"
If you want to delete a row, type "D"

Enter <d>, and the pg4tcpmap tool will ask you what Side Profile Name you want to
delete.

If the row does not exist, you will receive an ORA-1403 error message.

Querying the PGA_TCP_IMSC Table
Use the regular SQL*Plus select statement to query the table.

Example for Microsoft Windows:

C:\> sqlplus userid/password@databasename
SQL> column hostname format A22
SQL> column portnumber format A6
SQL> select sideprofilename, hostname,portnumber,imsdestid,commitmode from

pga_tcp_imsc;

Note: Do not use SQL*Plus to update the PGA_TCP_IMSC table. If you
have problems or incorrect data in the table, use %ORACLE_
HOME%\dg4appc\admin\pgaimsc.sql on Microsoft Windows or
$ORACLE_HOME/dg4appc/admin/pgaimsc.sql on UNIX based systems
to re-create the table and its index.

pg4tcpmap Tool Commands

PG4TCPMAP Commands (TCP/IP Only) 6-7

SIDEPROF HOSTNAME PORTNU IMSDESTI C
--------------- ---------------------- ------ -------- -
IMSPGA MVS08.US.ORACLE.COM 9900 IMSE 1

Example for UNIX based systems:

$ sqlplus userid/password@databasename
SQL> column hostname format A22
SQL> column portnumber format A6
SQL> select sideprofilename, hostname,portnumber,imsdestid,commitmode from

pga_tcp_imsc;

SIDEPROF HOSTNAME PORTNU IMSDESTI C
--------------- ---------------------- ------ -------- -
IMSPGA MVS08.US.ORACLE.COM 9900 IMSE 1

pg4tcpmap Tool Commands

6-8 Oracle Database Gateway for APPC User's Guide

7

Client Application Development (TCP/IP Only) 7-1

7 Client Application Development (TCP/IP Only)

This chapter discusses how you will call a TIP and control a remote host transaction if
your gateway uses TCP/IP support for IMS Connect. It also provides you with the
steps for preparing and executing a gateway transaction.

This chapter assumes:

■ a remote host transaction (RHT) has already been written

■ a TIP corresponding to the RHT has already been defined using the steps
described in Chapter 3, "Creating a TIP".

■ the PGA_TCP_IMSC mapping table has been populated, using the pg4tcpmap tool,
with the SIDE PROFILE name, TCP/IP hostname, port number and other IMS
Connect parameters.

This chapter contains the following sections:

■ "Overview of Client Application" on page 7-1

■ "Preparing the Client Application" on page 7-3

■ "Ensuring TIP and Remote Transaction Program Correspondence" on page 7-4

■ "Calling the TIP from the Client Application" on page 7-8

■ "Exchanging Data" on page 7-13

■ "Calling PG4TCPMAP" on page 7-14

■ "Executing the Application" on page 7-14

■ "Application Development with Multi-Byte Character Set Support" on page 7-14

■ "Privileges Needed to Use TIPs" on page 7-15

Overview of Client Application
The Procedural Gateway Administration Utility (PGAU) generates a complete TIP
using definitions you provide. The client application can then call the TIP to access the
remote host transaction. Chapter 2, "Procedural Gateway Administration Utility",
discusses the use of PGAU in detail.

This overview explains what you must do in order to call a TIP and control a remote
host transaction.

The gateway receives PL/SQL calls from the Oracle database and issues TCP/IP calls
to communicate with a remote transaction program.

The following application programs make this possible:

Overview of Client Application

7-2 Oracle Database Gateway for APPC User's Guide

1. an I/O PCB-enabled remote host transaction program

2. the PGA_TCP_IMSC mapping table that has been populated, using the pg4tcpmap
tool, with the SIDE PROFILE name as well as the TCP/IP hostname, port number
and other IMS Connect parameters.

3. a Transaction Interface Package (TIP). A TIP is a PL/SQL package that handles
communication between the client and the gateway and performs datatype
conversions between COBOL and PL/SQL.

4. PGAU generates the TIP specification for you. In the shipped samples, the
PGAU-generated package is called pgtflip.pkb. This generated TIP includes at
least three function calls that map to the remote transaction program:

– pgtflip_init initializes the conversation with the remote transaction program

– pgtflip_main exchanges application data with the remote transaction
program

– pgtflip_term terminates the conversation with the remote transaction
program

Refer to Appendix E, "Tip Internals" for more information about TIPs, if you are
writing your own TIP or debugging.

5. a client application that calls the TIP

The client application calls the three TIP functions with input and output
arguments. In the example, the client application passes an input and the remote
transaction and the remote transaction sends back the flipped input as an output.

Table 7–1 demonstrates the logic flow between the PL/SQL driver, the TIP, and the
gateway using the example IMS Connect-IMS transaction.

A client application which utilizes the gateway to exchange data with a remote host
transaction performs some tasks for itself and instructs the TIP to perform other tasks
on its behalf. The client application designer must consequently know the behavior of
the remote transaction and how the TIP facilitates the exchange.

The following sections provide an overview of remote host transaction behavior, how
this behavior is controlled by the client application and how TIP function calls and
data declarations support the client application to control the remote host transaction.
These sections also provide background information about what the TIP does for the

Table 7–1 Logic Flow of IMS Connect-IMS Example

Client
Application Oracle TIP

Procedures Established Between the
Gateway and the Remote Transaction
(mainframe IMS)

calls tip_init Calls PGAINIT Gateway issues TCP/IP socket and
connect to initiate the conversation with
IMS Connect.

calls tip_main Calls PGAXFER to send the
input and receive the
output

Gateway issues TCP/IP send() to IMS
Connect. IMS Connect, through OTMA
and XCF, talks to the IMS instance. IMS
RECEIVE completes. IMS performs
application logic and issues SEND back to
gateway. The gateway issues TCP/IP
receive(); receive completes.

calls tip_term Call PGATERM Gateway issues TCP/IP close().

Preparing the Client Application

Client Application Development (TCP/IP Only) 7-3

client application and how the TIP calls exchange data with the remote host
transaction.

Preparing the Client Application
To prepare the client application for execution you must understand the remote host
transaction requirements and then perform these steps:

1. Make sure that the pg4tcpmap tool has been used to map the SIDEPROFILE name,
defined in the .ctl file for the PGAU utility, to TCP/IP and IMS Connect
attributes.

Refer to Chapter 6, "PG4TCPMAP Commands (TCP/IP Only)" in this guide for
detailed information about mapping parameters.

2. Make certain that you have identified the remote host transaction program
facilities to be called.

3. Move relevant COBOL records layout (copybooks) to the gateway system for
input to PGAU.

4. Describe the remote host transaction data and calls to the PG Data Dictionary (PG
DD) with DEFINE DATA, DEFINE CALL, and DEFINE TRANSACTION statements.

5. Generate the TIP in the Oracle database, using GENERATE.

6. Create the client application that calls the TIP public functions.

7. Grant privileges on the newly created package.

TIP Content and Purpose
The content of a PGAU-generated TIP reflects the calls available to the remote host
transaction and the data that has been exchanged. Understanding this content helps
when designing and debugging client applications that call the TIP.

A TIP is a PL/SQL package, and accordingly has two sections:

1. A Package Specification containing:

■ Public function prototypes and parameters, and

2. A Package Body containing:

■ Private functions and internal control variables

■ Public functions

■ Package initialization following the last public function.

The purpose of the TIP is to provide a PL/SQL callable public function for every
allowed remote transaction program interaction. A remote transaction program
interaction is a logically related group of data exchanges through one or more PGAXFER
RPC calls. This is conceptually similar to a screen or menu interaction in which several
fields are filled in, the enter key is pressed, and several fields are returned to the user.
Carrying the analogy further:

■ the user might be likened to the TIP or client application

■ fields to be filled in are IN parameters on the TIP function call

■ fields returned are OUT parameters on the TIP function call

■ screen or menu is the group of IN and OUT parameters combined

Ensuring TIP and Remote Transaction Program Correspondence

7-4 Oracle Database Gateway for APPC User's Guide

■ a pressed enter key is likened to the PGAXFER remote procedural call (RPC)

The actual grouping of parameters that constitute a transaction call is defined by the
user. The gateway places no restrictions on how a remote transaction program might
correspond to a collection of TIP function calls, each call having many IN and OUT
parameters.

PGA users typically have one TIP per remote transaction program. How the TIP
function calls are grouped and what data parameters are exchanged on each call
depends on the size, complexity and behavior of the remote transaction program.

Refer to Oracle’s Oracle Database PL/SQL Language Reference for a discussion of how
PL/SQL packages work. The following discussion covers the logic that must be
performed within a TIP. Refer to the sample TIP and driver supplied in the
%ORACLE_HOME%\dg4appc\demo\IMS directory on Microsoft Windows and in $ORACLE_
HOME/dg4appc/demo/IMS directory on UNIX based systems, in files pgtflip.pkh,
pgtflip.pkb, and pgtflipd.sql.

Remote Host Transaction Types
From a database gateway application perspective, there are three main types of remote
host transactions:

■ transaction socket

■ persistent socket

■ non-persistent socket

You should be familiar with the remote host transaction types. Refer to the IBM IMS
Connect Guide and Reference for a full description of these transaction types.

Ensuring TIP and Remote Transaction Program Correspondence
A remote host transaction program and its related TIP with client application must
correspond on two key requirements:

■ Parameter datatype conversion, which results from the way in which transaction
DATA is defined. Refer to Appendix D, "Datatype Conversions" for a discussion of
how PGAU-generated TIPs convert data based on the data definitions.

■ TCP/IP send/receive synchronization, which results from the way in which
transaction CALLs are defined

These DATA and CALL definitions are then included by reference in a TRANSACTION
definition.

Make certain that the SIDEPROFILE name has been mapped to TCP/IP and IMS
Connect attributes, using the pg4tcpmap tool.

DATA Correspondence
Using data definitions programmed in the language of the remote host transaction, the
PGAU DEFINE DATA command stores in the PG DD the information needed for PGAU
GENERATE to create the TIP function logic to perform:

■ all data conversion from PL/SQL IN parameters supplied by the receiving remote
host transaction

■ all buffering into the format expected by the receiving remote host transaction

Ensuring TIP and Remote Transaction Program Correspondence

Client Application Development (TCP/IP Only) 7-5

■ all data unbuffering from the format supplied by the sending remote host
transaction

■ all data conversion to PL/SQL OUT parameters supplied by the sending remote
host transaction

PGAU determines the information needed to generate the conversion and buffering
logic from the data definitions included in the remote host transaction program.
PGAU DEFINE DATA reads this information from files, such as COBOL copy books, or
in-stream from scripts and saves it in the PG DD for repeated use. The Gateway
Administrator needs to transfer these definition files from the remote host to the
Oracle host where PGAU runs.

From the data definitions stored in the PG DD, PGAU GENERATE determines the remote
host datatype and matches it to an appropriate PL/SQL datatype. It also determines
data lengths and offsets within records and buffers and generates the needed PL/SQL
logic into the TIP. Refer to the PGAU "DEFINE DATA" statement on page 2-8 in
Chapter 2, "Procedural Gateway Administration Utility" and "Sample PGAU DEFINE
DATA Statements" in Appendix F, "Administration Utility Samples" for more
information.

All data that are referenced as parameters by subsequent calls must first be defined
using PGAU DEFINE DATA. Simple data items, such as single numbers or character
strings, and complex multi-field data aggregates, such as records or structures, can be
defined. PGAU automatically generates equivalent PL/SQL variables and records of
fields or tables for the client application to reference in its calls to the generated TIP.

As discussed, a parameter might be a simple data item, such as an employee number,
or a complex item, such as an employee record. PGAU DEFINE DATA automatically
extracts the datatype information it needs from the input program data definition files.

In this example, FLIPIN and FLIPOUT are the arguments to be exchanged.

PGTFLIP_MAIN(trannum,FLIPIN,FLIPOUT)
A PGAU DEFINE DATA statement must therefore be issued for each of these
parameters:

DEFINE DATA FLIPIN
PLSDNAME (FLIPIN)
USAGE (PASS)
LANGUAGE (IBMVSCOBOLII)
(
01 MSGIN PIC X(20).
);

DEFINE DATA FLIPOUT
PLSDNAME (flipout)
USAGE (PASS)
LANGUAGE (IBMVSCOBOLII)
(
01 MSGOUT PIC X(20).
);

Note that a definition is not required for the trannum argument. This is the APPC
conversation identifier and does not require a definition in PGAU.

CALL Correspondence
The requirement to synchronize TCP/IP send() and receive() means that when the
remote transaction program expects data parameters to be input, it issues TCP/IP
receive() to read the data parameters. Accordingly, the TIP must cause the gateway to

Ensuring TIP and Remote Transaction Program Correspondence

7-6 Oracle Database Gateway for APPC User's Guide

issue TCP/IP send() to write the data parameters to the remote transaction program.
The TIP must also cause the gateway to issue TCP/IP receive() when the remote
transaction program issues TCP/IP send().

The PGAU DEFINE CALL statement specifies how the generated TIP is to be called by
the client application and which data parameters are to be exchanged with the remote
host transaction for that call. Each PGAU DEFINE CALL statement might specify the
name of the TIP function, one or more data parameters, and the IN/OUT mode of each
data parameter. Data parameters must have been previously defined with PGAU
DEFINE DATA statements. Refer to "DEFINE CALL" on page 2-7 in Chapter 2,
"Procedural Gateway Administration Utility" and "Sample PGAU DEFINE CALL
Statements" in Appendix F for more information.

PGAU DEFINE CALL processing stores the specified information in the PG DD for later
use by PGAU GENERATE. PGAU GENERATE then creates the following in the TIP package
specification:

■ declarations of public PL/SQL functions for each CALL defined with PL/SQL
parameters for each DATA definition specified on the CALL

■ declarations of the public PL/SQL data parameters

The client application calls the TIP public function as a PL/SQL function call, using
the function name and parameter list specified in the PGAU DEFINE CALL statement.
The client application might also declare, by reference, private variables of the same
datatype as the TIP public data parameters to facilitate data passing and handling
within the client application, thus sharing the declarations created by PGAU GENERATE.

In this example, the following PGAU DEFINE CALL statement must be issued to define
the TIP public function:

DEFINE CALL FLIPMAIN
PKGCALL (pgtflip_main)
PARMS ((FLIPIN IN),(FLIPOUT OUT));

Flexible Call Sequence
The number of data parameters exchanged between the TIP and the gateway on each
call can vary at the user’s discretion, as long as the remote transaction program’s
SEND/RECEIVE requests are satisfied. For example, the remote transaction program data
exchange sequence might be:

TCP/IP SEND 5 fields (field1-field5)
TCP/IP RECEIVE 1 fields (field6)
TCP/IP SEND 1 field (field7)
TCP/IP RECEIVE 3 fields (field8 - field10)

The resulting TIP/application call sequence could be:

tip_call1(parm1 OUT, <-- TCP/IP SEND field1 from remote TP
parm2 OUT, <-- TCP/IP SEND field2 from remote TP
parm3 OUT); <-- TCP/IP SEND field3 from remote TP

tip_call2(parm4 OUT, <-- TCP/IP SEND field4 from remote TP
parm5 OUT); <-- TCP/IP SEND field5 from remote TP

tip_call3(parm6 IN OUT); --> TCP/IP RECEIVE field6 in remote TP
<-- TCP/IP SEND field7 from remote TP

tip_call4(parm8 IN, --> TCP/IP RECEIVE field8 into remote TP
parm9 IN, --> TCP/IP RECEIVE field9 into remote TP
parm10 IN); --> TCP/IP RECEIVE field10 into remote TP

Ensuring TIP and Remote Transaction Program Correspondence

Client Application Development (TCP/IP Only) 7-7

To define these four public functions to the TIP, four PGAU DEFINE CALL statements
must be issued, each specifying its unique public function name (tip_callx) and the
data parameter list to be exchanged. Once a data item is defined using DEFINE DATA, it
can be referenced in multiple calls in any mode (IN, OUT, or IN OUT). For example,
parm5 could be used a second time in place of parm6 This implies the same data is
being exchanged in both instances, received into the TIP and application on tip_call2
and returned, possibly updated, to the remote host in tip_call4.

Notice also that the remote transaction program’s first five written fields are read by
two separate TIP function calls, tip_call1 and tip_call2. This could also have been
equivalently accomplished with five TIP function calls of one OUT parameter each or a
single TIP function call with five OUT parameters. Then the remote transaction
program’s first read field (field6) and subsequent written field (field7) correspond to
a single TIP function call (tip_call3) with a single IN OUT parameter (parm6).

This use of a single IN OUT parameter implies that the remote transaction program’s
datatype for field6 and field7 are both the same and correspond to the conversion
performed for the datatype of parm6. If field6 and field7 were of different datatypes,
then they have to correspond to different PL/SQL parameters (for example, parm6 IN
and parm7 OUT). They could still be exchanged as two parameters on a single TIP call
or one parameter each on two TIP calls, however.

Lastly, the remote transaction program’s remaining three RECEIVE fields are supplied
by tip_call4 parameters 8-10. They also could have been done with three TIP calls
passing one parameter each or two TIP calls passing one parameter on one call and
two parameters on the other, in either order. This flexibility permits the user to define
the correspondence between the remote transaction program’s operation and the TIP
function calls in whatever manner best suits the user.

Call Correspondence Order Restrictions
Each TIP public function first sends all IN parameters, before it receives any OUT
parameters. Thus, a remote transaction program expecting to send one field and then
receive one field must correspond to separate TIP calls.

For example:

tip_callO(parmO OUT); <-- TCP/IP SEND outfield from remote TP

PGAXFER RPC checks first for parameters to send, but finds none and proceeds to
receive parameters:

tip_callI(parmI IN); --> TCP/IP RECEIVE infield to remote TP

PGAXFER RPC processes parameters to send and then checks for parameters to receive,
but finds none and completes; therefore, a single TIP public function with an OUT
parameter followed by an IN parameter does not work, because the IN parameter is
processed first--regardless of its position in the parameter list.

TRANSACTION Correspondence
The remote host transaction is defined with the PGAU DEFINE TRANSACTION statement
with additional references to prior definitions of CALLs that the transaction supports.

You specify the remote host transaction attributes, such as:

■ transaction ID or name

■ network address or location

■ system type (such as IBM370)

Calling the TIP from the Client Application

7-8 Oracle Database Gateway for APPC User's Guide

■ Oracle National Language of the remote host

In this example, the following DEFINE TRANSACTION statement is used to match this
information with the inserted row in the PGA_TCP_IMSC table.

DEFINE TRANSACTION IMSFLIP
CALL (FLIPMAIN)
SIDEPROFILE(PGATCP)
TPNAME(FLIP)
NLS_LANGUAGE("american_america.us7ascii");

Calling the TIP from the Client Application
Once a TIP is created, a client application must be written to interface with the TIP. A
client application that calls the TIP functions must include five logical sections:

■ declaring TIP variables

■ initializing the conversation

■ exchanging data

■ terminating the conversation

■ error handling

Declaring TIP Variables
The user declarations section of the tipname.doc file documents the required
declarations.

When passing PL/SQL parameters on calls to TIP functions, the client application
must use the exact same PL/SQL datatypes for TIP function arguments as are defined
by the TIP in its specification section. Assume, for example, the following is in the TIP
specification, or tipname.doc:

FUNCTION tip_call1 tranuse, IN BINARY_INTEGER,
tip_var1 io_mode pls_type1,
tip_record io_mode tran_rectype)

RETURN INTEGER;

TYPE tran_rectype is RECORD
(rec_field1 pls_type1,

Note: The PL/SQL package name is specified when the transaction
is defined; this is the name by which the TIP is referenced and which
the public function calls to be included within the TIP. Each public
function must have been previously defined with a PGAU DEFINE
CALL statement, which has been stored in the PG DD. If you do not
specify a package name (TIP name) in the GENERATE statement, the
transaction name you specified will become the package name by
default. In that case, the transaction name (tname) must be unique
and must be in valid PL/SQL syntax within the database containing
the PL/SQL packages.

For more information, refer to "DEFINE TRANSACTION" on
page 2-10 in Chapter 2, "Procedural Gateway Administration Utility"
and "Sample PGAU DEFINE TRANSACTION Statement" on page F-2
in Appendix F, "Administration Utility Samples".

Calling the TIP from the Client Application

Client Application Development (TCP/IP Only) 7-9

...
rec_fieldN pls_typeN);

Where Table 7–2 provides a description of each of the parameters:

In the client application PL/SQL atomic datatypes should be defined as the exact same
datatype of their corresponding arguments in the TIP function definition. The
following should be coded in the client application before the BEGIN command:

appl_var pls_type1; /* declare appl variable for */

TIP datatypes need not be redefined. They must be declared locally within the client
application, appearing in the client application before the BEGIN:

appl_record tipname.tran_rectype; /* declare appl record */

Table 7–3 describes the meaning of each procedure declaration:

Refer to the tipname.doc content file for a complete description of the user
declarations you can reference.

The client application calls the TIP public function as if it were any local PL/SQL
function:

rc = tip_call1(tranuse,
appl_var,
appl_record);

In the TCP/IP IMS Connect example, the PL/SQL driver pgtflipd.sql, which is
located in %ORACLE_HOME%\dg4appc\demo\IMS directory on Microsoft Windows and in

Table 7–2 Function Declarations

Parameter Description

tip_call1 The TIP function name as defined in the package specification.

tranuse The remote transaction instance parameter returned from the
TIP init function identifying the conversation on which this TIP
call is to exchange data.

tran_rectype The PL/SQL record datatype declared in the tipname TIP
specification. This is the same value as in the TYPE
tran_rectype is RECORD statement.

pls_typeN Is a PL/SQL atomic datatype.

rec_fieldN Is a PL/SQL record field corresponding to a remote transaction
program record field.

Table 7–3 Procedure Declarations

Item Description

appl_record Is a PL/SQL record exchanged with the TIP and used within
the client application.

tipname Is the PL/SQL package (TIP) name as stored in Oracle
database. This is the same value as in the statement CREATE or
REPLACE PACKAGE tipname in the TIP specification.

tran_rectype Is the PL/SQL record datatype declared in the tipname TIP
specification. This is the same value as in the
TYPE tran_rectype is RECORD statement.

Calling the TIP from the Client Application

7-10 Oracle Database Gateway for APPC User's Guide

$ORACLE_HOME/dg4appc/demo/IMS directory on UNIX based systems, is the client
application and includes the following declaration:

...

...
CREATE or REPLACE PROCEDURE pgtflipd(mesgin IN CHAR) IS
trannum INTEGER :=0 /* transaction usage number */
mesgout VARCHAR2(254); /* the output parameter */
rc INTEGER :=0 /* PGA RPC return codes */
term INTEGER :=0; /* 1 if pgtflip_term called */
...
...

Initializing the Conversation
The call to initialize the conversation serves several purposes:

■ To cause the PL/SQL package, the TIP, to be loaded and to perform the
initialization logic programmed in the TIP initialization section.

■ To cause the TIP init function to call the PGAINIT remote procedural call (RPC),
which in turn establishes communication with the remote transaction program
(RTP), and returns a transaction instance number to the application.

Optionally, calls to initialize the conversation can be used to:

■ Override default RHT/OLTP identification, network address attributes, and
conversation security user ID and password.

■ Specify what diagnostic traces the TIP is to produce. Refer to Chapter 8,
"Troubleshooting" for more information about diagnostic traces.

PGAU-generated TIPs provide four different initialization functions that client
applications can call. These are overloaded functions which all have the same name,
but vary in the types of parameters passed.

Three initialization parameters are passed:

■ The transaction instance number for RHT socket file descriptor. The tranuse
parameter is required on all TIP initializations.

■ TIP diagnostic flags for TIP runtime diagnostic controls. The tipdiag parameter is
optional. Refer to Chapter 8, "Troubleshooting" for a discussion of TIP diagnostics.

■ TIP default overrides for overriding OLTP and network attributes. The override
parameter is optional.

The following four functions are shown as they might appear in the TIP Content
documentation file. Examples of client application use are provided later.

TYPE override_Typ IS RECORD (
tranname VARCHAR2(2000), /* Transaction Program */
transync BINARY_INTEGER, /* RESERVED */
trannls VARCHAR2(50), /* RESERVED */
oltpname VARCHAR2(2000), /* Logical Unit */
oltpmode VARCHAR2(2000), /* LOG Mode Entry */
netaddr VARCHAR2(2000), /* Side Profile */
tracetag VARCHAR2(2000), /* gateway trace idtag */

FUNCTION pgtflip_init(/* init standard */
tranuse IN OUT BINARY_INTEGER)
RETURN INTEGER;

FUNCTION pgtflip_init(/* init override */

Calling the TIP from the Client Application

Client Application Development (TCP/IP Only) 7-11

tranuse IN OUT BINARY_INTEGER,
override IN override_Typ)
RETURN INTEGER;

FUNCTION pgtflip_init(/* init diagnostic */
tranuse IN OUT BNARY_INTEGER,
tipdiag IN CHAR)
RETURN INTEGER;

FUNCTION pgtflip_init(/* init over-diag */
tranuse IN OUT BINARY_INTEGER,
override IN override_Typ,
tipdiag IN CHAR)
RETURN INTEGER;

Transaction Instance Parameter
This transaction instance number (shown in examples as tranuse) must be passed to
subsequent TIP exchange and terminate functions. It identifies to the gateway on
which TCP/IP conversation--and therefore which iteration of a remote transaction
program--the data is to be transmitted or communication terminated.

A single client application might control multiple instances of the same remote
transaction program or multiple different remote transaction programs, all
concurrently. The transaction instance number is the TIP‘s mechanism for routing the
client application call through the gateway to the intended remote transaction
program.

It is the responsibility of the client application to save the transaction instance number
of each active transaction and pass the correct one to each TIP function called for that
transaction.

The client application calls the TIP initialization function as if it were any local
PL/SQL function. For example:

...

...
trannum INTEGER := 0;/* transaction usage number*/
...
...
BEGIN
rc := pgtflip.pgtflip_init(trannum);

...

...

Overriding TIP Initializations
Note that in the preceding example the client application did not specify any remote
transaction program name, network connection, or security information. The TIP has
such information internally coded as defaults and the client application simply calls
the appropriate TIP for the chosen remote transaction program. The client application
can, however, optionally override some TIP defaults and supply security information.

You do not need to change any client applications that do not require overrides.

When the remote host transaction was defined in the PG DD, the DEFINE TRANSACTION
statement specified certain default OLTP and network identification attributes which
can be overridden:

■ TPname

Calling the TIP from the Client Application

7-12 Oracle Database Gateway for APPC User's Guide

■ Side Profile

Refer to "DEFINE TRANSACTION" in Chapter 2, "Procedural Gateway
Administration Utility" for more information about the DEFINE TRANSACTION
statement.

These PG DD-defined transaction attributes are generated into TIPs as defaults and
can be overridden at TIP initialization time. This facilitates the use of one TIP, which
can be used with a test transaction or system, and can later be used with a production
transaction or system, without having to regenerate the TIP.

The override_Typ record datatype describes the various transaction attributes that can
be overridden by the client application. The following overrides are currently
supported:

■ tranname can be set to override the value that was specified by the TPNAME
parameter of the DEFINE TRANSACTION statement

■ netaddr can be set to override the value that was specified by the SIDEPROFILE
parameter of the DEFINE TRANSACTION statement

In addition to the transaction attributes defined in the PG DD, there are two
security-related parameters, conversation security user ID and conversation security
password, that can be overridden at TIP initialization time. The values for these
parameters normally come from either the database link used to access the gateway or
the Oracle database session. There are cases when the Oracle database user ID is not
sufficient for accessing the OLTP system. The user ID and password overrides provide
a way to specify those parameters to the OLTP system.

The following overrides are currently supported:

■ oltpuser can be set to override the user ID used to initialize the conversation with
the OLTP

■ oltppass can be set to override the password used to initialize the conversation
with the OLTP

The security overrides have an effect only if PGA_SECURITY_TYPE=PROGRAM is specified
in the gateway initialization file, and the OLTP system is configured to accept a
user ID and password on incoming conversation requests.

The transync (IMS Connect SYNCLEVEL) and trannls (Globalization Support character
set) are defined in the override record datatype, but are reserved for future use. The
RHT SYNCLEVEL and Globalization Support name cannot be overridden.

The client application might override the default attributes at TIP initialization for the
following reasons:

■ to start a different version of the RHT (such as production instead of test)

■ to change the location of the OLTP containing the RHT (if the OLTP was moved
due to migration or a switch to backup configuration)

Client applications requiring overrides can use any combination of override and
initialization parameters and might alter the combination at any time without
regenerating the TIP or affecting applications that do not override parameters.

To override the TIP defaults, an additional client application record variable must be
declared as override_Typ datatype, values must be assigned to the override subfields,
and the override record variable must be passed on the TIP initialization call from the
client application. For example:

...

...

Exchanging Data

Client Application Development (TCP/IP Only) 7-13

my_overrides pgtflip.override_Typ; -- declaration
...
...
my_overrides.oltpname := ’IVTNO’; -- swap to production IMS
my_overrides.tranname := ’IVTNV’; -- new transaction name

BEGIN
rc := pgtflip.pgtflip_init(trannum,my_overrides); -- init
...
...

Within the TIP, override attributes are checked for syntax problems and passed to the
gateway server.

Security Considerations
The security requirements of the default and overridden OLTPs must be the same
because the same gateway server is used in either conversation, as dictated by the
database link names in the PGA RPC calls. The gateway server startup security mode
is set at gateway server initialization time and passed unchanged to the OLTP at TIP or
conversation initialization time.

Exchanging Data
The client application should pass the transaction instance number, returned from a
previous tip_init call, to identify which remote transaction program is affected and
to identify any client application data parameters to be exchanged with the remote
transaction program.

In this IMS Connect inquiry example, we pass an employee number and receive an
employee record back:

rc = pgtflip.pgtflip_main(trannum, /* transfer data */
mesgin, /* input parameter */
mesgout); /* output parameter*/

Terminating the Conversation
The client application calls the TIP termination function as if it were any local PL/SQL
function. For example:

...

...
term := 1; /* indicate term called */
rc := pgtflip.pgtflip_term(trannum,0); /* terminate normally */

...

...

After a transaction instance number has been passed on a TIP terminate call to
terminate the transaction, or after the remote transaction program has abended, that
particular transaction instance number might be forgotten.

Error Handling
The client application should include an exception handler that can clean up any
active TCP/IP conversations before the client application terminates. The sample
client application provided in pgtflipd.sql contains an example of exception
handling.

Calling PG4TCPMAP

7-14 Oracle Database Gateway for APPC User's Guide

Gateway exceptions are reported in the range PGA-20900 to PGA-20999 and PGA-22000
to PGA 22099. When an exception occurs, the TIP termination function should be called
for any active conversations that have been started by prior calls to the TIP
initialization function.

For example:

EXCEPTION
WHEN OTHERS THEN
IF term = 0 THEN /* terminate function not called yet */
rc := pgtflip.pgtflip_term(trannum,1); /*terminate abnormally*/

END IF;
RAISE;

The remote transaction should also include provisions for error handling and
debugging, such as writing debugging information to the IMS temporary storage
queue area. Refer to the Oracle Database PL/SQL Language Reference for a discussion of
how to intercept and handle Oracle exceptions.

Granting Execute Authority
The TIP is a standard PL/SQL package and execute authority must be granted to users
who call the TIP from their client application. In this example, we grant execute on the
pgtflip package to user SCOTT:

GRANT EXECUTE ON PGTFLIP TO SCOTT

Refer to the Oracle Database Administrator's Guide for further information.

Calling PG4TCPMAP
PGAU need not be modified in order to have a conversation on a gateway using
TCP/IP. You use the APPC format of PGAU, but you will map parameters to TCP/IP
using the pg4tcpmap tool.

To map the DEFINE TRANSACTION parameters using TCP/IP, you must have a valid
input within the PGA_TCP_IMSC table before executing the application. Refer to
Chapter 6, "PG4TCPMAP Commands (TCP/IP Only)" for information about setting
up and using the mapping tool.

Executing the Application
Before executing the client application, ensure that a connection to the host is
established and that the receiving partner is available. In this example we use PL/SQL
driver PGTFLIPD to execute the IMS/IMS Connect inquiry. To execute this client
application, enter from SQL*Plus:

set serveroutput on
execute pgtflipd(’hello’);

Application Development with Multi-Byte Character Set Support
COBOL presently only supports double byte character sets (DBCS) for PIC G
datatypes.

PGAU processes IBM VS COBOLII PIC G datatypes as PL/SQL VARCHAR2 variables
and generates TIPs which automatically convert the data according to the
Oracle NLS_LANGUAGEs specified for the remote host data and the local Oracle data.

Privileges Needed to Use TIPs

Client Application Development (TCP/IP Only) 7-15

These Oracle NLS_LANGUAGEs can be specified as defaults for all PIC G data exchanged
by the TIP with the remote transaction (see DEFINE
TRANSACTION ... REMOTE_MBCS or LOCAL_MBCS). The Oracle NLS_LANGUAGEs for any
individual PIC G data item can be further overridden (see REDEFINE DATA ...
REMOTE or LOCAL_LANGUAGE).

DBCS data can be encoded in any combination of supported DBCS character sets. For
example, a remote host application which allows different codepages for each field of
data in a record is supported by the Oracle Database Gateway MBCS support.

Use of REDEFINE DATA ... REMOTE_LANGUAGE or LOCAL_LANGUAGE on PIC X items is
also supported. Thus a TIP can perform DBCS or MBCS conversions for specified PIC
X data fields, in addition to SBCS conversions by default for the remaining PIC X data
fields. Default SBCS conversion is according to the DEFINE TRANSACTION... NLS_
LANGUAGE and local Oracle default LANGUAGE environment values.

When PGAU is generating a TIP, the PIC G datatypes are converted to PL/SQL
VARCHAR2 datatypes. After conversion by the TIP, received ’PIC G’ VARCHAR2s can
have a length less then the maximum due to deletion of shift-out and shift-in meta
characters, and sent ’PIC G’ RAW datatypes will have the shift-out and shift-in
characters inserted as required by the remote host character set specified.

This is different from the conversions performed for PIC X data which is always a
known fixed-length and hence CHAR datatypes are used in TIPs for PIC X data fields.
However, even when the PIC X field contains DBCS or MBCS data, a CHAR variable is
still used and padded with blanks if needed.

Some remote host applications bracket a PIC G field with PIC X bytes used for
shift-out, shift-in meta-character insertion. Such a COBOL definition might look like:

01 MY_RECORD.
05 SO PIC X.
05 MY_MBCS_DATA PIC G(50).
05 SI PIC X.

This is not processed correctly by PGAU, because all three fields are defined, and
consequently treated, as separate data items when conversion is performed.

To be properly processed, the definition input to PGAU should be:

01 MY_RECORD.
05 MY_MBCS_DATA PIC G(51).

The PGAU REDEFINE DATA statement can redefine the 3-field definition to the 1-field
definition by specifying USAGE(SKIP) on fields SO and SI, and ’05
MY_MBCS_DATA PIC G(51).’ to redefine MY_MBCS_DATA. The three REDEFINE statements
can be placed in the PGAU input control file, and thus the remote host definition need
not be altered.

Privileges Needed to Use TIPs
Execute privileges must be explicitly granted to callers of TIPs or procedures. This
privilege cannot be granted through a role.

Any TIP user wanting to trace a TIP must be granted execute privileges on the rtrace
and ptrace procedures. Refer to the "Configuring PGAU" chapter appropriate for your
communications protocol in the Oracle Database Gateway for APPC Installation and
Configuration Guide for IBM AIX on POWER Systems (64-Bit), Linux x86-64, Oracle Solaris
on SPARC (64-Bit), and HP-UX Itanium, Oracle Database Gateway for APPC Installation
and Configuration Guide for Microsoft Windows ,and the Oracle Database Development

Privileges Needed to Use TIPs

7-16 Oracle Database Gateway for APPC User's Guide

Guide for more information.

For example:

On Microsoft Windows:

C:\> sqlplus pgaadmin\pw@database_specification_string
SQL> grant execute on pgaadmin.purge_trace to tip_user_userid;
SQL> grant execute on pgaadmin.read_trace to tip_user_userid;

On UNIX based systems:

$ sqlplus pgaadmin/pw@database_specification_string
SQL> grant execute on pgaadmin.purge_trace to tip_user_userid;
SQL> grant execute on pgaadmin.read_trace to tip_user_userid;

After a TIP has been developed, the TIP user must be granted execute privileges on the
TIP by the TIP owner. The TIP owner is usually PGAADMIN, but can be another user who
has been granted either the PGDDDEF or PGDDGEN roles. For example:

For Microsoft Windows:

C:\> sqlplus tip_owner\pw@database_specification_string
SQL> grant execute on tipname to tip_user_userid;

For UNIX based systems:

$ sqlplus tip_owner/pw@database_specification_string
SQL> grant execute on tipname to tip_user_userid;

where database_specification_string is the Oracle Net identifier for the Oracle
database where the gateway UTL_RAW and UTL_PG components were installed. This is
the same Oracle database where the TIPs are executed and where grants on the TIPs
are performed from the TIP owner user ID.

A SQL script for performing these grants is provided in the
%ORACLE_HOME%\dg4appc\admin directory for Microsoft Windows and $ORACLE_
HOME/dg4appc/admin in the directory for UNIX based systems. The pgddausr.sql
script performs the grants for private access to the packages by a single TIP user. If
private grants are to be used, the pgddausr.sql script must be run once for each TIP
user’s user ID.

To run these scripts, use SQL*Plus to connect to the Oracle database as user PGAADMIN.
From SQL*Plus, run the pgddausr.sql script from the %ORACLE_
HOME%\dg4appc\admin directory on Microsoft Windows or $ORACLE_
HOME/dg4appc/admin directory on UNIX based systems. The script performs the
necessary grants as previously described. You are prompted for the required user IDs,
passwords, and database specification strings. If you are using private grants, repeat
this step for each user ID requiring access to the packages.

No script has been provided to perform public grants. To do this, issue the following
commands:

For Microsoft Windows:

C:\> sqlplus tip_owner\pw@database_specification_string
SQL> grant execute on tipname to PUBLIC;

For UNIX based systems:

$ sqlplus tip_owner/pw@database_specification_string
SQL> grant execute on tipname to PUBLIC;

Privileges Needed to Use TIPs

Client Application Development (TCP/IP Only) 7-17

Privileges Needed to Use TIPs

7-18 Oracle Database Gateway for APPC User's Guide

8

Troubleshooting 8-1

8 Troubleshooting

This chapter discusses diagnostic techniques and aids for determining and resolving
problems with data conversion, truncation, and conversation startup. It also describes
how to collect the data when the debugging (trace) option is on.

You will want to trace the PL/SQL stored procedures only when you suspect
problems. Do not run with tracing enabled during normal operations, because it will
affect performance.

This chapter contains the following sections:

■ "TIP Definition Errors" on page 8-1

■ "Problem Analysis with PG DD Diagnostic References" on page 8-2

■ "Problem Analysis with PG DD Select Scripts" on page 8-3

■ "Data Conversion Errors" on page 8-4

■ "Problem Analysis with TIP Runtime Traces" on page 8-5

■ "TIP Runtime Trace Controls" on page 8-6

■ "Suppressing TIP Warnings and Tracing" on page 8-7

■ "Problem Analysis of Data Conversion and Truncation Errors" on page 8-8

■ "Gateway Server Tracing" on page 8-10

TIP Definition Errors
TIP definition errors occur when a TRANSACTION, CALL, or DATA entry in the PG DD is
not properly defined.

Use the REPORT with DEBUG statement to list the PG DD contents and GENERATE
DIAGNOSE(PKGEX(DR)) option to include corresponding ID numbers in the TIP.

Table 8–1 shows the mnemonic used to represent ID numbers and their
correspondence with the following:

■ PGAU REPORT with debug listings, GENERATE traces and TIPs

■ PG DD tables and columns from which ID numbers are selected

■ Oracle sequence objects from which ID numbers originate

Table 8–1 PG DD ID Numbers in Correspondence

PGAU REPORT/TIP PDGG table(col) Sequence Object

v# transaction version pga_trans(version) pga.transvers

Problem Analysis with PG DD Diagnostic References

8-2 Oracle Database Gateway for APPC User's Guide

These ID numbers can be used to associate the conversions performed in the TIP with
the definitions stored in the PG DD.

The PG DD diagnostic references appear in TIPs generated with the PKGEX(DR) option
as single line Comments:

-- PG DD type idno=nnn ...

The PG DD diagnostic references appear in REPORT with DEBUG listings before or to the
right of their related definition entry as end-delimited Comments:

/* idno=nnn */

Refer to Appendix A, "Database Gateway for APPC Data Dictionary" for more
information about PG DD, including a complete list of dictionary tables.

Problem Analysis with PG DD Diagnostic References
TIPs should be generated by the PGAU GENERATE command with the PKGEX(DR)
diagnostic option, to include PG DD reference Comments in the TIP. These diagnostic
references are Comments only and do not affect the runtime overhead of the TIP. Refer
to Section , "GENERATE" on page 2-15 in Chapter 2, "Procedural Gateway
Administration Utility" for a description of the PKGEX (DR) parameter.

1. Before defining the PL/SQL package, identify the transaction name, ID number
(t#), and version (v#) from the TIP specification within the TIP.

2. Invoke PGAU REPORT WITH DEBUG specifying the same transaction name and
version.

v# call version pga_call(version) pga.callvers

v# data version pga_data(version) pga.datavers

t# transaction id# pga_trans(trans#) pga.transeq

c# call id# pga_call(call#)

pga_call_parm(call#)

pga.callseq

d# data id# pga_call_parm(data#)

pga_data(data#)

pga_fields(data#)

pga.dataseq

f# field id# pga_fields(fld#) pga.fieldseq

q# qualifier id# pga_data_values(qual#) pga.fieldseq

a# trans attribute id# pga_trans_values(attr#)

pga_trans_attr(attr#)

pga.tattrseq

a# field attribute id# pga_data_values(attr#)

pga_data_attr(attr#)

pga.dtattseq

e# environment pga_environments(env#) pga.envrseq

l# compiler/language pga_compilers(comp#) pga.compseq

Table 8–1 (Cont.) PG DD ID Numbers in Correspondence

PGAU REPORT/TIP PDGG table(col) Sequence Object

Problem Analysis with PG DD Select Scripts

Troubleshooting 8-3

REPORT selects definitions from the PG DD and produces a listing showing the
DATA, CALL, and TRANSACTION definitions and the ID number of each user-supplied
definition.

3. Compare the reported definitions with those used in the remote transaction
program and identify all corresponding exchanges and the data formats
transmitted.

4. Look for and investigate any mismatches, such as:

■ different numbers of send/receive calls

■ different sequence of send/receive calls

■ different parameter lists on send/receive calls

■ different data fields within each exchanged parameter

■ different lengths for each exchanged parameter

■ unsupported datatypes for each exchanged parameter

■ improperly initialized control fields for:

– repeating group counts

IBMVSCOBOLII affected clauses include

OCCURS n TIMES DEPENDING ON field

– remapped group criteria

IBMVSCOBOLII affected clauses include

REDEFINES field1 WHEN field2 = criteria

Problem Analysis with PG DD Select Scripts
PGAU GENERATE error messages and TRACE(OC) entries reference SQL SELECT
statements. Refer to Table 8–2 for the meaning of the name designations for each entry.

The SQL*Plus test scripts in Table 8–3 are provided to perform the identical SELECTS as
GENERATE performs to determine which PG DD rows are being used when the TIP is
generated. These files are loaded into the %ORACLE_HOME%\dg4appc\admin directory on
Microsoft Windows or into the $ORACLE_HOME/dg4appc/admin directory on UNIX
based systems, during installation.

Table 8–2 Meaning of TRACE(OC) Output

Name Entry

SED Select Environment Data

STL Select Transaction (latest version)

STV Select Transaction (specific version)

STC Select Transaction Calls

SPD Select Parameter Data

SF Select Fields

SFA Select Field Attributes

SXF Select conversion Formats

SXA Select Attribute conversions

Data Conversion Errors

8-4 Oracle Database Gateway for APPC User's Guide

The scripts are shown in the same order used by GENERATE and each script prompts the
SQL*Plus user for the required input. The information retrieved from a previous select
is often used as input to a subsequent select. If a you suspect that a PG DD field entry
has produced inaccurate data, browse the .sql files listed above to determine the
source of the problem. These files are loaded into the
%ORACLE_HOME%\dg4appc\admin directory on Microsoft Windows or $ORACLE_
HOME/dg4appc/admin directory on UNIX based systems, during installation.

Data Conversion Errors
Data conversion errors are usually the result of:

■ incorrect determination of datatype

or

■ incorrect specification of data position.

PGAU determination of the datatype is based on the values found in the PG DD,
pga_fields(mask), and pga_fields(maskopts) columns. PGAU generates PL/SQL
code to perform conversions based on the mask value:

■ PIC X converted to CHAR with the same character length

■ PIC G converted to CHAR with the same character length

■ PIC 9 converted to NUMBER

Character datatype is presumed for all PIC X and PIC G mask values and conversion
errors are more likely the result of position, length, and justification errors.

Determination of numeric datatype depends on several factors, including the
combination of mask and maskopts values and how they apply to the actual remote
host data in its internal format. Values for mask, maskopts, and data might conflict in
unexpected ways. For example, an option such as USAGE IS COMP might be overridden
if the data is in display format. While compilers occasionally perform such overrides
correctly, they can cause unexpected results when exchanging data with systems
coded in other languages.

To notify the user of such overrides, a warning function has been included in the
following UTL_PG functions:

■ MAKE _NUMBER_TO_RAW_FORMAT

Table 8–3 SQL*Plus Test Scripts and Their Corresponding Entries

Script Entry

pgddsed.sql Select Environment Data

pgddstl.sql Select Transaction (latest version)

pgddstv.sql Select Transaction (specific version)

pgddstc.sql Select Transaction Calls

pgddspd.sql Select Parameter Data

pgddsf.sql Select Fields

pgddsfa.sql Select Field Attributes

pgddsxf.sql Select Conversion Formats

pgddsxa.sql Select Attribute conversions

Problem Analysis with TIP Runtime Traces

Troubleshooting 8-5

■ MAKE_RAW_TO_NUMBER_FORMAT

■ NUMBER_TO_RAW

■ RAW_TO_NUMBER

Problem Analysis with TIP Runtime Traces
TIPs should be generated by the PGAU GENERATE command with the PKGEX(DC)
diagnostic option to include TIP data conversion trace logic in the TIP. TIP function
call trace logic is always included in every TIP. This is runtime trace instrumentation
and has some overhead when tracing is enabled, but negligible overhead when tracing
is disabled. Refer to Section , "GENERATE" on page 2-15 in Chapter 2, "Procedural
Gateway Administration Utility" for more information.

1. Regenerate TIPs with the PKGEX(DC, DR) options and recompile the TIP body file,
tipname.pkb. Avoid recompiling the TIP specification.

2. Revise the application that calls the TIP initialization function (tipname_init) to
pass the trace flags parameter with data conversion and function call tracing
enabled. Refer to "Controlling TIP Runtime Data Conversion Tracing" on page 8-7.

If the problem causes an exception to be raised in the TIP and the application
contains an exception handler, the application exception handler should be
Commented out to prevent it from handling the exception and preventing the
exception point of origin from being reported. When the TIP exception is next
raised, its source line number in the TIP is reported. Record this information.

3. Execute the application with diagnostic TIP initialization.

If the TIP trace pipe inlet overflows due to the application calls causing the TIP to
write trace messages in the TIP trace pipe inlet, you have one minute from the
start of the overflow condition to begin Step 4 and empty the TIP trace pipe.

Otherwise, exception "ORA-20703 PGA-TIP: pipe send error" is issued, ending
the diagnostic session, possibly before any relevant trace information is generated.

4. Retrieve and record the TIP trace message stream.

Use SQL*Plus to connect to the same Oracle user ID executing the application or
the user ID under which the TIP is executed. This establishes a second session
from which the trace pipe outlet can be read, preventing the TIP trace pipe from
overflowing at the TIP trace pipe inlet.

a. Issue the command:

set serveroutput on size nnnnn

b. Issue the command to record the trace output:

spool tipname.trc

c. Issue the command to retrieve the trace stream:

exec rtrace(’tipname’);

If the application is long-running, repeat this command as often as needed
until all trace messages have been retrieved.

5. If any exceptions are raised, note their prefix, number, and full message text.

6. Analyze the TIP trace message stream. A normal trace is shown for the pgadb2i
TIP in Appendix F, "Administration Utility Samples".

TIP Runtime Trace Controls

8-6 Oracle Database Gateway for APPC User's Guide

TIP Runtime Trace Controls
Runtime trace control is the second parameter specified on a TIP initialization call. It is
a CHAR(8) datatype of the following form:

rc := yourtip_init(trannum,’wxyz0000’);

Table 8–4 describes the value of positions one to four:

Positions 5 through 8 are reserved and ignored.

Generating Runtime Data Conversion Trace and Warning Support
Use PGAU to regenerate the TIP and specify the GENERATE parameter
DIAGNOSE(PKGEX(DC)). This includes runtime PL/SQL code in the TIP which tests for
and displays warnings of correct, but possibly unexpected NUMBER_TO_RAW and RAW_
TO_NUMBER conversions.

Refer to Section , "GENERATE" on page 2-15 in Chapter 2, "Procedural Gateway
Administration Utility" for more information about this parameter.

Recompile the TIP body under SQL*Plus. Avoid recompiling the TIP specification.

Controlling TIP Runtime Conversion Warnings
After the TIP has been regenerated, the issuance of runtime warnings is under control
of the application. By default, warnings are suppressed and are only issued when they
are enabled.

Errors and exceptions are always issued if they occur.

To enable the issuance of warnings, an additional parameter must be supplied when
calling the TIP initialization function. This parameter is a CHAR(8) datatype and each
character position controls a particular TIP runtime diagnostic function.

To enable warnings in yourtip, the client application should call the TIP initialization
function with the statement:

rc := yourtip_init(trannum,’10000000’);

The following is input to the TIP trace pipe inlet at initialization time:

"UTL_PG warnings enabled"

Table 8–4 Values of Positions 1 through 4 on Second Parameter of TIP Call

Item Description

position 1 (w) controls UTL_RAW warning. A value of 0 suppresses warnings; a
value of 1 issues warnings.

position 2 (x) controls the function entry/exit tracing. A value of 0
suppresses the function entry/exit tracing; a value of 1 enables
the function entry/exit tracing.

position 3 (y) controls data conversion tracing. A value of 0 suppresses data
conversion tracing; a value of 1 enables data conversion
tracing.

position 4 (z) controls gateway exchange tracing. A value of 0 suppresses
gateway exchange tracing; a value of 1 enables gateway
exchange tracing.

Suppressing TIP Warnings and Tracing

Troubleshooting 8-7

Controlling TIP Runtime Function Entry/Exit Tracing
To enable function entry/exit tracing in yourtip, the client application should call the
TIP initialization function with the statement:

rc := yourtip_init(trannum,’01000000’);

The following is input to the TIP trace pipe inlet at initialization time:

’function entry/exit trace enabled’
’tipname_init entered’
’time date/time stamp’

Controlling TIP Runtime Data Conversion Tracing
To enable data conversion tracing in yourtip, the client application should call the TIP
initialization function with the following statement:

rc := yourtip_init(trannum,’00100000’);

The following is input to the TIP trace pipe inlet at initialization time:

’data conversion trace enabled’

Controlling TIP Runtime Gateway Exchange Tracing
To enable runtime gateway exchange tracing in yourtip, the client application should
call the TIP initialization function with the following statement:

rc := yourtip_init(trannum,’00010000’);

The following is input to the TIP trace pipe inlet at initialization time:

’gateway exchange trace enabled’

Suppressing TIP Warnings and Tracing
After debugging is finished, there are two ways to suppress the following:

■ data conversion tracing

■ conversion warnings

■ function entry/exit tracing

■ gateway exchange tracing

You can:

1. Call the TIP initialization function without passing any diagnostic control
parameters:

rc := yourtip_init(trannum);

2. Call the TIP initialization function passing a revised diagnostic control parameter
which disables all tracing and warnings:

rc := yourtip_init(trannum,’00000000’);

A third method, described in Method C, removes the logic for:

■ data conversion tracing

■ conversion warnings

Problem Analysis of Data Conversion and Truncation Errors

8-8 Oracle Database Gateway for APPC User's Guide

3. Generate the TIP again without:

PKGEX(DC)

Or you can recompile the previous version of the TIP body if it was saved.

Methods A and B allow you to use the same TIP without alteration, but without
tracing or warnings. These methods are reversible without alteration or replacement of
the TIP. Tracing and warnings can be redisplayed should a problem recur.

Method C also suppresses data conversion tracing and warnings and incurs reduced
overhead by avoiding tests, but is not reversible without regenerating the TIP or
recompiling an alternate version with data conversion tracing and warning
diagnostics imbedded.

The logic for function entry/exit and gateway exchange tracing is included in every
TIP and cannot be removed. It can be disabled by method A or B.

Problem Analysis of Data Conversion and Truncation Errors
Oracle Database Gateway for APPC data lengths are limited by PL/SQL to 32,763
bytes per APPC exchange and PL/SQL variable.

The following steps can be used to diagnose data conversion or truncation errors.

Refer to Chapter 3, "Creating a TIP" to review the proper values and definitions
referenced in items 1 through 4 below:

1. Ensure that the COBOL definitions used in the RHT match the input to PGAU;

2. Ensure the RHT transmission buffers are of sufficient length;

3. If your gateway uses SNA: Ensure the RHT APPC call addresses the correct
transmission buffer and uses the correct data length;

If your gateway uses TCP/IP: Ensure the RHT I/O PCB call addresses the correct
transmission buffer and uses the correct data length

4. Ensure the client application has declared the correct TIP datatypes used as
arguments in the TIP calls.

5. Ensure that the client application is calling the TIP functions in the proper
sequence (init, user-defined..., term), and that any input data to the RHT is correct.
Also ensure that if multiple user-defined functions exist, they are being called in
the proper sequence and passed the correct input values, if any.

DBMS_OUTPUT calls can be inserted in the client application to trace its behavior.

For more information about calling TIP functions in proper sequence, refer to the
chapter on configuring the Oracle database for first time installations, in the Oracle
Database Gateway for APPC Installation and Configuration Guide for IBM AIX on
POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX
Itanium or Oracle Database Gateway for APPC Installation and Configuration Guide for
Microsoft Windows.

6. Optionally, regenerate the TIP with diagnostic traces included and enable them.
The following traces are particularly useful:

■ data conversion trace

■ function entry/exit trace

■ gateway exchange trace

Problem Analysis of Data Conversion and Truncation Errors

Troubleshooting 8-9

Refer to "Problem Analysis with TIP Runtime Traces" on page 8-5 for more
information about traces; refer also to GENERATE on page 2-15 in Chapter 2,
"Procedural Gateway Administration Utility".

Note that the output of the trace is different for a gateway using SNA than for a
gateway using TCP/IP. However, the method of invoking the trace is the same
regardless of which communication protocol you are using.

On Microsoft Windows, the gateway server tracing must also be enabled in
%ORACLE_HOME%\dg4appc\admin\initsid.ora. Set the parameters SET
TRACE_LEVEL=255 and SET
LOG_DESTINATION=C:\oracle\pga\12.1\dg4appc\log

OnUNIXbasedsystems, thegatewayserver tracingmustalsobeenabledin
$ORACLE_HOME/dg4appc/admin/initsid.ora. Set the parameters SET
TRACE_LEVEL=255 and SET
LOG_DESTINATION=/oracle/pga/12.1/dg4appc/log

Refer to "Gateway Server Tracing" on page 8-10 in this guide for more information
about tracing.

■ If your gateway is using SNA: Refer to Appendix A, "Gateway Initialization
Parameters for SNA Protocol" in your Oracle Database Gateway for APPC
Installation and Configuration Guide for more information about these
parameters;

■ If your gateway is using TCP/IP: Refer to Appendix B, "Gateway
Initialization Parameters for TCP/IP Communication Protocol" in the Oracle
Database Gateway for APPC Installation and Configuration Guide for IBM AIX on
POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and
HP-UX Itanium or Oracle Database Gateway for APPC Installation and
Configuration Guide for Microsoft Windows. for more information about these
parameters.

Rerun the client application and examine the trace (see the next step for details).

To disable the trace, reset

SET TRACE_LEVEL=0

7. Examine the trace output.

The TIP trace output can be saved in a spool file, such as:

spool tipname.trc

TIP trace output is written to a named DBMS_PIPE and can be retrieved under
SQL*Plus by issuing the following command:

exec rtrace(’tipname’);
or it can be purged by issuing the following command:

exec ptrace(’tipname’);

Gateway server trace output is written to a log file in a default directory path
specified by the SET LOG_DESTINATION gateway parameter in %ORACLE_
HOME%\dg4appc\admin\initsid.ora for Microsoft Windows and in $ORACLE_

Note: tipname is case-sensitive and must be specified exactly as it is
in the TIP.

Gateway Server Tracing

8-10 Oracle Database Gateway for APPC User's Guide

HOME/dg4appc/admin/initsid.ora for UNIX based systems. For example, on
Microsoft Windows:

SET LOG_DESTINATION=C:\oracle\pga\12.1\dg4appc\log

On UNIX based systems:

SET LOG_DESTINATION=$ORACLE_HOME/dg4appc/log/

Refer to "Gateway Server Tracing" on page 8-10 for more information.

The gateway server log file can be viewed be editing the file or by issuing other
system commands that display file contents. The log file can also be copied and
saved to document problem symptoms.

Gateway Server Tracing
The gateway contains extensive tracing logic in the gateway remote procedural calls
(RPCs), and the APPC-specific code. Tracing is enabled through gateway initialization
parameters or dynamic RPC calls to the gateway. The trace provides information
about the execution of the gateway RPC functions and about the execution of the
APPC interface. The trace file contains a text stream written in chronological sequence
of events. The trace is designed to assist application programmers with the debugging
of their OLTP transaction programs and Oracle applications that communicate with
those transaction programs through the gateway.

A single trace file is created for an entire gateway session from the time the database
link is opened until it is closed. The trace can be directed to a specific path/filename or
to a path (directory) only. In the first case, the file is overwritten each time a new
session begins for the gateway being traced. When the trace target is a directory, a
separate file with a generated name (containing the operating system process ID) is
written for each gateway session. The latter approach must be used whenever the
gateway to be traced might be the target of new sessions after the desired trace is
written but before it can be copied and saved. Conversely, in some situations you
might choose to create a distinct gateway system identifier used solely for tracing, and
direct its trace to a single specific filename. This avoids the problem of an
ever-increasing set of trace files when, for example, repeated attempts are necessary to
reproduce or debug a problem. A fixed filename should never be used if there is any
chance that an unexpected gateway session could overlay a useful trace.

Defining the Gateway Trace Destination
This section describes how to define the destination of trace files to the gateway, and
how to cause the gateway to create the trace files during initialization. Note that this
does not enable any gateway tracing, it merely defines the destination of any trace
output produced when the gateway tracing is enabled.

1. Choose a gateway system identifier to trace. Decide whether you will be tracing an
existing gateway system identifier or a new one created specifically for tracing. If a
new system identifier will be used, configure the new system identifier exactly the
same as the old one by creating a new initsid.ora (a copy of the old), entries in
listener.ora as necessary, and a new Oracle database link.

Test the new system identifier to ensure it works before proceeding.

2. For Microsoft Windows, in %ORACLE_HOME%\dg4appc\admin, edit the initsid.ora
file so it contains the following:

Gateway Server Tracing

Troubleshooting 8-11

SET TRACE_LEVEL=255
SET LOG_DESTINATION=logdest

For UNIX based systems, in $ORACLE_HOME/dg4appc/admin, edit the initsid.ora
file so it contains the following:

SET TRACE_LEVEL=255
SET LOG_DESTINATION=logdest

where logdest is the directory path for the trace output. The logfile is usually in
%ORACLE_HOME%\dg4appc\log for Microsoft Windows and $ORACLE_
HOME/dg4appc/log for UNIX based systems. Refer to the earlier discussion about
"Problem Analysis of Data Conversion and Truncation Errors" on page 8-8 for
more information.

Once these two steps are completed, the gateway opens the specified trace file during
initialization. Each session on this system identifier writes a trace file as specified by
the SET LOG_DESTINATION parameter described in Step 2 above.

If a directory path was specified, each trace file has a name of the form:

sid_pid.log

where sid is the gateway sid and pid is the operating system process ID of the
gateway server expressed in decimal.

Enabling the Gateway Trace
There are two ways to enable the gateway server tracing. The first is to set the tracing
options in the gateway initialization file, initsid.ora. The second is to use the
additional PGA remote procedural call (RPC) function, PGATCTL, to dynamically
control the tracing from within the Oracle application. The first method causes tracing
to be performed for all users of the gateway system identifier and is recommended
only when the use of the gateway system identifier can be limited to users actually
needing the trace. The second method is more flexible and allows the application
programmer to selectively trace events on a single gateway session without affecting
the operation of other users’ gateway sessions.

Before the gateway server trace is enabled, perform the tasks listed in "Defining the
Gateway Trace Destination" on page 8-10.

Enabling the Gateway Trace Using Initialization Parameters
Edit the initsid.ora file, and add the following line at the end of the file (or, if a SET
TRACE_LEVEL parameter is already specified, modify it):

SET TRACE_LEVEL=trace

where trace is a numeric value from 1 to 255 indicating which traces are to be
enabled. For further information on the use of this parameter, refer to "PGA
Parameters" in Appendix A, "Gateway Initialization Parameters for SNA Protocol" of
the Oracle Database Gateway for APPC Installation and Configuration Guide for IBM AIX on
POWER Systems (64-Bit), Linux x86-64, Oracle Solaris on SPARC (64-Bit), and HP-UX

Note: Misspelled parameter names in initsid.ora are not detected.
The parameter is ignored.

Gateway Server Tracing

8-12 Oracle Database Gateway for APPC User's Guide

Itanium or Oracle Database Gateway for APPC Installation and Configuration Guide for
Microsoft Windows

Once this step is completed, tracing is enabled for the desired gateway system
identifier.

Enabling the Gateway Trace Dynamically from PL/SQL
The following is only needed for user-written TIPs. PGAU-generated TIPs
automatically include the following facilities. Refer to "Controlling TIP Runtime
Gateway Exchange Tracing" on page 8-7 for more information.

Make the following changes to the PL/SQL application that calls the Transaction
Interface Package(s) to execute remote transaction(s).

1. Add a call to PGATCTL before any calls to TIP initialization functions are made:

PGATCTL@dblink(convid,
traceF,
traceS);

Where Table 8–5 describes the parameters in PGATCTL:

This call sets the trace flags for all new conversations started after the call to the
value specified by traceS.

2. Recompile the PL/SQL application to pick up the new trace call.

Table 8–5 PGATCTL Parameters

Parameter Description

dblink is the name of the database link to the gateway

convid For a gateway using SNA: Conversation identifier returned by
the PGAINIT function to be used to identify the conversation.

For a gateway using TCP/IP: Socket file descriptor returned by
the PGAINIT function to be used to identify the conversation

traceF is the trace control function to be performed.

traceS specifies which traces are to be enabled, as described
previously in the discussion of the SET TRACE_LEVEL
initialization parameter.

A

Database Gateway for APPC Data Dictionary A-1

A Database Gateway for APPC Data Dictionary

This appendix contains the following sections:

■ "PG DD Environment Dictionary" on page A-1

■ "PG DD Active Dictionary" on page A-5

The Procedural Gateway Data Dictionary (PG DD) is maintained in a conventional
Oracle database. It is installed by a SQL*Plus installation script (pgddcr8.sql in the
%ORACLE_HOME%\dg4appc\admin directory on Microsoft Windows or $ORACLE_
HOME/dg4appc/admin directory on UNIX based systems) and manipulated by PGAU
statements and standard SQL statements.

The dictionary is divided into two sections:

■ the environment dictionary

■ the active dictionary

The environment dictionary is static and should not be changed. The contents of the
environment dictionary support proper translation from the remote transaction’s
environment to the integrating server’s environment, and is platform-specific. The
active dictionary is updated at the user’s location by the PGAU in response to
definitions supplied by the user.

PG DD Environment Dictionary
The PGAU uses some dictionary tables strictly as input. These dictionary tables define
environmental parameters for PGAU. Both table and values are installed by a
SQL*Plus script at gateway installation time and are not to be modified by the
installation.

The environment dictionary does not reference the active dictionary, but the active
dictionary does reference environment dictionary entries.

Environment Dictionary Sequence Numbers
The environment dictionary requires unique identifying numbers in some columns to
join environment dictionary entries together. Oracle sequence objects are therefore
created by the Oracle Database Gateway for APPC to support this requirement.

Table A–1 presents the Oracle sequence objects and their descriptions.

Table A–1 Oracle Sequence Objects

Oracle Sequence Objects Descriptions

pga.envrseq Environment id tag

PG DD Environment Dictionary

A-2 Oracle Database Gateway for APPC User's Guide

Environment Dictionary Tables
The environment dictionary tables contain constants that describe the following
components of the operating environment:

■ pga_maint

■ pga_environments

■ pga_env_attr

■ pga_env_values

■ pga_compilers

■ pga_datatypes

■ pga_datatype_attr

■ pga_datatype_values

■ pga_usage

■ pga_modes

pga_maint
The pga_maint table stores the PG DD maintenance information, including version
number and change history, as presented in Table A–2:

pga_environments
The pga_environments table stores the defined environment keywords, as presented in
Table A–3:

pga.compseq Compiler id tag

pga.eattrseq Environment Attribute id tag

pga.dtypeseq Datatype id tag

pga.dtattseq Datatype Attribute id tag

Table A–2 pga_maint

Column Type Contents

version number(10,4) PG DD version in format VVRRFF.rrff, where:

VV - base version;

RR - base release;

FF - base fix;

rr - port-specific release;

ff - port-specific fix.

mntdate date Oracle date and time at which the PG DD was
upgraded.

change varchar2(256) Description of the PG DD upgrade.

Table A–1 (Cont.) Oracle Sequence Objects

Oracle Sequence Objects Descriptions

PG DD Environment Dictionary

Database Gateway for APPC Data Dictionary A-3

pga_env_attr
The pga_env_attr table stores the types of environmental attributes, as presented in
Table A–4:

pga_env_values
The pga_env_values table stores the values for environments, as presented in
Table A–5:

pga_compilers
The pga_compilers table stores the compiler environment names, as presented in
Table A–6:

Table A–3 pga_environments

Column Type Content

name varchar2(16) not null Environment.

Primary key.

env# number (9, 0) not null Env id.

Foreign key.

Table A–4 pga_env_attr

Column Type Content

name varchar2 (16) not null Attribute.

Primary key.

attr# number (9, 0) not null Attribute id.

Foreign key.

coltype varchar2 (4) not null Attr value type.

Foreign key.

Table A–5 pga_env_values

Column Type Content

env# number (9, 0) not null Env id.

Primary key.

attr# number (9, 0) not null Attribute id.

Primary key.

numval number (9, 0) Numeric attribute value.

charval varchar2 (64) Character attribute value.

dateval date Date attribute value.

Table A–6 pga_compilers

Column Type Content

name varchar2 (16) not null Compiler name.

Primary key.

plscomp varchar2 (30) PLS compiler name.

Secondary key.

PG DD Environment Dictionary

A-4 Oracle Database Gateway for APPC User's Guide

pga_datatypes
The pga_datatypes table stores the datatype keywords, as presented in Table A–7:

pga_datatype_attr
The pga_datatype_attr table stores datatype attribute keywords, as presented in
Table A–8:

pga_datatype_values
The pga_datatype_values table stores the datatype attribute values, as presented in
Table A–9:

env# number (9, 0) not null Env id.

Foreign key.

comp# number (9, 0) not null Compiler env id.

Foreign key.

ddl_process number (9, 0) not null PGADDL processor number.

Table A–7 pga_datatypes

Column Type Content

comp# number (9, 0) not null Compiler env id.

Primary key.

name varchar2 (16) not null Datatype keyword.

Primary key.

dt# number (9, 0) not null Datatype_values.

Foreign key.

Table A–8 pga_datatype_attr

Column Type Content

name varchar2 (16) not
null

Attribute keyword.

Primary key.

attr# number (9, 0) not
null

Attribute id.

Foreign key.

coltype varchar2 (4) not
null

Type of attr.

Foreign key.

Table A–9 pga_datatype_values

Column Type Content

comp# number (9, 0) not
null

Compiler env id.

Primary key.

dt# number (9, 0) not
null

datatype_values.

Foreign key.

Table A–6 (Cont.) pga_compilers

Column Type Content

PG DD Active Dictionary

Database Gateway for APPC Data Dictionary A-5

pga_usage
The pga_usage table performs a referential integrity check of pga_data and pga_field
column "usage" as presented in Table A–10:

pga_modes
The pga_modes table performs a referential integrity check of pga_call_parm column
"mode", as presented in Table A–11:

PG DD Active Dictionary
The PG DD active data dictionary is created by pgddcr8.sql at installation, but
maintained using PGAU. The active dictionary can refer to items (by ID number) in
the environment dictionary.

attr# number (9, 0) not
null

Attribute id.

Foreign key.

dag# number (9, 0) Datatype attr group no.

numval number (9, 0) Numeric attribute value.

charval varchar2 (40) Character attribute value.

dateval date Date attribute value.

Table A–10 pga_usage

Column Type Content

name varchar2(6) Value for the "usage" field of data dictionary
tables. For example:

’PASS’

’SKIP

’NULL’

’ASIS’

Primary key.

Max length => 4-char string length.

Table A–11 pga_modes

Column Type Content

name varchar2(6) Name of valid parameter call modes. For
example:

IN

OUT

IN OUT

Max length => ’IN OUT’ string length.

Table A–9 (Cont.) pga_datatype_values

Column Type Content

PG DD Active Dictionary

A-6 Oracle Database Gateway for APPC User's Guide

Active Dictionary Versioning
The PG DD active dictionary tables contain the descriptions of transactions and data
structures. There might be more than one version of a definition. Old versions are
retained indefinitely.

In PGAU dictionary operations, a definition is referred to by its "name", which can be
qualified by a specific version number. If omitted, the most recent version is assumed.

Active Dictionary Sequence Numbers
Because the active dictionary is constantly changing, the identifying numbers needed
to join active dictionary entries together must also change. To support this
requirement, PG DD installation creates the following Oracle sequence objects.

Table A–12 lists the Oracle sequence objects and their descriptions:

Active Dictionary Tables
Following is a list of active dictionary tables:

■ pga_trans

■ pga_trans_attr

■ pga_trans_values

■ pga_trans_calls

■ pga_call

■ pga_data

■ pga_fields

■ pga_data_attr

■ pga_data_values

pga_trans
One row exists in the PGA_TRANS table for each user transaction. The row is created by
a PGAU DEFINE TRANSACTION statement and used by a PGAU GENERATE statement to
create the PL/SQL package (TIP).

Table A–12 Active Dictionary Oracle Sequence Object Descriptions

Oracle Sequence Objects Description

pga.transeq Transaction id tag

pga.tranvers Transaction Version id tag

pga.tattrseq Transaction Attribute id tag

pga.callseq APPC-Call id tag

pga.callvers Call Version id tag

pga.parmseq APPC-Call Parameter id tag

pga.dataseq Data id tag

pga.fieldseq Data subfield id tag

pga.datavers Data Version id tag

pga.dattrseq Data Attribute id tag

PG DD Active Dictionary

Database Gateway for APPC Data Dictionary A-7

Table A–13 presents the column, type and content information for PGA_TRANS:

pga_trans_attr
The pga_trans_attr table relates a character string defining the transaction attributes
supported by PGA to pga_trans_values entries through an attribute id number and
type.

The pga_trans_attr table is also used for integrity checks of transaction attributes
when new transactions are being defined.

There is an entry in the pga_trans_attr table for each transaction attribute name. All
possible transaction attribute names supported by PGA on any defined transaction are
specified. There is one row for each attribute, and no duplicates are allowed.

Table A–14 presents the column, type and content information for pga_trans_attr:

Table A–13 pga_trans

Column Type Content

tname varchar2(64) Transaction name as defined by the customer.

Primary key.

Max length => APPC TPname string length.

version number(9,0) Version identification of this entry; it exists in the
table because multiple archived or invalid entries
might exist and be kept for possible future
reactivation.

Primary key.

Set from an Oracle sequence object for transaction
version inserted into the PG DD.

updtdate date Audit-trail date/time record last updated.

updtuser varchar2(30) Audit-trail user ID/program which last updated this
record.

trans# number(9,0) PGA Transaction number, used for the define call,
define data and define transaction statements.

Foreign key.

pga_trans_values(trans#), pga_
trans_calls(trans#).

Set from an Oracle sequence object for transaction
inserted into the PG DD.

PG DD Active Dictionary

A-8 Oracle Database Gateway for APPC User's Guide

pga_trans_values
The pga_trans_values table describes the values of transaction attributes.

A row exists to specify the value of each attribute of each transaction defined in the
data dictionary.

The column, type and content information for pga_trans_values is presented in
Table A–15:

Table A–14 pga_trans_attr

Column Type Content

name varchar2(16) Character string name of attribute.

Primary key.

Contains:

"ENVIRONMENT",

"LUNAME",

"TPNAME",

"LOGMODE",

"SIDEPROFILE",

"SYNCLEVEL",

"NLS_LANGUAGE",

"REMOTE_MBCS"

"LOCAL_MBCS"

attr# number(9,0) Attribute id assigned.

Foreign key.

pga_data_values(attr#).

Set from an Oracle sequence object for each
supported transaction attribute inserted into the PG
DD.

coltype varchar2(4) Type of Oracle column from which attribute value is
retrieved from pga_tran_values. For example:

’NUM ’ => pga_tran_values(numval)

’CHAR’ => pga_tran_values(charval)

’DATE’ => pga_tran_values(dateval)

required char(1) If not null, required keyword for DEFINE
TRANSACTION; if null, optional.

Table A–15 pga_trans_values

Column Type Content

trans# number(9,0) Transaction id from pga_trans(trans#).

Primary key.

Set from an Oracle sequence object for transaction
inserted into the PG DD.

attr# number(9,0) Attribute id from pga_trans_attr(attr#),

Primary key.

Set from an Oracle sequence object for each
supported transaction attribute inserted into the PG
DD.

PG DD Active Dictionary

Database Gateway for APPC Data Dictionary A-9

pga_trans_calls
The pga_trans_calls table relates all calls available with any single transaction to
each specific call definition through a call ID number.

An entry exists in the pga_trans_calls table for each PL/SQL call referenced in a
transaction definition through the CALL(cname,...) operand. One row per transaction
call; no duplicates.

The column, type and content information for pga_trans_calls is presented in
Table A–16:

pga_call
The pga_call table relates all calls that are available for all defined transactions, to a
unique call id number and PL/SQL remote procedural call (RPC) name. One entry
exists in this table for each PL/SQL call (defined in a DEFINE CALL statement).

One row per call, duplicates are possible when multiple transactions make identical
calls. The plsrpc specification must be unique within the Oracle database which makes
the calls, and rows are uniquely distinguished by call#.

The column, type and content information for pga_call are presented in Table A–17:

numval number(9,0) Attribute’s numeric value, for example for a given
transaction’s SYNCLEVEL attribute 0.

charval varchar2(64) Attribute’s character value; for example, a given
transaction’s TPNAME attribute.

dateval date Attribute’s date value. Probably always null;
included for completeness.

Table A–16 pga_trans_calls

Column Type Content

trans# number(9,0) Transaction id number from pga_trans(trans#).

Primary key.

Set from an Oracle sequence object for transaction
inserted into the PG DD.

seq# number(9,0) Sequence number of this call.

Primary key.

call# number(9,0) Call id number in pga_call(call#).

Foreign key.

Copied from pga_call.call# for the referenced call
when this transaction definition was inserted or updated.

Table A–17 pga_call

Column Type Content

cname varchar2(48) Call name for PGAU reference;

Primary key.

Max length => COBOL name string length

Table A–15 (Cont.) pga_trans_values

Column Type Content

PG DD Active Dictionary

A-10 Oracle Database Gateway for APPC User's Guide

pga_call_parm
The pga_call_parm table relates all parameters of any single transaction call to the
data definitions describing each parameter.

One entry exists in the pga_call_parm table for each parameter on a call in the PARMS()
operand of the PGAU DEFINE CALL statement. One row per parameter, duplicates
allowed when multiple calls (in the pga_call table) refer to the same parameters.

Table A–18 presents the column, type and content information for pga_call_parm:

plsrpc varchar2(30) RPC call name for reference in PL/SQL (public
procedure to be generated).

Max length => PL/SQL RPC name length

updtdate date Audit trail date/time of record’s last update.

updtuser varchar2(30) Audit trail user id/program which last updated this
record.

version number(9,0) Version identification of this entry, because multiple
archived or invalid entries might exist and be kept for
possible future reactivation.

Primary key.

Set from an Oracle sequence object for call version
inserted into PG DD.

call# number(9,0) Call id number.

Foreign key.

pga_trans_calls(call#), pga_call_parm(call#).

Set from an Oracle sequence object for each call
inserted into the PG DD.

Table A–18 pga_call_parm

Column Type Content

call# number(9,0) Call number for the referencing call from
pga_calls.

Primary key.

Set from an Oracle sequence object for each call
inserted into the PG DD.

parm# number(9,0) Position in the PARMS() argument of DEFINE CALL
operation (1,2,3...).

Primary key.

cmode varchar2(6) Call mode of this parameter; one of the values in
pga_data_modes. For example:

’IN’, ’OUT’, ’IN OUT’

Max length => ’IN OUT’ string length

data# number(9,0) Data definition # in pga_data(data#) of this item.

Foreign key.

pga_data(data#),pga_data_values(data#).

Copied from pga_data.data# for the data item when
this call/parm definition was inserted or updated.

Table A–17 (Cont.) pga_call

Column Type Content

PG DD Active Dictionary

Database Gateway for APPC Data Dictionary A-11

pga_data
The pga_data table defines each data item used as a parameter in a call and relates the
remote host data name to its PL/SQL variables and any component subfields or
clauses within each data item (if the data item is an aggregate, such as a record). Each
data item might have attributes related to it through its corresponding field definition.
Even atomic data items have a single row in the pga_field table.

One row exists in the pga_data table for each data item defined by a PGAU DEFINE
DATA or REDEFINE DATA statement.

Table A–19 presents the column, type and content information for pga_data:

pga_fields
The pga_fields table defines each field within a data item and relates the remote host
data field to its PL/SQL variables or nested records. Each field item might have
attributes related to it (by field#) in the pga_data_attr and pga_data_values tables.

One row exists in the pga_fields table for each atomic item, field, clause, or nested
record defined by a PGAU DEFINE DATA statement. Several rows would exist (related

Table A–19 pga_data

Column Type Content

comp# number(9,0) Compiler id number.;

Foreign key.

(pga_compiler(comp#).

Set from pga_compiler(comp#) based on the language
parameter specified on the DEFINE DATA statement
when the data definition is inserted.

compopts varchar2(100) Compiler options from the COMPOPTS keyword on the
DEFINE DATA statement.

dname varchar2(255) Name from the DEFINE statement;

Primary key.

Max length => COBOL name length

plsdvar varchar(30) PL/SQL variable name of data item for reference in
PL/SQL.

Max length => PL/SQL variable length

version number(9,0) Version number of this entry. Set from an Oracle
sequence object for data version inserted into the
PGADD.

updtdate date Audit-trail date/time this control record last updated.

updtuser varchar2(30) Audit-trail user id/program which last updated this
record.

usage varchar2(6) Default usage of this data item: PASS, SKIP, NULL, ASIS.

Used primarily by PGAU REPORT.

Max length => 4-char string length

data# number(9,0) Data definition number.

Foreign key.

(pga_call_parm(data#), (pga_field(data#)

Set from an Oracle sequence object.

PG DD Active Dictionary

A-12 Oracle Database Gateway for APPC User's Guide

by a single data# and incrementing fld#) to define an aggregate data item, one row per
field or group.

Table A–20 presents the column, type and content information for pga_fields:

Table A–20 pga_fields

Column Type Content

data# number(9,0) Data definition number.

Primary key.

(pga_data(data#), pga_call_parm(data#).

Set from an Oracle sequence object.

fname varchar2(255) Extracted or derived name of a field if dname
defines aggregate data.

Max length => COBOL name length

plsfvar varchar2(30) PL/SQL variable name of subfield in aggregate
data for reference in PL/SQL. Max length =>
PL/SQL variable length

updtdate date Audit-trail date/time this control record last
updated.

updtuser varchar2(30) Audit-trail user id/program which last updated
this record.

fld# number(9,0) Clause or field within data definition id no.

Foreign key.

pga_data_values(fld#).

Set from an Oracle sequence object.

pos# number(9,0) Relative position number of each field defined
within an aggregate data item (for example, 1, 2 3,
and so on) or NULL if data is atomic.

usage varchar2(6) Usage of this data field:

’PASS’, ’SKIP’, ’NULL’, ’ASIS’.

Max length => 4-char string length

mask varchar2(30) Datatype or Mask value. For example:

’S9(4)’

’X(24)’

’VARCHAR2(24)’

’BINARY_INTEGER(16)’

NULL

When NULL, item defined is assumed to be a
COBOL group or PL/SQL nested record.

Max length => arbitrarily chosen

maskopts varchar2(100) Datatype or Mask options value. For example:

’USAGE COMP-4’

’DISPLAY’

NULL

Max length => arbitrarily chosen

PG DD Active Dictionary

Database Gateway for APPC Data Dictionary A-13

pga_data_attr
The pga_data_attr table defines all possible data attribute names allowed by PGA
and relates each attribute name to a number and type, by which the value of this
attribute for a specific data item can be selected from pga_data_values.

The pga_data_attr table is also used for integrity checks of data attributes when new
data items are defined.

There is one entry in the pga_data_attr table for every possible attribute name to
which any PGA supported data item might relate.

Table A–21 presents the column, type and content information for pga_data_attr:

Table A–21 pga_data_attr

Column Type Content

name varchar2(16) Character string name of attribute.

Primary key.

Contains:

"LEVEL"
"RENAMEMF" (renames member first)
"RENAMEML" (renames member last)
"REMAPSMF" (redefines member first)
"REMAPSML" (redefines member last)
"REMAPSWM" (redefines when member)
"REMAPSWC" (redefines when char value)
"REMAPSWN" (redefines when num value)
"REPGRPFF" (occurs n)
"REPGRPVF" (odo first n)
"REPGRPVL" (odo last n)
"REPGRPVM" (odo depending member)
"REPGRPKA" (either Key Asc name)
"REPGRPKD" (either Key Desc name)
"REPGRPIX" (either index name)
"PLSTYPE"
"JUST" (justified char data)
"SYNC" (aligned aggregate data)
"LOCAL_LANGUAGE"
"REMOTE_LANGUAGE"
"LENGTH" (LENGTH IS variable)

Max length => attr name string lengths

attr# number(9,0) Attribute id assigned.

Foreign key.

pga_data_values(attr#). Set from an Oracle sequence
object for each supported data attribute inserted into
the PG DD.

coltype varchar2(4) Type of Oracle column from which attribute value is
retrieved from pga_data_values. For example:

’NUM ’ => pga_data_values(numval)

’CHAR’=> pga_data_values(charval)

’DATE’ => pga_data_values(dateval)

required char(1) If not null, required keyword.

PG DD Active Dictionary

A-14 Oracle Database Gateway for APPC User's Guide

pga_data_values
A row exists in the pga_data_values table for each attribute of each data item defined
by each data definition.

Table A–22 presents the column, type and content information for pga_data_values:

Table A–22 pga_data_values

Column Type Content

fld# number(9,0) Data Field Definition number from pga_data(fld#).
Primary key.

attr# number(9,0) Attribute id from pga_data_attr(attr#).

Primary key.

numval number(9,0) Attribute’s numeric value. For example:

number for "LEVEL"
number for "REMAPSWN" (redefines)
number for "REPGRPFF" (occurs n)
number for "REPGRPVF" (odo first n)
number for "REPGRPVL" (odo last n)

If a non-numeric attribute, this item is NULL.

charval varchar2(40) Attribute’s character value.

fname for "RENAMEMF (renames first)
fname for "RENAMEML" (renames last)
fname for "REMAPSMF" (redefines first)
fname for "REMAPSML" (redefines last)
fname for "REMAPSWM" (redefines when)
fname for "REPGRPVM" (odo member)
string for "REMAPSWC" (redefines)
string for "REPGRPKA" (occurs key)
string for "REPGRPKD" (occurs key)
string for "REPGRPIX" (occurs index)
string for "PLSTYPE" (PL/SQL data type)
string for "JUST"
string for "SYNC"
string for "REMOTE_LANGUAGE"
fname for "LENGTH"

If a non-character attribute, this item is NULL.

Max length => NLS_charset string length

dateval date Attribute’s date value. Always null, included for
completeness.

qual number (9,0) Qualified name number.

Foreign key.

B

Gateway RPC Interface B-1

B Gateway RPC Interface

To execute a remote transaction program using the Oracle Database Gateway for
APPC you must execute a PL/SQL program to call the gateway functions, using a
remote procedural call (RPC). The gateway functions handle the initiation, data
exchange and termination for the gateway conversation with the remote transaction
program.

The Oracle Database Gateway for APPC includes a tool, PGAU, to generate the
PL/SQL packages (TIPs) automatically, based on definitions you provide in the form
of COBOL record layouts and PGDL (Procedural Gateway Definition Language).

This appendix contains the following section:

■ "Calling Gateway Functions to Execute Transaction Programs" on page B-1

Calling Gateway Functions to Execute Transaction Programs
The gateway functions are all executed through remote procedural calls (RPC). The
functions are called from PL/SQL code as follows:

function@dblink(parm1,parm2,...,parmn);

Where Table B–1 describes the parameters in this syntax:

Calling a function in PL/SQL code with the @dblink notation following the function
name is a remote procedural call.

PGAINIT and PGAINIT_SEC
PGAINIT and PGAINIT_SEC are remote procedural calls that initiate an APPC
conversation with a specified transaction program. The difference between the two is
that PGAINIT_SEC includes the added capability of being able to set the gateway
conversation security user ID and password to values other than the current Oracle

Table B–1 Gateway Functions

Item Description

function is the name of the function being called.

dblink is the name of a predefined database link to the gateway
server on the Windows system.

parm1, parm2,parmn are the function-specific parameters described later in this
appendix.

Calling Gateway Functions to Execute Transaction Programs

B-2 Oracle Database Gateway for APPC User's Guide

user ID and password. Upon successful completion of either function, the
conversation is ready to send data to the remote transaction program.

Table B–2 presents the PGAINIT and PGAINIT_SEC parameters that are common in both
procedures. It lists the type, datatype and description of each parameter:

Table B–2 Common PGAINIT and PGAINIT_SEC Parameters

Parameters Type Datatypes Descriptions

CONVID OUT RAW(12) For a gateway using SNA:
Conversation identifier returned by
the PGAINIT function to be used to
identify the conversation to the
PGAXFER and PGATERM functions. After
PGAINIT is called, this variable must
never be modified, or results will be
unpredictable.

For a gateway using TCP/IP: Socket
file descriptor returned by the PGAINIT
function to be used to identify the
conversation to the PGAXFER and
PGATERM functions. After PGAINIT is
called, this variable must never be
modified, or results will be
unpredictable.

TPNAME IN VARCHAR2(64) Transaction program name of the
remote transaction program with
which a conversation is to be
established. For most OLTPs, the name
must be the transaction name as
defined to the OLTP. This name can be
from 1 to 64 characters in length.

Note: For TCP/IP support, the
maximum size is 8 characters. For
more information, refer to Appendix B,
"Gateway Initialization Parameters for
TCP/IP Communication Protocol" in
the Oracle Database Gateway for APPC
Installation and Configuration Guide for
IBM AIX on POWER Systems (64-Bit),
Linux x86-64, Oracle Solaris on SPARC
(64-Bit), and HP-UX Itanium or Oracle
Database Gateway for APPC Installation
and Configuration Guide for Microsoft
Windows.

LUNAME IN VARCHAR2(17) For a gateway using SNA: the LU
name of the OLTP under which the
remote transaction program executes.
This parameter is the fully-qualified
LU name or alias and can be from 1 to
17 characters in length.

For a gateway using TCP/IP: this
parameter is not applicable.

Calling Gateway Functions to Execute Transaction Programs

Gateway RPC Interface B-3

Table B–3 lists the PGAINIT_SEC parameters which are specific to the procedure:

For Gateways Using the SNA Protocol:
There is an interrelationship between PROFNAME and LUNAME/TPNAME/MODENAME. If
PROFNAME is set to blanks or a null value, the LUNAME, TPNAME, and MODENAME parameters
are all required to be non-blank values. If they are not all set to non-blank values, an
exception is generated. However, if PROFNAME is set to a valid Side Information Profile
name, the LUNAME, TPNAME, and MODENAME parameters can be null or blank, because the
Side Information profile specifies all the information necessary to establish the
conversation. In this case, any non-blank, non-null values specified for LUNAME, TPNAME,
or MODENAME override values set in the Side Information profile.PROFNAME must be set
and cannot be blank or null.

MODENAME IN VARCHAR2(8) For a gateway using SNA: Logmode
entry name of the logmode table entry
on the remote host, which defines the
session characteristics for the APPC
conversation. This name can be from 1
to 8 characters in length.

For a gateway using TCP/IP: this
parameter is not applicable.

PROFNAME IN VARCHAR2(8) Profile name of the SNA Side
Information profile which defines the
conversation. This name can be from 1
to 8 characters in length.

For a gateway using TCP/IP: this
name represents a group of IMS
transactions similar of similar TCP/IP
and IMS Connect attributes.

SYNCLEVEL IN CHAR(1) SYNCLEVEL for this conversation. This
value must be either ’0’ or ’1’.

SYNCLEVEL 0 indicates that the remote
transaction program has no
synchronization capabilities.

SYNCLEVEL 1 indicates that the remote
transaction program is capable of
responding to CONFIRM requests and is
used to ensure data integrity when the
remote transaction program is making
updates to a database on the remote
host.

Table B–3 PGAINIT_SEC Parameters Specific to the Procedure

Parameter Type Datatype Description

USERID IN VARCHAR2(8) Conversation security user ID to
be passed to the target OLTP. The
value must be from 1 to 8
characters in length.

PASSWORD IN VARCHAR2(8) Conversation security password
to be passed to the target OLTP.
The value must be from 1 to 8
characters in length.

Table B–2 (Cont.) Common PGAINIT and PGAINIT_SEC Parameters

Parameters Type Datatypes Descriptions

Calling Gateway Functions to Execute Transaction Programs

B-4 Oracle Database Gateway for APPC User's Guide

For Gateways Using the TCP/IP protocol:
PROFNAME and TPNAME must be set and cannot be blank or null.

PGAXFER
PGAXFER is called to transfer data to and from a remote transaction program on the
gateway conversation initialized by PGAINIT. The function sends and/or receives data
items based on the calling parameters.

Table B–4 lists the types, datatypes and descriptions of PGAXFER parameters:

Table B–4 PGAXFER Parameters

Parameter Type Datatype Description

CONVID IN RAW(12) For a gateway using SNA: Conversation
identifier returned by the PGAINIT function
to be used to identify the conversation.

For a gateway using TCP/IP: Socket file
descriptor returned by the PGAINIT
function to be used to identify the
conversation.

SENDBUF IN RAW(32763) Buffer containing all the data items to be
sent to the remote transaction program.
The data items are sent as is, with no
changes. Data items must appear in the
buffer in the exact order in which the
remote transaction program expects to
receive them. The total size of all the data
items cannot exceed the maximum size for
a single gateway send, which is 32,763
bytes for a mapped gateway conversation.

SENDBUFL IN BINARY_INTEGER Total length of the data items contained in
SENDBUF. The range is 0-32,763 bytes. A
value of ’0’ is used when there are no data
items to send.

SENDLNS IN RAW(1024) Buffer containing an array of up to 256
4-byte integer values. The first integer
value specifies the number of data items
contained in the send buffer (SENDBUF).
Following that data item count is a series
of integer values specifying the lengths of
the data items. There must be an exact
match between the data item count and
the number of data item length values. Up
to 255 data items can be described by this
array. The sum of all the data item lengths
cannot exceed the total length in SENDBUFL.

RECVBUF OUT RAW(32763) Buffer to contain all the data items
received from the remote transaction
program. The data items are stored in this
buffer in the exact order in which the
remote transaction program sends them.
The total size of all the data items cannot
exceed the maximum size of 32,763 bytes.

RECVBUFL IN BINARY_INTEGER Total length of the receive buffer. The
range is 0-32,763 bytes. A value of ’0’ is
used when there are no data items to
receive.

Calling Gateway Functions to Execute Transaction Programs

Gateway RPC Interface B-5

When PGAXFER is called, either or both of SENDBUFL and RECVBUFL must be nonzero; in
other words, at least one data item must be sent to or received from the remote
transaction program. If PGAXFER is called with no data items to send or receive, it
generates an exception.

PGATERM
PGATERM is called to terminate an the gateway conversation that was initiated by a
previous call to PGAINIT. Upon successful completion of this function, the conversation
is deallocated and all storage associated with it is freed.

Table B–5 presents the types, datatypes and descriptions of PGATERM parameters:

PGATCTL
PGATCTL is called by the TRACE_LEVEL parameter at %ORACLE_
HOME%\dg4appc\admin\initsid.ora file for Microsoft or $ORACLE_

RECVLNS INOUT RAW(1024) Buffer containing an array of up to 256
4-byte integer values. The first integer
value specifies the number of data items to
be received into the receive buffer
(RECVBUF). Following the data item count
is a series of integer values specifying the
maximum lengths of the data items to be
received. On output, these values are
replaced with the actual lengths of the
data items received. There must be an
exact match between the data item count
and the number of data item length
values. Up to 255 data items can be
described by this array. The sum of all the
data item lengths cannot exceed the total
length of the receive buffer (RECVBUFL).

Note: On each PGAXFER call, all send processing occurs first,
followed by all receive processing. If a transaction operates in a
manner that requires multiple sets of send and receives, then PGAXFER
can be called more than once to accommodate the transaction. If more
than 32,763 bytes of data are to be sent or received, multiple calls to
PGAXFER must be made.

Table B–5 PGATERM Parameters

Parameter Type Datatype Description

CONVID IN RAW(12) For a gateway using SNA: Conversation
identifier returned by the PGAINIT function to be
used to identify the conversation.

For a gateway using TCP/IP: Socket file
descriptor returned by the PGAINIT function to be
used to identify the conversation.

TERMTYPE IN CHAR(1) Type of termination to be performed.’0’ indicates
normal completion and ’1’ indicates abnormal
termination, which is only requested if there is an
error.

Table B–4 (Cont.) PGAXFER Parameters

Parameter Type Datatype Description

Calling Gateway Functions to Execute Transaction Programs

B-6 Oracle Database Gateway for APPC User's Guide

HOME/dg4appc/admin/initsid.ora file on UNIX based systems. Using PGATCTL, the
trace level can be changed dynamically from within a PL/SQL stored procedure. This
facility is useful when debugging a new PL/SQL application.

Table B–6 presents the types, datatypes and descriptions of parameters in PGATCTL:

PGATRAC
This function is called to write a line of user data into the PGA trace file. Using
PGATRAC, the flow within a PL/SQL procedure can be traced, along with the events
traced, based on the TRACE_LEVEL at %ORACLE_
HOME%\dg4appc\admin\initsid.ora for Microsoft Windows or $ORACLE_
HOME/dg4appc/admin/initsid.ora on UNIX based systems. This is a useful
debugging tool when developing a new PL/SQL application.

Table B–7 presents the type, datatype and description of the PGATRAC parameter:

Table B–6 PGATCTL Parameters

Parameter Type Datatype Description

CONVID IN RAW(12) For a gateway using SNA: Conversation
identifier returned by the PGAINIT function to be
used to identify the conversation.

For a gateway using TCP/IP: Socket file
descriptor returned by the PGAINIT function to be
used to identify the conversation.

TRFUNC IN CHAR(1) Trace control function to be performed. The valid
values are:

’S’ - set trace flags to the exact value specified by
the TRFLAGS parameter.

’E’ - enable the trace flags specified by the
TRFLAGS parameter, without changing any other
flags.

’D’ - disable the trace flags specified by the
TRFLAGS parameter, without changing any other
flags.

TRFLAGS IN BINARY_
INTEGER

Trace flags.

Turn on TRACE_LEVEL. Refer to Appendix A,
"Gateway Initialization Parameters for SNA
Protocol" in the Oracle Database Gateway for APPC
Installation and Configuration Guide for IBM AIX on
POWER Systems (64-Bit), Linux x86-64, Oracle
Solaris on SPARC (64-Bit), and HP-UX Itanium or
Oracle Database Gateway for APPC Installation and
Configuration Guide for Microsoft Windows for
more information if your protocol is SNA.

Refer to Appendix B, "Gateway Initialization
Parameters for TCP/IP Communication
Protocol" in the Oracle Database Gateway for APPC
Installation and Configuration Guide for IBM AIX on
POWER Systems (64-Bit), Linux x86-64, Oracle
Solaris on SPARC (64-Bit), and HP-UX Itanium or
Oracle Database Gateway for APPC Installation and
Configuration Guide for Microsoft Windows.

Calling Gateway Functions to Execute Transaction Programs

Gateway RPC Interface B-7

Table B–7 PGATRAC Parameter

Parameter Type Datatype Description

TRDATA IN VARCHAR2(120) Line of user data to be written into the
gateway trace file. The contents must be
printable characters.

Calling Gateway Functions to Execute Transaction Programs

B-8 Oracle Database Gateway for APPC User's Guide

C

The UTL_PG Interface C-1

C The UTL_PG Interface

The Oracle Database Gateway for APPC requires the use of the RAW datatype to
transfer data to and from PL/SQL without any alteration by Oracle Net. This is
necessary because only the PL/SQL applications have information about the format of
the data being sent to and received from the remote transaction programs. Oracle Net
only has information about the systems where the PL/SQL application and the
gateway server are running. If Oracle Net is allowed to perform translation on the data
flowing between PL/SQL and the gateway, the data can end up in the wrong format.

This appendix contains the following sections:

■ "UTL_PG Functions" on page C-1

■ "NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values" on page C-11

UTL_PG Functions
The UTL_PG package is an extension to PL/SQL that provides a full set of functions for
converting COBOL number formats into Oracle numbers and Oracle numbers into
COBOL number formats.

UTL_PG conversion format RAWs are not portable in this release. Additionally,
generation of conversion format RAWs on one system and transfer to another system
is not supported.

The functions listed in this section are called in the standard PL/SQL manner:

package_name.function_name(arguments)

Specifically for UTL_PG routines, this is:

UTL_PG.function_name(arguments)

For each function listed below, the function name, arguments and their datatypes, and
the return value datatype are provided. Unless otherwise specified, the parameters are
IN, not OUT, parameters.

Note: The IBM VS COBOL II compiler has been desupported.
However, the string "IBMVSCOBOLII" is still used as the value of the
compiler name parameter to represent any COBOL compiler you
choose to use. The value IBMVSCOBOLII should still be used and does
not create a dependency on any specific version of the compiler.

UTL_PG Functions

C-2 Oracle Database Gateway for APPC User's Guide

Common Parameters
The following UTL_PG functions share several similar parameters among themselves:

■ RAW_TO_NUMBER

■ MAKE_NUMBER_TO_RAW_FORMAT

■ MAKE_RAW_TO_NUMBER_FORMAT

■ NUMBER_TO_RAW

These similar parameters are described in detail in Table C–1 and then referenced only
by name in subsequent tables listing the parameters for each UTL_PG function in this
Appendix.

Common Input Parameters
Table C–1 describes the input parameters that are common to all of the UTL_PG
functions:

Common Output Parameter
Table C–2 describes the output parameter that is common to the UTL_PG functions:

Table C–1 Input Parameters Common to UTL_PG Function

Parameter Description

mask is the compiler datatype mask. This is the datatype to be
converted, specified in the source language of the named
compiler (compname). This implies the internal format of the
data as encoded according to the compiler and host platform.

maskopts is the compiler datatype mask options or NULL. These are
additional options associated with the mask, as allowed or
required, and are specified in the source language of compname.
These can further qualify the type of conversion as necessary.

envrnmnt is the compiler environment clause or NULL. These are
additional options associated with the environment in which
the remote data resides, as allowed or required, and is
specified in the source language of compname. This parameter
typically supplies aspects of data conversion dictated by
customer standards, such as decimal point or currency symbols
if applicable.

compname is the compiler name. The only supported value is
IBMVSCOBOLII.

compopts is the compiler options or NULL.

nlslang is the zoned decimal code page specified in Globalization
Support format, language_territory.charset. This defaults
to AMERICAN_AMERICA.WE8EBCDIC37C.

wind is the warning indicator. A Boolean indicator which controls
whether conversion warning messages are to be returned in
the wmsgblk OUT parameter.

wmsgbsiz is the warning message block declared size in bytes. It is a
BINARY_INTEGER set to the byte length of wmsgblk. The warning
message block must be at least 512 and not more than 8192
bytes in length. When declaring wmsgblk, plan on
approximately 512 bytes for each warning returned, depending
on the nature of the requested conversion.

UTL_PG Functions

The UTL_PG Interface C-3

RAW_TO_NUMBER
RAW_TO_NUMBER converts a RAW byte-string r from the remote host internal format
specified by mask, maskopts, envrnmnt, compname, compopts, and nlslang into an
Oracle number.

Warnings are issued, if enabled, when the conversion specified conflicts with the
conversion implied by the data or when conflicting format specifications are supplied.

For detailed information about the mask, maskopts, envrnmnt, compname, and
compopts arguments, refer to "NUMBER_TO_RAW and RAW_TO_NUMBER
Argument Values" on page C-11.

Syntax
function RAW_TO_NUMBER (r IN RAW,
mask IN VARCHAR2,
maskopts IN VARCHAR2,
envrnmnt IN VARCHAR2,
compname IN VARCHAR2,
compopts IN VARCHAR2,
nlslang IN VARCHAR2,
wind IN BOOLEAN,
wmsgbsiz IN BINARY_INTEGER,
wmsgblk OUT RAW) RETURN NUMBER;

Where Table C–3 describes the parameters in this function:

Table C–2 Output Parameters Common to UTL_PG Functions

Parameter Description

wmsgblk is the warning message block. It is a RAW value which can
contain multiple warnings in both full message and substituted
parameter formats, if wind is TRUE. This parameter should be
passed to the WMSGCNT function to test if warnings were issued
and to WMSG to extract any warning that are present.

If wind is TRUE and no warnings are issued or if wind is FALSE,
the length of wmsgblk is 0. This parameter does not need to be
reset before each use. The warning message is documented in
the Oracle Database Error Messages manual. This parameter
must be allocated and passed as a parameter in all cases,
regardless of how wind is specified.

Table C–3 RAW_TO_NUMBER Function Parameters

Parameter Description

r is the remote host data to be converted.

mask is the compiler datatype mask.

maskopts are the compiler datatype mask options or NULL.

envrnmnt is the compiler environment clause or NULL.

compname is the compiler name.

compopts are the compiler options or NULL.

nlslang is the zoned decimal code page in Globalization Support
format.

wind is a warning indicator.

UTL_PG Functions

C-4 Oracle Database Gateway for APPC User's Guide

Defaults and Optional Parameters
Table C–4 describes the default and optional parameters of the RAW_TO_NUMBER
function:

Return Value
An Oracle number corresponding in value to r.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages for an explanation and information about how to handle it.

NUMBER_TO_RAW
NUMBER_TO_RAW converts an Oracle number n of declared precision and scale into a
RAW byte-string in the remote host internal format specified by mask, maskopts,
envrnmnt, compname, compopts, and nlslang.

Warnings are issued, if enabled, when the conversion specified conflicts with the
conversion implied by the data or when conflicting format specifications are supplied.

For detailed information about the mask, maskopts, envrnmnt, compname, and
compopts arguments, refer to"NUMBER_TO_RAW and RAW_TO_NUMBER
Argument Values" on page C-11.

Syntax
function NUMBER_TO_RAW (n IN NUMBER,
mask IN VARCHAR2,
maskopts IN VARCHAR2,
envrnmnt IN VARCHAR2,
compname IN VARCHAR2,
compopts IN VARCHAR2,
nlslang IN VARCHAR2,
wind IN BOOLEAN,
wmsgbsiz IN BINARY_INTEGER,
wmsgblk OUT RAW) RETURN RAW;

Where Table C–5 describes the parameters in this function:

wmsgbsiz is the warning message block size in bytes.

wmsgblk is the warning message block. This is an OUT parameter.

Table C–4 Optional and Default Parameters of the RAW_TO_NUMBER Function

Parameters Description

maskopts null allowed, no default value

envrnmnt null allowed, no default value

compopts null allowed, no default value

Table C–3 (Cont.) RAW_TO_NUMBER Function Parameters

Parameter Description

UTL_PG Functions

The UTL_PG Interface C-5

Defaults and Optional Parameters
Table C–6 describes the defaults and optional parameters for the NUMBER_TO_RAW
function:

Return Value
A RAW value corresponding in value to n.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages for an explanation and information about how to handle it.

MAKE_RAW_TO_NUMBER_FORMAT
MAKE_RAW_TO_NUMBER_FORMAT makes a RAW_TO_NUMBER format conversion specification
used to convert a RAW byte-string from the remote host internal format specified by
mask, maskopts, envrnmnt, compname, compopts, and nlslang into an Oracle number
of comparable precision and scale.

Warnings are issued, if enabled, when the conversion specified conflicts with the
conversion implied by the data or when conflicting format specifications are supplied.

This function returns a RAW value containing the conversion format which can be
passed to UTL_PG.RAW_TO_NUMBER_FORMAT.

For detailed information about the mask, maskopts, envrnmnt, compname, and compopts
arguments, refer to "NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values"
on page C-11.

Table C–5 NUMBER_TO_RAW Function Parameters

Parameter Description

n is the Oracle number to be converted.

mask is the compiler datatype mask.

maskopts are the compiler datatype mask options or NULL.

envrnmnt is the compiler environment clause or NULL.

compname is the compiler name.

compopts are the compiler options or NULL.

nlslang is the zoned decimal code page in Globalization Support
format.

wind is a warning indicator.

wmsgbsiz is the warning message block size in bytes.

wmsgblk is the warning message block. This is an OUT parameter.

Table C–6 Defaults and Optional Parameters for NUMBER_TO_RAW Function

Parameter Description

maskopts null allowed, no default value

envrnmnt null allowed, no default value

compopts null allowed, no default value

UTL_PG Functions

C-6 Oracle Database Gateway for APPC User's Guide

Syntax
function MAKE_RAW_TO_NUMBER_FORMAT (mask IN VARCHAR2,
maskopts IN VARCHAR2,
envrnmnt IN VARCHAR2,
compname IN VARCHAR2,
compopts IN VARCHAR2,
nlslang IN VARCHAR2,
wind IN BOOLEAN,
wmsgbsiz IN BINARY_INTEGER,
wmsgblk OUT RAW) RETURN RAW;

Where Table C–7 describes the parameters in this function:

Defaults and Optional Parameters
Table C–8 describes the defaults and optional parameters of the
MAKE_RAW_TO_NUMBER_FORMAT function:

Return Value
A RAW(2048) format conversion specification for RAW_TO_NUMBER.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

MAKE_NUMBER_TO_RAW_FORMAT
MAKE_NUMBER_TO_RAW_FORMAT makes a NUMBER_TO_RAW format conversion specification
used to convert an Oracle number of declared precision and scale to a RAW byte-string

Table C–7 MAKE_RAW_TO_NUMBER_FORMAT Function Parameters

Parameter Description

mask is the compiler datatype mask.

maskopts are the compiler datatype mask options or NULL.

envrnmnt is the compiler environment clause or NULL.

compname is the compiler name.

compopts are the compiler options or NULL.

nlslang is the zoned decimal code page in Globalization Support
format.

wind is a warning indicator.

wmsgbsiz is the warning message block size in bytes.

wmsgblk is the warning message block. This is an OUT parameter.

Table C–8 Default and Optional MAKE_RAW_TO_NUMBER_FORMAT Parameters

Parameter Description

maskopts null allowed, no default value

envrnmnt null allowed, no default value

compopts null allowed, no default value

UTL_PG Functions

The UTL_PG Interface C-7

in the remote host internal format specified by mask, maskopts, envrnmnt, compname,
compopts, and nlslang.

Warnings are issued, if enabled, when the conversion specified conflicts with the
conversion implied by the data or when conflicting format specifications are supplied.

This function returns a RAW value containing the conversion format which can be
passed to UTL_PG.NUMBER_TO_RAW_FORMAT. The implementation length of the result
format RAW is 2048 bytes.

For detailed information about the mask, maskopts, envrnmnt, compname, and
compopts arguments, refer to "NUMBER_TO_RAW and RAW_TO_NUMBER
Argument Values" on page C-11.

Syntax
function MAKE_NUMBER_TO_RAW_FORMAT (mask IN VARCHAR2,
maskopts IN VARCHAR2,
envrnmnt IN VARCHAR2,
compname IN VARCHAR2,
compopts IN VARCHAR2,
nlslang IN VARCHAR2,
wind IN BOOLEAN,
wmsgbsiz IN BINARY_INTEGER,
wmsgblk OUT RAW) RETURN RAW;

Where Table C–9 describes the parameters in this function:

Defaults and Optional Parameters
Table C–10 describes the defaults and optional parameters for the
MAKE_NUMBER_TO_RAW_FORMAT function:

Table C–9 MAKE_NUMBER_TO_RAW_FORMAT Function Parameters

Parameter Description

mask is the compiler datatype mask.

maskopts are the compiler datatype mask options or NULL.

envrnmnt is the compiler environment clause or NULL.

compname is the compiler name.

compopts are the compiler options or NULL.

nlslang is the zoned decimal code page in Globalization Support
format.

wind is a warning indicator.

wmsgbsiz is the warning message block size in bytes.

wmsgblk is the warning message block. This is an OUT parameter.

Table C–10 Optional, Default Parameters: MAKE_NUMBER_TO_RAW_FORMAT

Parameter Description

maskopts null allowed, no default value

envrnmnt null allowed, no default value

compopts null allowed, no default value

UTL_PG Functions

C-8 Oracle Database Gateway for APPC User's Guide

Return Value
A RAW(2048) format conversion specification for NUMBER_TO_RAW.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

RAW_TO_NUMBER_FORMAT
RAW_TO_NUMBER_FORMAT converts, according to the RAW_TO_NUMBER conversion format
r2nfmt, a RAW byte-string rawval in the remote host internal format into an Oracle
number.

Syntax
function RAW_TO_NUMBER_FORMAT (rawval IN RAW,
r2nfmt IN RAW) RETURN NUMBER;

where Table C–11 describes the parameters in this function:

Defaults
None

Return Value
An Oracle number corresponding in value to r.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

NUMBER_TO_RAW_FORMAT
NUMBER_TO_RAW_FORMAT converts, according to the NUMBER_TO_RAW conversion format
n2rfmt, an Oracle number numval of declared precision and scale into a RAW
byte-string in the remote host internal format.

Syntax
function NUMBER_TO_RAW_FORMAT (numval IN NUMBER,
n2rfmt IN RAW) RETURN RAW;

Where Table C–12 describes the parameters in this function:

Table C–11 RAW_TO_NUMBER_FORMAT Function Parameters

Parameter Description

rawval is the remote host data to be converted.

r2nfmt is a RAW(2048) format specification returned from
MAKE_RAW_TO_NUMBER_FORMAT.

Table C–12 NUMBER_TO_RAW_FORMAT Function Parameters

Parameters Description

numval is the Oracle number to be converted.

UTL_PG Functions

The UTL_PG Interface C-9

Defaults
None

Return Value
A RAW value corresponding in value to n.

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

WMSGCNT
WMSGCNT tests a wmsgblk to determine how many warnings, if any, are present.

Syntax
function WMSGCNT (wmsgblk IN RAW) RETURN BINARY_INTEGER;

Where Table C–13 describes the parameter in this function.

Defaults
None

Return Value
A BINARY_INTEGER value equal to the count of warnings present in the RAW wmsgblk.

Table C–14 lists possible returned values:

n2rfmt is a RAW(2048) format specification returned from MAKE_
NUMBER_TO_RAW_FORMAT.

Table C–13 WMSGCNT Function Parameter

Parameter Description

wmsgblk is the warning message block returned from one of the
following functions:

■ MAKE_NUMBER_TO_RAW_FORMAT

■ MAKE_RAW_TO_NUMBER_FORMAT

■ NUMBER_TO_RAW

■ RAW_TO_NUMBER

Table C–14 WMSGCNT Return Values

Description

>0 indicates a count of warnings present in wmsgblk.

0 indicates that no warnings are present in wmsgblk.

Table C–12 (Cont.) NUMBER_TO_RAW_FORMAT Function Parameters

Parameters Description

UTL_PG Functions

C-10 Oracle Database Gateway for APPC User's Guide

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

WMSG
WMSG extracts a warning message specified by wmsgitem from wmsgblk.

Syntax
function WMSG (wmsgblk IN RAW,
wmsgitem IN BINARY_INTEGER,
wmsgno OUT BINARY_INTEGER,
wmsgtext OUT VARCHAR2,
wmsgfill OUT VARCHAR2) RETURN BINARY_INTEGER;

Where Table C–15 describes the parameters in this function:

Defaults
None

Return Value
A BINARY_INTEGER value containing a status return code.

A return code of "0" indicates that wmsgno, wmsgtext, and wmsgfill are assigned and
valid.

Table C–15 WMSG Function Parameters

Parameter Description

wmsgblk is a RAW warning message block returned from one of the
following functions:

■ MAKE_NUMBER_TO_RAW_FORMAT

■ MAKE_RAW_TO_NUMBER_FORMAT

■ NUMBER_TO_RAW

■ RAW_TO_NUMBER

wmsgitem is a BINARY_INTEGER value specifying which warning message
to extract, numbered from 0 for the first warning through n
minus 1 for the nth warning.

wmsgno is an OUT parameter containing the BINARY_INTEGER
(hexadecimal) value of the warning number. This value, after
conversion to decimal, is documented in the Oracle Database
Error Messages manual.

wmsgtext is a VARCHAR2 OUT parameter value containing the
fully-formatted warning message in ORA-xxxxx format, where
xxxxx is the decimal warning number documented in the
Oracle Database Error Messages manual.

wmsgfill is a VARCHAR2 OUT parameter value containing the list of
warning message parameters to be substituted into a warning
message in the following format:

warnparm1;;warnparm2;;...;;warnparmn

where each warning parameter is delimited by a double
semicolon.

NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values

The UTL_PG Interface C-11

Error and Warning Messages
If you receive an ORA-xxxx error or warning message, refer to the Oracle Database
Error Messages guide for an explanation and information about how to handle it.

Table C–16 describes the error messages you could receive:

NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values
This table lists the valid values for the format arguments for NUMBER_TO_RAW and RAW_
TO_NUMBER and related functions. Following are examples of some valid COBOL
picture masks. Any valid COBOL picture mask may be used. Refer to the appropriate
IBM COBOL programming guides for an explanation of COBOL picture masks.

mask: COBOL picture mask

PIC 9(n) where 1 <= n <= 18
PIC S9(n) where 1 <= n <= 18
PIC 9(n)V9(s) where 1 <= n+s <= 18
PIC S9(n)V9(s) where 1 <= n+s <= 18
PIC S9999999V99
PIC V99999
PIC SV9(5)
PIC 999.00
PIC 99/99/99
PIC ZZZ.99
PIC PPP99
PIC +999.99
PIC 999.99+
PIC -999.99
PIC 999.99-
PIC $$$$$,$$$.99
PIC $9999.99DB
PIC $9999.99CR

maskopts: COBOL picture mask options

COMP
USAGE IS COMP
USAGE IS COMPUTATIONAL
COMP-3
USAGE IS COMP-3
USAGE IS COMPUTATIONAL-3
COMP-4
USAGE IS COMP-4
USAGE IS COMPUTATIONAL-4
DISPLAY
USAGE IS DISPLAY

Table C–16 WMSG Function Errors

Error Description

-1 indicating the warning specified by wmsgitem was not found
in wmsgblk.

-2 indicating an invalid message block.

-3 indicating wmsgblk is too small to contain the warning
associated with wmsgitem. A partial or no warning message
might be present for this particular wmsgitem.

-4 indicating there are too many substituted warning parameters.

NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values

C-12 Oracle Database Gateway for APPC User's Guide

SIGN IS LEADING
SIGN IS LEADING SEPARATE
SIGN IS LEADING SEPARATE CHARACTER
SIGN IS TRAILING
SIGN IS TRAILING SEPARATE
SIGN IS TRAILING SEPARATE CHARACTER

envrnmnt: COBOL environment clause

CURRENCY SIGN IS x where x is a valid currency sign character
DECIMAL-POINT IS COMMA

compname: COBOL compiler name

IBMVSCOBOLII

compopts: COBOL compiler options

(no values are supported at this time)

D

Datatype Conversions D-1

D Datatype Conversions

You must convert datatypes and data formats properly when you are using the PGAU
tool to generate TIPs and when you are developing a custom TIP using PL/SQL and
the UTL_RAW and UTL_PG functions.

Read this appendix to learn about datatype conversion as it relates to TIPs.

This appendix contains the following sections:

■ Length Checking on page D-1

■ Conversion on page D-2

Length Checking
PGAU-generated TIPs perform length checking at the end of every parameter sent and
received.

Table D–1 provides a list of length parameters generated by PGAU:

An exception is raised when the convert length of a sent parameter does not equal its
expected length. This occurs if too many or too few send field conversions are
performed.

An exception is raised when the convert length of a received parameter does not equal
its received length. These length exceptions result when too few or too many
conversions are performed.

A warning is issued when the expected length of a received parameter does not equal
its convert or received length and data conversion tracing is enabled. This occurs when
a maximum length record is expected, but a shorter record is transmitted and correctly
converted.

Table D–1 Length Parameters

Parameter Description

expected length Is computed by PGAU when the TIP is generated.

convert length Is summed by the TIP from each converted field.

send length Is the transmitted send data length and is also equal to the
actual length for send parameters.

receive length Is the transmitted receive data length.

Conversion

D-2 Oracle Database Gateway for APPC User's Guide

Parameters Over 32K in Length
PGAU generates TIPs that support transmission of individual data parameters which
exceed 32K bytes.

PGAU includes this support automatically when PGAU GENERATE processing detects
the maximum length of a data parameter exceeding 32K.

This support is driven by the data definitions placed in the PG DD and cannot be
selected by the user. To include the support, the data definition must actually or
possible exceed 32K. To remove the support, you must decrease the parameter length
to less than 32K, REDEFINE the data, and GENERATE the TIP again.

This support tests for field positions crossing the 32K buffer boundaries before and
after conversion of those fields which lie across such boundaries. In the case of
repeating groups, This can be many fields, for repeating groups, or few fields in the
case of simple linear records.

Each test and the corresponding buffer management logic adds overhead.

Conversion
The PG DD and TIPs generated by PGAU support COBOL, specified as IBMVSCOBOLII
when defining data.

USAGE(PASS)
When USAGE(PASS) has been specified on the PGAU DEFINE DATA statement, the
following datatype and format conversions are supported:

■ PIC X

■ PIC G

PIC X Datatype Conversions
PGAU TIPs convert the COBOL X datatype to a PL/SQL CHAR datatype of the same
character length. Globalization Support character set translation is also performed.

Note: COBOL lacks a datatype specifically designated for variable length data. It is
represented in COBOL as a subgroup containing a PIC 9 length field followed by a
PIC X character field. For example:

10 NAME.

15 LENGTH PIC S9(4).

15 LETTERS PIC X(30).

Given this context, it cannot be guaranteed that all instances of an S9(4) field followed
by an X field are always variable length data. Rather than PGAU TIPs converting the
above COBOL group NAME to a VARCHAR, the TIPs instead construct a nested PL/SQL
record as follows:

TYPE NAME_typ is RECORD (
LENGTH NUMBER(4,0),
LETTERS CHAR(30));

Caution: The target of a REDEFINE clause cannot reside in a
previously processed buffer. Run-time TIP processing of the fields
containing such REDEFINE clauses get unpredictable results.

Conversion

Datatype Conversions D-3

TYPE ... is RECORD(
...
NAME NAME_typ,
...

It is the client application’s responsibility (based upon specific knowledge of the
remote host data) to extract NAME.LENGTH characters from NAME.LETTERS and assign
the result to a PL/SQL VARCHAR, if a VARCHAR is desired.

Character set conversion is performed for single byte encoded:

■ remote host character data, using either:

– DEFINE TRANSACTION NLS_LANGUAGE character set for an entire transaction, or

– REDEFINE DATA REMOTE_LANGUAGE character set for a single field, if specified.

■ local Oracle character data, using either:

– LANGUAGE character set of integrating server for an entire transaction, or

– REDEFINE DATA LOCAL_LANGUAGE character set for a single field, if specified.

PIC G Datatype Conversions
PGAU generated TIPs convert the COBOL G datatype to a PL/SQL VARCHAR2 datatype
of the same length, allowing 2 bytes for every character position.

Character set conversion is performed for double-byte and multi-byte encoded:

■ remote host character data, using either:

– DEFINE TRANSACTION REMOTE_MBCS character set for an entire transaction, or

– REDEFINE DATA REMOTE_LANGUAGE character set for a single field, if specified.

■ local Oracle character data, using either:

– DEFINE TRANSACTION LOCAL_MBCS character set for an entire transaction, or

– REDEFINE DATA LOCAL_LANGUAGE character set for a single field, if specified.

Alphanumeric and DBCS Editing Field Positions
Table D–2 illustrates how PGAU interprets COBOL symbols in datatype conversions,
by providing the definitions for the symbols.

Edited positions in COBOL statement data received from the remote host are
converted by PGAU along with the entire field and passed to the client application in
the corresponding PL/SQL VARCHAR2 output variable.

When editing symbols are present, they are interpreted to mean the remote host field
contains the COBOL data content and length indicated. The editing positions are
included in the length of the data field, but conversion of all field positions is

Table D–2 COBOL Symbol Definitions

COBOL Symbols Oracle Definition of COBOL Symbols - Data Content

’B’ blank (1 byte SBCS or 2 bytes DBCS depending on
USAGE)

’0’ zero (1 byte SBCS)

’/’ forward slash (1 byte SBCS)

’G’ double byte

Conversion

D-4 Oracle Database Gateway for APPC User's Guide

processed by PGAU as a single string and no special scanning or translation is done
for edited byte positions.

Edited positions in COBOL statement data sent to the remote host are converted by
PGAU along with the entire PL/SQL VARCHAR2 input variable passed from the client
application.

Table D–3 provides an example of how PGAU converts COBOL datatypes:

Table D–3 COBOL-PGAU Conversion

COBOL Datatype Description of Conversion by PGAU

PIC XXXBBXX Is an alphanumeric field 7 bytes in length and would be
converted in a single UTL_RAW.CONVERT call. No testing or
translation is done on the contents of the byte positions
indicated by ’B’. While COBOL language rules indicate that
these positions contain "blank" in the character set specified for
the remote host, what data is actually present is the user’s
responsibility.

PIC GGBGGG Is a DBCS field 12 bytes in length and would be converted in a
single UTL_RAW.CONVERT call. No testing or translation is done
on the contents of the byte positions indicated by ’B’. While
COBOL language rules indicate that these positions contain
"blank" in the character set specified for the remote host, what
data is actually present is the user’s responsibility.

PIC 9 PGAU TIPs convert the COBOL 9 datatype to a PL/SQL
NUMBER datatype of the same precision and scale. Globalization
Support character set translation is also performed on signs,
currency symbols, and spaces.

The following are supported:

■ COMPUTATIONAL (binary)

■ COMPUTATIONAL-3 (packed decimal)

■ COMPUTATIONAL-4 (binary)

■ DISPLAY (zoned decimal)

For DISPLAY datatypes, the following sign specifications are
supported:

■ SEPARATE [CHARACTER]

■ LEADING

■ TRAILING

Refer to "NUMBER_TO_RAW and RAW_TO_NUMBER
Argument Values" in Appendix C, "The UTL_PG Interface" for
more information about numeric datatype conversions.

COMPUTATIONAL-1 and COMPUTATIONAL-2 (floating point)
datatypes are not supported.

FILLER COBOL FILLER fields are recognized by PGAU by the spelling
of the element name FILLER. PGAU does not generate any data
conversion for such elements, but does require their space be
properly allocated to preserve offsets within the records
exchanged with the remote host transaction.

If a RENAMES or REDEFINES definition covers a FILLER element,
PGAU generates data conversion statements for the same area
when it is referenced as a component of the RENAMES or
REDEFINES variable. Such data conversion reflects only the
format of the RENAMES or REDEFINES definition and not the
bounds of the FILLER definition.

Conversion

Datatype Conversions D-5

Format Conversion
Table D–4 describes format conversion:

Table D–4 Format Conversion Descriptions

Item Description

JUSTIFIED |
JUSTIFIED RIGHT

This causes remote host transaction data to be converted as a
PL/SQL CHAR datatype according to character datatype, as
discussed in "PIC X Datatype Conversions" on page D-2, for
both IN and OUT parameters.

IN parameter data passed from the application is stripped of its
rightmost blanks and left padded as required. Then it is sent to
the remote host.

OUT parameter data is aligned as it is received from the remote
host and padded with blanks as required on the left. Then it is
passed to the application.

JUSTIFIED LEFT This causes warnings to be issued during TIP generation. No
alignment is performed. This is treated as documentation.

The remote host transaction data is converted as a PL/SQL
CHAR datatype according to character datatype, as discussed in
"PIC X Datatype Conversions" on page D-2, for both IN and
OUT parameters.

LENGTH IS field-2 This is an Oracle extension to the data definition as stored in
the PG DD. This extension exists only in the PGAU context and
is not valid COBOL syntax.

The purpose of this extension is to provide a means for
variable-length character data to be processed more efficiently
by the TIP conversion logic. This is an alternative to defining a
variable-length PIC X field as PIC X(1) OCCURS DEPENDING ON
field-2, where field-2 is the length of the field. With this
extension, the same field could be defined as PIC X(5000)
LENGTH IS field-2, where field -2 is the length of the field.
The TIP is able to pick up the length and do the character set
conversion on the field with a single UTL_RAW.CONVERT call
instead of using a loop to do the conversion one character at a
time.

Note that the use of this construct does not affect the COBOL
program. The PIC X (or PIC G) field is still fixed-length as far
as COBOL is concerned, so the position of the data does not
change, nor does the amount of data that is transferred
between the gateway and the OLTP. However, if the field is the
last field in a COBOL definition, then the COBOL program
could be modified to send only the number of bytes required to
satisfy the length set in the field-2 field referenced by the
LENGTH IS clause.

The LENGTH IS clause can be specified only for PIC X and PIC
G fields, and the picture mask for those fields cannot contain
editing characters.

Conversion

D-6 Oracle Database Gateway for APPC User's Guide

OCCURS n TIMES This causes conversion of exactly ’n’ instances of a set of
PL/SQL variables to or from a repeating group area within the
remote host record, the size of which area equals the group
length times ’n’ repetitions. PGAU generated TIPs employ
PL/SQL RECORDs of TABLEs to implement an array-like
subscript on fields within a repeating group. PL/SQL supports
a single dimension TABLE, and consequently PGAU supports
only a single level of an OCCURS group. Nested OCCURS groups
are not supported. The conversion and formatting performed
are dictated by the COBOL datatype of each subfield defined
within the repeating group, as documented in "PIC X Datatype
Conversions" on page D-2 and "Format Conversion" on
page D-5.

OCCURS m TO n TIMES
DEPENDING ON field-2

This causes conversion of at least ’m’ and not over ’n’ instances
of a set of PL/SQL variables to or from a repeating group area
within the remote host record, the size of which area equals the
group length times the repetition count contained in the named
field. PGAU generated TIPs employ PL/SQL RECORDs of
TABLEs to implement an array-like subscript on fields within a
repeating group. PL/SQL supports a single dimension TABLE,
and consequently PGAU supports only a single level of an
OCCURS DEPENDING ON group. Nested OCCURS DEPENDING ON
groups are not supported. The conversion and formatting
performed are dictated by the COBOL datatype of each
subfield defined within the repeating group, as documented in
"PIC X Datatype Conversions" on page D-2 and "Format
Conversion" on page D-5.

Range conversion: PGAU-generated TIPs use a ’FOR ... LOOP’
algorithm with a range of 1 to whatever TIMES upper limit was
specified. When the TIP has been generated with the
DIAGNOSE(PKGEX(DC)) option, the PL/SQL FOR statement
which iterates an OCCURS DEPENDING ON repeating group is
preceded by an IF test to ensure at TIP runtime that the
DEPENDING ON field contains a number which lies within the
specified range for which the lower limit need not be 1. An
exception is raised if this test fails.

RENAMES item-2 THRU
item-3

A single PL/SQL variable declaration corresponds to a
RENAMES definition. If all the subfields covered by a RENAMES
definition are PIC X, then the PL/SQL variable is a VARCHAR2.
Otherwise any non-PIC X subfield causes the PL/SQL variable
datatype to be RAW.

Lengths of renamed fields do not contribute to the overall
parameter data length because the original fields dictate the
lengths.

Table D–4 (Cont.) Format Conversion Descriptions

Item Description

Conversion

Datatype Conversions D-7

USAGE(ASIS)
When USAGE(ASIS) is specified on the PGAU DEFINE DATA statement, no conversion is
performed. Consequently, each such field is simply copied to a PL/SQL RAW of the
same byte length. No conversion, translation, or reformatting is done.

USAGE(SKIP)
When USAGE(SKIP) is specified on the PGAU DEFINE DATA statement, no data
exchange is performed. The data is skipped as if it did not exist. Consequently, such
fields are not selected from the PG DD, not reflected in the TIP logic, and presumed
absent from the data streams exchanged with the remote host. The purpose of "SKIP" is
to have definitions in the PG DD, but not active, perhaps because a remote host has
either removed the field or has yet to include the field. SKIP allows an existing data
definition to be used even though some fields do not exist at the remote host.

REDEFINES item-2 WHEN
item-3=value

The ’WHEN item-3=value’ is an Oracle extension to the data
definition as stored in the PG DD. This extension exists only in
the PGA context and is not valid COBOL syntax.

The purpose of this extension is to provide a means for the
gateway administrator or application developer to specify the
criteria by which the redefinition is to be applied. For example,
a record type field is often present in a record and different
record formats apply depending on which record type is being
processed. The specification of which type value applies to
which redefinition is typically buried in the transaction
programming logic, not in the data definition. To specify which
conversion to perform on redefined formats in the TIP, the WHEN
criteria was added to PGA data definitions.

PGAU generates PL/SQL nested record declarations which
correspond in name and datatype to the subordinate elements
covered by the REDEFINES definition. The standard PGAU
datatype determination described in "PIC X Datatype
Conversions" on page D-2.

LEVEL 01 REDEFINE is ignored:

This permits remote host copybooks to include definitions
which REDEFINE other transaction working storage buffers
without having to define such buffers in the TIP or alter the
copybook used as input for the definition.

SYNCHRONIZED |
SYNCHRONIZED RIGHT

This causes the numeric field to be aligned on boundaries as
dictated by the remote host environment, compiler language,
and datatype.

Numeric conversion is performed on the aligned data fields
according to numeric datatype, as discussed in "PIC X
Datatype Conversions" on page D-2, for both IN and OUT
parameters.

SYNCHRONIZED LEFT This causes warnings to be issued during TIP generation and
no realignment is performed. This is treated as documentation.

Numeric conversion is performed on the aligned data fields
according to numeric datatype, as discussed in "PIC X
Datatype Conversions" on page D-2, for both IN and OUT
parameters.

Table D–4 (Cont.) Format Conversion Descriptions

Item Description

Conversion

D-8 Oracle Database Gateway for APPC User's Guide

PL/SQL Naming Algorithms

Delimiters
COBOL special characters in record, group, and element names are translated when
PGAU DEFINE inserts definitions into the PG DD, and by PGAU GENERATE when
definitions are selected from the PG DD. Special characters are translated as follows:

■ hyphen is translated to underscore (_)

■ period is deleted

Qualified Compound Names
PL/SQL variable names are fully qualified and composed from:

■ PL/SQL record name as the leftmost qualifier corresponding to level 01 or 77
COBOL record name.

■ PL/SQL nested record names corresponding to COBOL group names.

■ PL/SQL nested fields corresponding to COBOL elements of datatype:

– CHAR or NUMBER corresponding to non-repeating COBOL elements.

– TABLE corresponding to COBOL elements which fall within an OCCURS or
OCCURS DEPENDING ON group (COBOL repeating fields correspond to PL/SQL
nested RECORDs of TABLE’s).

Note that when referencing PL/SQL variables from calling applications, the TIP
package name must be prefixed as the leftmost qualifier. Thus the fully qualified
reference to the PL/SQL variable which corresponds to:

■ SKILL is:

tipname.EMPREC_Typ.SKILL(SKILL_Key)

■ HOME_ADDRESS ZIP is:

tipname.EMPREC_Typ.HOME_ADDRESS.ZIP.FIRST_FIVE
tipname.EMPREC_Typ.HOME_ADDRESS.ZIP.LAST_FOUR

Truncated and Non-Unique Names
PGAU truncates field names and corresponding PL/SQL variable names when the
name exceeds:

■ 26 bytes for fields within an aggregate record or group

This is due to the need to suffix each field or PL/SQL variable name with:

– "_Typ" for group names

– "_Tbl" for element names with a repeating group

or

■ 30 bytes due to the PL/SQL limitation of 30 bytes for any name

The rightmost four characters are truncated. This imposes the restriction that
names be unique to 26 characters.

Duplicate Names
COBOL allows repetitive definition of the same group or element names within a
record, and the context of the higher level groups serves to uniquely qualify names.
However, because PGAU-generated TIPs declare PL/SQL record variables which

Conversion

Datatype Conversions D-9

reference nested PL/SQL records for subordinate groups and fields, such nested
PL/SQL record types can have duplicate names.

Given the following COBOL definition, note that ZIP is uniquely qualified in COBOL,
but the corresponding PL/SQL declaration would have a duplicate nested record type
for ZIP.

01 EMPREC.
05 HIREDATE PIC X(8).
05 BIRTHDATE PIC X(8).
05 SKILL PIC X(12) OCCURS 4.
05 EMPNO PIC 9(4).
05 EMPNAME.

10 FIRST-NAME PIC X(10).
10 LAST-NAME PIC X(15).

05 HOME-ADDRESS.
10 STREET PIC X(20).
10 CITY PIC X(15).
10 STATE PIC XX.
10 ZIP.

15 FIRST-FIVE PIC X(5).
15 LAST-FOUR PIC X(4).

05 DEPT PIC X(45).
05 OFFICE-ADDRESS.

10 STREET PIC X(20).
10 CITY PIC X(15).
10 STATE PIC XX.
10 ZIP.

15 FIRST-FIVE PIC X(5).
15 LAST-FOUR PIC X(4).

05 JOBTITLE PIC X(20).

PGAU avoids declaring duplicate nested record types, and generates the following
PL/SQL:

SKILL_Key BINARY_INTEGER;
TYPE SKILL_Tbl is TABLE of CHAR(12)

INDEX by BINARY_INTEGER;
TYPE EMPNAME_Typ is RECORD (

FIRST_NAME CHAR(10),
LAST_NAME CHAR(15));

TYPE ZIP_Typ is RECORD (
FIRST_FIVE CHAR(5),
LAST_FOUR CHAR(4));

TYPE HOME_ADDRESS_Typ is RECORD (
STREET CHAR(20),
CITY CHAR(15),
STATE CHAR(2),
ZIP ZIP_Typ);

TYPE OFFICE_ADDRESS_Typ is RECORD (
STREET CHAR(20),
CITY CHAR(15),
STATE CHAR(2),
ZIP ZIP_Typ);

TYPE EMPREC_Typ is RECORD (
HIREDATE CHAR(8),
BIRTHDATE CHAR(8),
SKILL SKILL_Tbl,
EMPNO NUMBER(4,0),
EMPNAME EMPNAME_Typ,

Conversion

D-10 Oracle Database Gateway for APPC User's Guide

HOME_ADDRESS HOME_ADDRESS_Typ,
DEPT CHAR(45),
OFFICE_ADDRESS OFFICE_ADDRESS_Typ,
JOBTITLE CHAR(20));

However, in the case where multiple nested groups have the same name but have
different subfields (see ZIP following):

05 HOME-ADDRESS.
10 STREET PIC X(20).
10 CITY PIC X(15).
10 STATE PIC XX.
10 ZIP.

15 LEFTMOST-FOUR PIC X(4).
15 RIGHMOST-FIVE PIC X(5).

05 DEPT PIC X(45).
05 OFFICE-ADDRESS.

10 STREET PIC X(20).
10 CITY PIC X(15).
10 STATE PIC XX.
10 ZIP.

15 FIRST-FIVE PIC X(5).
15 LAST-FOUR PIC X(4).

05 JOBTITLE PIC X(20).

PGAU alters the name of the PL/SQL nested record type for each declaration in which
the subfields differ in name, datatype, or options. Note the "02" appended to the
second declaration (ZIP_Typ02), and its reference in OFFICE_ADDRESS.

TYPE EMPNAME_Typ is RECORD (
FIRST_NAME CHAR(10),
LAST_NAME CHAR(15));

TYPE ZIP_Typ is RECORD (
LEFTMOST_FOUR CHAR(4),
RIGHTMOST_FIVE CHAR(5));
TYPE HOME_ADDRESS_Typ is RECORD (
STREET CHAR(20),
CITY CHAR(15),
STATE CHAR(2),
ZIP ZIP_Typ);

TYPE ZIP_Typ02 is RECORD (
FIRST_FIVE CHAR(5),
LAST_FOUR CHAR(4));

TYPE OFFICE_ADDRESS_Typ is RECORD (
STREET CHAR(20),
CITY CHAR(15),
STATE CHAR(2),
ZIP ZIP_Typ02);

TYPE EMPREC_Typ is RECORD (
HIREDATE CHAR(8),
BIRTHDATE CHAR(8),
SKILL SKILL_Tbl,
EMPNO NUMBER(4,0),
EMPNAME EMPNAME_Typ,
HOME_ADDRESS HOME_ADDRESS_Typ,
DEPT CHAR(45),
OFFICE_ADDRESS OFFICE_ADDRESS_Typ,
JOBTITLE CHAR(20));

And the fully qualified reference to the PL/SQL variable which corresponds to:

Conversion

Datatype Conversions D-11

■ HOME_ADDRESS.ZIP is:

tipname.EMPREC_Typ.HOME_ADDRESS.ZIP.LEFTMOST_FOUR
tipname.EMPREC_Typ.HOME_ADDRESS.ZIP.RIGHTMOST_FIVE

■ OFFICE_ADDRESS.ZIP is:

tipname.EMPREC_Typ.OFFICE_ADDRESS.ZIP.FIRST_FIVE
tipname.EMPREC_Typ.OFFICE_ADDRESS.ZIP.LAST_FOUR

Note that the nested record type name ZIP_Typ02 is not used in the reference, but is
implicit within PL/SQL’s association of the nested records.

Conversion

D-12 Oracle Database Gateway for APPC User's Guide

E

Tip Internals E-1

E Tip Internals

PGAU generates complete and operational TIPs for most circumstances. TIP internals
information is provided to assist you in diagnosing problems with PGAU-generated
TIPs, and in writing custom TIPs, if you choose to do so.

■ If your gateway is using the SNA communication protocol:

This appendix refers to a sample called pgadb2i. The source for this TIP is in file
pgadb2i.sql in the %ORACLE_HOME%\dg4appc\demo\CICS directory for Microsoft
Windows and $ORACLE_HOME/dg4appc/demo/CICS directory for UNIX based
systems.

■ If your gateway is using the TCP/IP communication protocol:

This appendix refers to a sample called pgaims. The source for this TIP is in file
pgtflipd.sql in the %ORACLE_HOME%\dg4appc\demo\IMS directory for Microsoft
Windows and $ORACLE_HOME/dg4appc/demo/IMS directory on UNIX based
systems.

This appendix contains the following sections:

■ "Background Reading" on page E-1

■ "PL/SQL Package and TIP File Separation" on page E-2

Background Reading
Several topics are important to understanding TIP operation and development;
following is a list of concepts that are key to TIP operation and suggested sources to
which you can refer for more information.

■ For information about PL/SQL Packages, refer to the Oracle Database PL/SQL
Language Reference.

■ For information about PGA Application Concepts, refer to the following chapters
in this guide:

■ If your communication protocol is SNA: refer to Chapter 4, "Client Application
Development (SNA Only)";

■ If your communication protocol is TCP/IP: refer to Chapter 7, "Client Application
Development (TCP/IP Only)".

■ For information about PGA RPC Interface, refer to Appendix B, "Gateway RPC
Interface".

PL/SQL Package and TIP File Separation

E-2 Oracle Database Gateway for APPC User's Guide

■ For information about PGA UTL_PG Interface, refer to Appendix C, "The UTL_PG
Interface".

PL/SQL Package and TIP File Separation
PGAU GENERATE writes each output TIP into a standard PL/SQL package specification
file and body file. This separation is beneficial and important. Refer to the Oracle
Database Development Guide and the Oracle Database PL/SQL Language Reference for more
information. Also refer to "GENERATE" on page 2-15 in Chapter 2, "Procedural
Gateway Administration Utility" for more information about building the PL/SQL
package.

TIPs are PL/SQL packages. Any time a package specification is recompiled, all objects
which depend on that package are invalidated and implicitly recompiled as they are
referenced, even if the specification did not change.

Objects which depend on a TIP specification include client applications that call the
TIP to interact with remote host transactions.

It might be important to change the TIP body for the following reasons:

■ Oracle ships maintenance which affects the TIP body, or

■ Oracle ships maintenance for the UTL_RAW or UTL_PG conversion functions upon
which the TIP body relies.

Refer to Appendix C, "The UTL_PG Interface" for more detailed information about
these functions.

■ if the remote host network or program location parameters have changed. Refer to
"DEFINE TRANSACTION" in Chapter 2, "Procedural Gateway Administration
Utility" for more information

Provided that the TIP specification does not need to change or be recompiled, the TIP
body can be regenerated and recompiled to pick up changes without causing
invalidation and implicit recompilation of client applications that call the TIP.

It is for this reason that PGAU now separates output TIPs into specification and body
files. Refer to "GENERATE" on page 2-15 in Chapter 2, "Procedural Gateway
Administration Utility" for a discussion of file identification.

Independent TIP Body Changes
Independent TIP body changes are internal and require no change to the TIP
specification. Examples of such changes include: a change in UTL_RAW or UTL_PG
conversions, inclusion of diagnostics, or a change to network transaction parameters.

In these cases, when PGAU is used to regenerate the TIP, the new TIP specification file
can be saved or discarded, but should not be recompiled. The new TIP body should be
recompiled under SQL*Plus. Provided that the TIP body change is independent, the
new body compilation completes without errors and the former TIP specification
remains valid.

Determine if a Specification Has Remained Valid
To determine if a specification has remained valid, issue the following statements from
SQL*Plus, depending upon your communication protocol:

■ If your gateway is using the SNA communication protocol, issue the following:

SQL> column ddl_date format A22 heading ’LAST_DDL’
SQL> select object_name,

PL/SQL Package and TIP File Separation

Tip Internals E-3

2 object_type,
3 to_char(last_ddl_time,’MON-DD-YY HH:MM:SS’) ddl_date,
4 status
5 from all_objects where owner = ’PGAADMIN’
6 order by object_type, object_name;

OBJECT_NAME OBJECT_TYPE LAST_DDL STATUS
----------- ----------- -------------------- ---------
PGADB2I PACKAGE NOV-24-1999 09:09:13 VALID
PGADB2I PACKAGE BODY NOV-24-1999 09:11:44 VALID
DB2IDRIV PROCEDURE DEC-30-1999 12:12:14 VALID
DB2IDRVM PROCEDURE DEC-30-1999 12:12:53 VALID
DB2IFORM PROCEDURE DEC-14-1999 11:12:24 VALID

The LAST_DDL column is the date and time at which the last DDL change against
the object was done. It shows that the order of compilation was:

PGADB2I PACKAGE (the specification)
DB2IDRVM PROCEDURE (1st client application depending on PGADB2I)
DB2IFORM PROCEDURE (2nd client application depending on PGADB2I)
DB2IDRIV PROCEDURE (3rd client application depending on PGADB2I)
PGADB2I PACKAGE BODY (a recompilation of the body)

Note that the recompilation of the body does not invalidate its dependent object,
the specification, or the client application indirectly.

■ If your gateway is using the TCP/IP communication protocol, issue the following
fro SQL*Plus:

SQL> column ddl_date format A22 heading ’LAST_DDL’
SQL> select object_name,

2 object_type,
3 to_char(last_ddl_time,’MON-DD-YY HH:MM:SS’) ddl_date,
4 status
5 from all_objects where owner = ’PGAADMIN’
6 order by object_type, object_name;

OBJECT_NAME OBJECT_TYPE LAST_DDL STATUS
----------- ----------- -------------------- ---------
PGTFLIP PACKAGE APR-24-03 03:04:58 VALID
PGTFLIP PACKAGE BODY APR-24-03 03:04:02 VALID
PGTFLIPD PROCEDURE APR-24-03 03:04:09 VALID
The LAST_DDL column is the date and time at which the last DDL change against
the object was done. It shows that the order of compilation was:

PGTFLIP PACKAGE (the specification)
PGTFLIPD PROCEDURE (client application depending on PGADB2I)
PGTFLIP PACKAGE BODY (a recompilation of the body)

Note that the recompilation of the body does not invalidate its dependent object, the
specification, or the client application indirectly.

Dependent TIP Body or Specification Changes
You can also change the data structures or call exchange sequences of the remote host
transaction. However, this kind of change is exposed to dependent client applications
because the public datatypes or functions in the TIP specification will also change and
necessitate recompilation, which in turn causes the Oracle database to recompile such
dependent client applications.

■ If your gateway is using the SNA communication protocol, issue the following:

PL/SQL Package and TIP File Separation

E-4 Oracle Database Gateway for APPC User's Guide

SQL> column ddl_date format A22 heading ’LAST_DDL’
SQL> select object_name,

2 object_type,
3 to_char(LAST_DDL_TIME,’MON-DD-YY HH:MM:SS’) ddl_date,
4 status
5 from all_objects where owner = ’PGAADMIN’
6 order by object_type, object_name;

OBJECT_NAME OBJECT_TYPE LAST_DDL STATUS
---------- ----------- --------------------- ---------
PGADB2I PACKAGE NOV-24-1999 09:09:13 VALID
PGADB2I PACKAGE BODY NOV-24-1999 09:11:44 INVALID
DB2IDRIV PROCEDURE DEC-30-1999 12:12:14 INVALID
DB2IDRVM PROCEDURE DEC-30-1999 12:12:53 INVALID
DB2IFORM PROCEDURE DEC-14-1999 11:12:24 INVALID

■ If your gateway is using the TCP/IP communication protocol, issue the
following:

SQL> column ddl_date format A22 heading ’LAST_DDL’
SQL> select object_name,

2 object_type,
3 to_char(LAST_DDL_TIME,’MON-DD-YY HH:MM:SS’) ddl_date,
4 status
5 from all_objects where owner = ’PGAADMIN’
6 order by object_type, object_name;

OBJECT_NAME OBJECT_TYPE LAST_DDL STATUS
---------- ----------- --------------------- ---------
PGTFLIP PACKAGE APR-24-03 03:04:58 VALID
PGTFLIP PACKAGE BODY APR-24-03 05:03:52 INVALID
PGTFLIP PROCEDURE APR-24-03 05:04:29 INVALID

Recompile the TIP Body
Note that the recompilation of the specification has invalidated its dependent objects,
the three client applications in addition to the package body. To complete these
changes, the body must be recompiled to bring it into compliance with the
specification and then the three client applications could be compiled manually, or the
Oracle database compiles them automatically as they are referenced.

If the client applications are recompiled by the Oracle database as they are referenced,
there is a one-time delay during recompilation.

Recompilation errors in the client application, if any, are due to:

■ customer changes in the client application source

■ an altered PG DD definition for the TIP if the TIP has been regenerated

■ the wrong version being generated from multiple transaction entry versions saved
in the PG DD if the TIP has been regenerated

Inadvertent Alteration of TIP Specification
If you make a mistake when you generate a tip (for example, if you alter a PG DD
transaction definition, or if you have inadvertently specified the wrong version during
regeneration), then the recompiled body will not match the stored specification; as a
result, the Oracle database would invalidate the specification and any dependent
client applications.

PL/SQL Package and TIP File Separation

Tip Internals E-5

You may have to regenerate and recompile the TIP and its dependent client
applications to restore correct operation.

Refer to "Listing Dependency Management Information," in the Oracle Database
Development Guide for more information.

PL/SQL Package and TIP File Separation

E-6 Oracle Database Gateway for APPC User's Guide

F

Administration Utility Samples F-1

F Administration Utility Samples

Use the following sample input statements and report output for the Procedural
Gateway Administration Utility to guide you in designing your own PGAU
statements.

This appendix contains these sample PGAU statements:

■ "Sample PGAU DEFINE DATA Statements" on page F-1

■ "Sample PGAU DEFINE CALL Statements" on page F-2

■ "Sample PGAU DEFINE TRANSACTION Statement" on page F-2

■ "Sample PGAU GENERATE Statement" on page F-2

■ "Sample Implicit Versioning Definitions" on page F-3

■ "Sample PGAU REDEFINE DATA Statements" on page F-6

■ "Sample PGAU UNDEFINE Statements" on page F-6

Sample PGAU DEFINE DATA Statements
DEFINE DATA EMPNO

PLSDNAME (EMPNO)
USAGE (PASS)
LANGUAGE (IBMVSCOBOLII)
(
01 EMP-NO PIC X(6).
);

DEFINE DATA EMPREC
PLSDNAME (DCLEMP)
USAGE (PASS)
LANGUAGE (IBMVSCOBOLII)
INFILE("emp.cob");

where the file emp.cob contains the following:

01 DCLEMP.
10 EMPNO PIC X(6).
10 FIRSTNME.

49 FIRSTNME-LEN PIC S9(4) USAGE COMP.
49 FIRSTNME-TEXT PIC X(12).

10 MIDINIT PIC X(1).
10 LASTNAME.

49 LASTNAME-LEN PIC S9(4) USAGE COMP.
49 LASTNAME-TEXT PIC X(15).

10 WORKDEPT PIC X(3).

Sample PGAU DEFINE CALL Statements

F-2 Oracle Database Gateway for APPC User's Guide

10 PHONENO PIC X(4).
10 HIREDATE PIC X(10).
10 JOB PIC X(8).
10 EDLEVEL PIC S9(4) USAGE COMP.
10 SEX PIC X(1)
10 BIRTHDATE PIC X(10).
10 SALARY PIC S9999999V99 USAGE COMP-3.
10 BONUS PIC S9999999V99 USAGE COMP-3.
10 COMM PIC S9999999V99 USAGE COMP-3.

DEFINE DATA DB2INFO
PLSDNAME (DB2)
USAGE (PASS)
LANGUAGE (IBMVSCOBOLII)
INFILE("db2.cob");

where the file db2.cob contains the following:

01 DB2.
05 SQLCODE PIC S9(9) COMP-4.
05 SQLERRM.

49 SQLERRML PIC S9(4) COMP-4.
49 SQLERRT PIC X(70).

05 DSNERRM.
49 DSNERRML PIC S9(4) COMP-4.
49 DSNERRMT PIC X(240) OCCURS 8 TIMES

INDEXED BY ERROR-INDEX

Sample PGAU DEFINE CALL Statements
DEFINE CALL DB2IMAIN

PKGCALL (PGADB2I_MAIN)
PARMS ((EMPNO IN),

(EMPREC OUT));
DEFINE CALL DB2IDIAG

PKGCALL (PGADB2I_DIAG)
PARMS ((DB2INFO OUT));

Sample PGAU DEFINE TRANSACTION Statement
DEFINE TRANSACTION DB2I

CALL (DB2IMAIN,
DB2IDIAG)

SIDEPROFILE(CICSPROD)
TPNAME(DB2I)
LOGMODE(ORAPLU62)
SYNCLEVEL(0)
NLS_LANGUAGE("AMERICAN_AMERICA.WE8EBCDIC37C");

Sample PGAU GENERATE Statement
GENERATE DB2I

PKGNAME(PGADB2I)
OUTFILE("pgadb2i");

A user’s high-level application now uses this TIP by referencing these PL/SQL
datatypes passed and returned.

Sample Implicit Versioning Definitions

Administration Utility Samples F-3

Table F–1 provides a description of the TIP user transaction datatypes in package
name PGADB2I:

and the application calls:

PGADB2I.PGADB2I_INIT(trannum);
PGADB2I.PGADB2I_MAIN(trannum, empno, emprec);
PGADB2I.PGADB2I_DIAG(trannum, db2);
PGADB2I.PGADB2I_TERM(trannum, termtype);

Sample Implicit Versioning Definitions
The examples are sample definitions of DATA, CALL, and TRANSACTION entries with
implicit versioning.

This example creates a new DATA version of ’EMPREC’ because ’EMPREC’ DATA was
defined previously:

DEFINE DATA EMPREC
PLSDNAME (NEWEMP)
USAGE (PASS)
LANGUAGE (IBMVSCOBOLII)
INFILE("emp2.cob");

where the file emp2.cob contains the following:

01 NEWEMP.
10 EMPNO PIC X(6).
10 FIRSTNME.

49 FIRSTNME-LEN PIC S9(4) USAGE COMP.
49 FIRSTNME-TEXT PIC X(12).

10 MIDINIT PIC X(1).
10 LASTNAME.

49 LASTNAME-LEN PIC S9(4) USAGE COMP.
49 LASTNAME-TEXT PIC X(15).

10 WORKDEPT PIC X(3).
10 PHONENO PIC X(3).
10 HIREDATE PIC X(10).
10 JOB PIC X(8).
10 EDLEVEL PIC S9(4) USAGE COMP.
10 SEX PIC X(1).
10 BIRTHDATE PIC X(10).
10 SALARY PIC S9999999V99 USAGE COMP-3.
10 BONUS PIC S9999999V99 USAGE COMP-3.
10 COMM PIC S9999999V99 USAGE COMP-3.
10 YTD.

15 SAL PIC S9(9)V99 USAGE COMP-3.
15 BON PIC S9(9)V99 USAGE COMP-3.
15 COM PIC S9(9)V99 USAGE COMP-3.

To determine which DATA version number was assigned, this SQL query can be issued:

Table F–1 TIP User Transaction Datatypes Used in Package Name PGADB2I

Datatype Description

PGADB2I.EMPNO is a PL/SQL variable corresponding to COBOL EMPNO.

PGADB2I.DCLEMP Which is a PL/SQL RECORD corresponding to COBOL DCLEMP.

PGADB2I.DB2 Which is a PL/SQL RECORD corresponding to COBOL DB2INFO.

Sample Implicit Versioning Definitions

F-4 Oracle Database Gateway for APPC User's Guide

SELECT MAX(pd.version)
FROM pga_data pd
WHERE pd.dname = ’EMPREC’;

To determine additional information related to the updated version of ’EMPREC’ this
query can be used:

SELECT *
FROM pga_data pd
WHERE pd.dname = ’EMPREC’;

This example creates a new CALL version of ’DB2IMAIN’ because the ’DB2IMAIN’ CALL
was defined previously:

DEFINE CALL DB2IMAIN
PKGCALL (PGADB2I_MAIN)
PARMS ((EMPNO IN),

(EMPREC OUT VERSION(ddddd)));

where ddddd is the version number of the EMPREC DATA definition queried after the
previous DEFINE DATA updated EMPREC.

To determine which call version number was assigned, this SQL query can be issued:

SELECT MAX(pc.version)
FROM pga_call pc
WHERE pc.cname = ’DB2IMAIN’;

To determine additional information related to the updated version of ’DB2IMAIN’ this
query can be used:

SELECT *
FROM pga_call pc
WHERE pc.cname = ’DB2IMAIN’;

The DEFINE TRANSACTION example creates a new TRANSACTION version of ’DB2I’
because the ’DB2I’ TRANSACTION was defined previously. The essential difference of
the new version of the DB2I transaction is that the first call uses a new PL/SQL record
format "NEWEMP" (which corresponds to the COBOL NEWEMP format) to query the
employee data.

DEFINE TRANSACTION DB2I
CALL (DB2IMAIN VERSION (ccccc),

DB2IDIAG)
SIDEPROFILE(CICSTEST)
TPNAME(DB2I)
LOGMODE(ORAPLU62)
SYNCLEVEL(0)
NLS_LANGUAGE("AMERICAN_AMERICA.WE8EBCDIC37C");

where ccccc is the version number of the DB2IMAIN CALL definition queried after the
previous DEFINE CALL updated DB2IMAIN.

Caution: Record format changes like that discussed above must be
synchronized with the requirements of the remote transaction
program. Changes to the PGA TIP alone result in errors. A new
remote transaction program with the corequisite changes could be
running on a separate CICS system and started through the change
from "CICSPROD" to "CICSTEST" in the SIDEPROFILE parameter below.

Sample Implicit Versioning Definitions

Administration Utility Samples F-5

There are two versions of the DB2I transaction definition in the PGA DD. The original
uses the old "DCLEMP" record format and starts transaction "DB2I" on the production
CICS system. The latest uses the "NEWEMP" record format and starts transaction "DB2I"
on the test CICS system.

To determine which transaction version number was assigned, this SQL query can be
issued:

SELECT MAX(pt.version)
FROM pga_trans pt
WHERE pt.tname = ’DB2I’;

To determine additional information related to the updated version of ’DB2I’ this
query can be used:

SELECT *
FROM pga_trans pt
WHERE pt.tname = ’DB2I’;

This example generates a new package using the previously defined new versions of
the TRANSACTION, CALL, and DATA definitions:

GENERATE DB2I
VERSION(ttttt)
PKGNAME(NEWDB2I)
OUTFILE("pgadb2i");

where ttttt is the version number of the DB2I TRANSACTION definition queried after
the previous DEFINE TRANSACTION updated DB2I.

Note that the previous PL/SQL package files pgadb2i.pkh and pgadb2i.pkb are
overwritten. To keep the new package separate, change the output file specification.
For example:

GENERATE DB2I
VERSION(ttttt)
PKGNAME(NEWDB2I)
OUTFILE("newdb2i");

A user’s high-level application now uses this TIP by referencing the PL/SQL
datatypes passed and returned.

Table F–2 provides a description of the TIP user transaction datatypes in package
name NEWDB2I:

and the application calls:

NEWDB2I.PGADB2I_INIT(trannum);
NEWDB2I.PGADB2I_MAIN(trannum, empno, newemp);
NEWDB2I.PGADB2I_DIAG(trannum, db2);
NEWDB2I.PGADB2I_TERM(trannum, termtype);

Table F–2 TIP User Transaction Datatypes for Package Name NEWDB2I

Datatype Description

NEWDB2I.EMPNO Is a PL/SQL variable corresponding to COBOL EMPNO.

NEWDB2I.NEWEMP Is a PL/SQL RECORD corresponding to COBOL NEWEMP.

NEWDB2I.DB2 Is a PL/SQL RECORD corresponding to COBOL DB2.

Sample PGAU REDEFINE DATA Statements

F-6 Oracle Database Gateway for APPC User's Guide

Sample PGAU REDEFINE DATA Statements
Single-field redefinition in which EDLEVEL USAGE becomes COMP-3:

REDEFINE DATA EMPREC
PLSDNAME(DCLEMP)
LANGUAGE(IBMVSCOBOLII)
FIELD(EDLEVEL)
PLSFNAME(PLSRECTYPE)

(
10 EDLEVEL PIC S9(4) USAGE IS COMP-3.
);

By default, this redefines the latest version of EMPREC which implicitly affects the latest
call and transaction definitions which refer to it.

Sample multi-field redefinition in which the employee’s first and last name fields are
expanded and the employee’s middle initial is removed.

REDEFINE DATA EMPREC
VERSION(1)
PLSDNAME(DCLEMP)
LANGUAGE(IBMVSCOBOLII)
INFILE("emp1.cob");

where the file emp1.cob contains the following:

01 DCLEMP.
10 EMPNO PIC X(6).
10 FIRSTNME.

49 FIRSTNME-LEN PIC S9(4) USAGE COMP.
49 FIRSTNME-TEXT PIC X(15).

10 LASTNAME.
49 LASTNAME-LEN PIC S9(4) USAGE COMP.
49 LASTNAME-TEXT PIC X(20).

10 WORKDEPT PIC X(3).
10 PHONENO PIC X(4).
10 HIREDATE PIC X(10).
10 JOB PIC X(8).
10 EDLEVEL PIC S9(4) USAGE COMP.
10 SEX PIC X(1).
10 BIRTHDATE PIC X(10).
10 SALARY PIC S9999999V99 USAGE COMP-3.
10 BONUS PIC S9999999V99 USAGE COMP-3.
10 COMM PIC S9999999V99 USAGE COMP-3.

The assumption is that version 1 of the data definition for ’EMPREC’ is to be redefined.
This causes a redefinition of the first ’EMPREC’ sample data definition without changing
the version number. Thus, existing call and transaction definitions which referenced
version 1 of ’EMPREC’ automatically reflect the changed ’EMPREC’. This change becomes
effective when a TIP is next generated for a transaction that references the call which
referenced version 1 of ’EMPREC’.

This implicitly affects both versions of the transaction because both refer to EMPREC in
the second call to update the employee data.

Sample PGAU UNDEFINE Statements
These samples illustrate the deletion of a specific version of a definition which has
multiple versions, followed by deletion of all versions of a specific named definition.

Sample PGAU UNDEFINE Statements

Administration Utility Samples F-7

Deletion of DATA Definitions:

UNDEFINE DATA EMPREC VERSION (ddddd);
UNDEFINE DATA EMPREC VERSION (ALL);
UNDEFINE CALL DB2IMAIN VERSION (ccccc);
UNDEFINE CALL DB2IMAIN VERS (all);
UNDEFINE TRANSACTION DB2I vers (ttttt);
UNDEFINE TRANSACTION DB2I vers (all);

Note that the previous UNDEFINE statements leave the DATA definition for EMPNO and the
CALL definition for DB2IDIAG in the PGA DD.

Sample PGAU UNDEFINE Statements

F-8 Oracle Database Gateway for APPC User's Guide

Index-1

Index

A
APPC

runtime, 4-22
SENDs and RECEIVEs

TIP CALL correspondence, 4-11
trace, 8-11, 8-12
using with terminal-oriented transaction

program, 4-26
APPC conversation sharing, 4-20

concepts, 4-21
examples, 4-23
for too large TIPs, 4-23
overrides and diagnostics, 4-25
TIP compatibility, 4-22
usage, 4-22

architecture
commit-confirm, 5-4
components of the gateway, 1-7

ASCII
automatic conversion, 1-3

C
CALL correspondence

on gateway using SNA, 4-11
on gateway using TCP/IP, 7-5

call correspondence order restrictions
on gateway using SNA, 4-13
on gateway using TCP/IP, 7-7

CICS, 1-10
CICS Transaction Server

gateway starts communication with, 1-11
client application development

calling a TIP
on gateway using SNA, 4-14
on gateway using TCP/IP, 7-8

customized TIPs for remote host transaction, 4-6
declaring TIP variables, 4-14, 7-8
error handling

on gateway using SNA, 4-20
on gateway using TCP/IP, 7-13

examples and samples, 1-6
exchanging data, 4-19

on gateway using TCP/IP, 7-13
executing, 4-20, 7-14

granting execute authority, 4-20, 7-14
on gateway using TCP/IP, 7-1
overriding TIP initializations, 4-17

on gateway using TCP/IP, 7-11
overview, 4-1
preparation, 4-3
remote host transaction types

multi-conversational transactions, 4-5
one-shot transactions, 4-4
persistent transactions, 4-5
See also, index entries for each transaction type

requirements, 4-6
declare RHT/TIP data to be exchanged, 4-7,

4-8
exchange data with RHT using TIP user

function, 4-7, 4-9
initialize RHT for multi-conversational

applications, 4-9
initialize RHT using TIP initialization

function, 4-7, 4-8
repetitively exchange data with RHT using TIP

user function, 4-8
terminate RHT using TIP termination

function, 4-7, 4-8, 4-9
security considerations, 4-19, 7-13
terminating the conversation, 4-19, 7-13
TIP and remote transaction program

correspondence, 4-10, 7-4
TIP CALL correspondence, 4-11
TIP content and purpose, 4-3
TIP DATA correspondence, 4-10, 7-4
TIP TRANSACTION correspondence

on gateway using SNA, 4-13
on gateway using TCP/IP, 7-7

client application development for gateway using
TCP/IP

overview, 7-1
client application development on gateway using

TCP/IP
preparing, 7-3

COBOL, 4-3, 7-3, D-2, D-8
datatype conversion supported by PG DD and

TIPs, D-2
lacks datatype for variable length data, D-2
PGAU interpretation of COBOL symbols, D-3
support for double byte character sets, PIC G

Index-2

datatypes, 4-25, 7-14
COMMIT command, 2-2

user responsibility, 2-2
COMMIT processing, 2-2
commit-confirm, 5-2

application design requirements, 5-4
architecture, 5-4

components, 5-5
interactions, 5-5

components, 5-2
logic flow, 5-5

step by step, 5-5
Oracle Global Transaction ID, 5-2
purpose, 5-1
relation to two-phase commit, 5-1
required components

logging server, 5-3
OLTP commit-confirm transaction log, 5-3
OLTP forget/recovery transaction, 5-3
OLTP transaction logging code, 5-3

supported OLTPs, 5-2
transaction log, 5-7

communication
between mainframe and Oracle database

on gateway using SNA, 1-10
between server, gateway and remote host, 1-8

compiling a TIP, 3-7
CONNECT command, 2-3, 2-6
control file

creating
on gateway using SNA, 1-12
on gateway using TCP/IP, 1-17

conversation sharing, see APPC conversation sharing
creating a TIP

(detailed), 3-1
overview, 1-12, 1-17

D
data conversion

errors, 8-4
DATA correspondence, 4-10, 7-4
data dictionary, see PG DD
data exchange

PGAXFER function, 1-9
data format conversion, D-1
database link, 1-8
datastores

gateway access to, 1-2
datatype

RAW, C-1
datatype conversion, D-1

COBOL editing symbols, D-3
convert length, D-1
duplicate names, D-8
expected length, D-1
format conversion, D-5
parameters over 32K in length, D-2
PL/SQL, D-8

naming algorithms, D-8

receive length, D-1
removing support for parameters over 32K in

length, D-2
See USAGE (PASS), USAGE (ASIS). USAGE

(SKIP), and PL/SQL Naming Algorithms
send length, D-1
truncated and non-unique names, D-8

datatype conversions
COBOL symbols interpreted by PGAU, D-3

datatypes
See PIC X and PIC G

DBCS
See double-byte character sets

DBMS_PIPE PL/SQL package, 3-1
debugging tool

PGATRAC function, B-6
DEFINE CALL, 2-2
DEFINE CALL parameters, 2-7
DEFINE CALL statement ("command"), 1-13, 1-18,

3-4, 4-23, F-2
DEFINE DATA, 2-2
DEFINE DATA statement ("command"), 1-12, 1-18,

2-25, 3-4, 4-10, 4-23, 7-4, A-11, F-1
DEFINE TRANSACTION parameters, 2-10
DEFINE TRANSACTION statement

("command"), 3-5, 4-23, F-2
defining and generating a TIP, 3-6
definition versioning, 2-5
deleting and inserting rows into PGA_TCP_IMSC

table, 6-5
DESCRIBE command, 2-13
dg4pwd utility

definition, 1-4
recommended security utility feature, 1-4

DISCONNECT command, 2-13
double byte character sets (DBCS)

in application development, 4-25, 7-14
driver procedure

on gateway using SNA, 1-14
on gateway using TCP/IP, 1-19

E
EBCDIC

automatic conversion, 1-3
environment dictionary

sequence numbers, A-1
errors

causes of, 8-1
data conversion, 8-4
including exception handlers in your TIP, 4-20,

7-13
NUMBER_TO_RAW function, C-5
PLS -00123

program too large, 4-23
truncation, 8-8

examples
APPC conversation sharing, 4-23

EXECUTE command, 2-14
executing

Index-3

client application development, 4-20, 7-14
EXIT command, 2-14

F
file

initsid.ora, 1-3, 8-10, 8-11
pagaims, E-1
pgadb2i, E-1
pgadb2id.sql, 4-20
pgadb2i.pkb, 1-6, 1-13, 4-2, 4-4
pgadb2i.pkh, 1-6, 1-13, 4-4
pgadb2i.sql, E-1
pgau.trc, 2-16, 2-18
pgddausr.sql, 4-27, 7-16
pgddcr8.sql, 2-5, A-5
pgtflipd.sql, 7-13, E-1
pgtflip.pkb, 1-18, 7-2, 7-4
pgtflip.pkh, 1-18, 7-4
tipname.doc, 3-8, 4-10, 4-14, 7-8
tipname.pkb, 8-5
tname.ctl, 3-5, 3-6

flexible call sequence
on gateway using SNA, 4-12
on gateway using TCP/IP, 7-6

FLIP
and pgacics PL/SQL stored procedure

on gateway using SNA, 1-11
transaction in CICS, 1-11
transaction in IMS, 1-15

format conversion, D-5
function

PGATERM, B-5
PGAXFER, 4-4, 7-3, B-4
UTL_PG, C-1

functions
see RPC (remote procedural call)
See UTL_PG
see UTL_PG
see UTL_RAW

G
gateway

access to IBM datastores, 1-2
communication, 1-2

overview, 1-8
with CICS in mainframe on gateway using

SNA, 1-11
components, 1-7
creating a TIP, 3-1
enabling a trace, 8-12
features

application transparency, 1-2
code generator, 1-2
fast interface, 1-2
flexible interface, 1-2
location transparency, 1-2
Oracle database integration, 1-2
performs automatic conversions, 1-3

site autonomy and security, 1-3
support for tools, 1-2

initialization files, 1-3
overview, 1-1

using TCP/IP, 1-1
remote procedure, definition, 1-4
remote transaction initiation

using SNA, 1-9
using TCP/IP, 1-9

remote transaction termination
using SNA, 1-9
using TCP/IP, 1-9

tracing, 8-10
transaction types

on gateway using SNA, 1-10
on gateway using TCP/IP, 1-14

gateway sample files
using SNA

pgadb2i.pkb, 1-6
pgadb2i.pkh, 1-6

using TCP/IP
pgadb2i.pkb, 1-6
pgadb2i.pkh, 1-6

gateway server, 5-5
function in commit-confirm architecture, 5-5
transaction log tables, 5-7

gateway server trace, 8-10, 8-11
GENERATE, 2-2
GENERATE statement ("command"), 1-13, 1-18, 3-5,

3-7, 4-10, 7-4, E-2, F-2
GLOBAL_TRAN_ID, 5-7
Globalization Support

multi-byte character set support, 4-25, 7-14
granting privileges for creating TIPs, 3-1
GROUP statement (PGAU), 3-7

H
HOST command, 2-19

I
implicit APPC, 4-27
implicit versioning

sample definitions, F-3
IMS, 1-1

communication with Integrating Server
using TCP/IP, 1-15

IMS inquiry
location of sample file, 1-6

IMS/TM
communication through the gateway, 1-1

initialization files
see gateway initialization files, also see PGA

parameters
initiating remote transactions, 1-9
initsid.ora file, 1-3, 8-10, 8-11

parameters to run pg4tcpmap tool, 6-4
I/O PCB, 1-15, 3-2, 7-2

Index-4

J
JUSTIFIED, D-5
JUSTIFIED LEFT, D-5
JUSTIFIED RIGHT, D-5

K
keywords

PGAU, 2-5

L
LENGTH IS field-2, D-5
logging server, 5-3, 5-5

description, 5-5
interaction with gateway database, 5-5

LU_NAME, 5-7

M
MAKE_NUMBER_TO_RAW_FORMAT

function, C-6
MAKE_RAW_TO_NUMBER_FORMAT

function, C-5
mapping parameters

from SNA to TCP/IP, 6-1
mapping table

PGA_TCP_IMSC, 1-16
MBCS, See multi-byte character sets
MODE_NAME, 5-7
multi-byte character sets (MBCS), 4-25, 7-14

application development support, 4-25, 7-15
multi-conversational transaction type

for gateway using SNA, 1-10
multi-conversational transactions, 4-5, 4-8

N
non-persistent socket transaction type for TCP/IP for

IMS Connect, 1-14
NUMBER_TO_RAW and RAW_TO_NUMBER

argument values, C-11
NUMBER_TO_RAW function, C-4

errors, C-5
NUMBER_TO_RAW_FORMAT function, C-8

O
OCCURS DEPENDING ON, D-6
OCCURS n TIMES, D-6
OLTP

and TCP/IP, 1-5, 1-7
commit-confirm transaction log, 5-3
definition, 1-5
forget/recovery transaction, 5-3
functional requirements of the gateway, 5-4
in commit-confirm, 5-2
in gateway architecture featuring SNA, 1-7
in gateway using TCP/IP, 1-7
logic flow for successful commit, 5-5

only IMS supported on gateway using
TCP/IP, 1-3, 1-5

remote, 1-1
security considerations, 4-19, 7-13
transaction logging code, 5-3

one-shot transaction types, 1-10, 4-4, 4-7, 5-4
online transaction processor

See OLTP
operating system

role in gateway installation, 1-7
Oracle database, 1-9

component of the gateway, 1-7
definition, 1-5
function in gateway communication

on gateway using TCP/IP, 1-14
multiple servers on the gateway

using SNA, 1-7
using TPC/IP, 1-7

precompiles PL/SQL package, 1-2
role

in gateway communication, 1-8
simple communication

on gateway using SNA, 1-10
on gateway using TCP/IP, 1-14

steps to communication
between server and mainframe using

SNA, 1-11
stores PL/SQL, 1-4

Oracle Database Gateway for APPC
also see gateway
compatibility with version 3.4.0, 4-22
development environment, 1-2
See also, gateway server

Oracle global transaction ID, 5-2, 5-3, 5-4, 5-7
Oracle integrating server, 4-2

and role in client application, on gateway using
TCP/IP, 7-1

calling RPC functions, 5-5
component of commit-confirm architecture, 5-5
interaction with gateway server in

commit-confirm, 5-5
simple communication

on gateway using TCP/IP, 1-14
steps to communication

between server and IMS, 1-15
Oracle Net, 1-5, 4-27, 7-16, C-1

restrictions for data conversion, C-1
overrides, 4-18, 7-12

LOGMODE, 4-18, 7-11
LUname, 4-18, 7-11
Side profile, 4-18, 7-11
TPname, 4-18, 7-11

P
package

UTL_PG, 3-1
parameters

mapped to TPC/IP, 6-2
see PGAU commands

Index-5

See remote procedural call (RPC)
See SET LOG_DESTINATION
See SET TRACE_LEVEL

persistent socket transaction type
for TCP/IP for IMS Connect, 1-14

persistent transaction type, for gateway using
SNA, 1-10

persistent transactions, 4-5, 4-7, 5-4
PG DD (Data Dictionary), 2-2, 2-10

active dictionary, A-5
sequence numbers, A-6
versioning, A-6

active dictionary tables
pga_call, A-9
pga_call_parm, A-10
pga_data, A-11
pga_data_attr, A-13
pga_data_values, A-14
pga_fields, A-11
pga_trans, A-6
pga_trans_attr, A-7
pga_trans_calls, A-9
pga_trans_values, A-8

data definitions for parameters over 32K in
length, D-2

datatype conversion support for COBOL, D-2
definition, 1-5
definition names

valid characters in, 2-4
diagnostic

options, 8-2
references, 8-2

entries, creating a TIP, 3-6
environment dictionary tables, A-1, A-2

pga_modes, A-5
pga_usage, A-5

in writing PGAU statements, 3-4
keyword form in storage, 2-6
maintenance, 2-3
overview, A-1
preparing client application

on gateway using SNA, 4-3
on gateway using TCP/IP, 7-3

purpose of REPORT command, 2-23
relationship to PGAU, 2-1
remote transaction definitions, 2-3
ROLLBACK command, 2-2
select scripts, 8-3
storage of information needed for PGAU

GENERATE to perform, 4-10, 7-4
transaction attributes, 4-18, 7-12
USAGE (SKIP), D-7
version definition tables, 2-5

pg4tcpmap tool, 1-16, 3-4, 7-1
calling, to map DEFINE TRANSACITON

parameters, 7-14
commands to operate PGA_TCP_IMSC table, 6-5
definition, 1-4
description and function in the gateway, 1-3
function, 1-3

in mapping input parameters, 6-1
function in remote transaction initiation, 1-9
preparation for populating PGA_TCP_IMSC

table, 6-1
setting parameters in initsid.ora, 6-4
to map SideProfile name, 2-11

PGA
administrator, 2-1
definition, 1-4

pga_call table, A-9
pga_call_parm table, A-10
PGA_CC_PENDING table

commit-confirm transaction log, 5-7
pga_compilers table, A-3
pga_data table, A-11
pga_data_attr, A-13
pga_data_values table, A-14
pga_datatype_attr table, A-4
pga_datatype_values table, A-4
pga_datatypes table, A-4
pga_env_attr table, A-3
pga_env_values table, A-3
pga_environments table, A-2
pga_fields table, A-11
pga_maint table, A-2
pga_modes constant, A-5
PGA_TCP_IMSC table, 1-16, 3-4, 6-1, 7-1, 7-2, 7-8

content and parameters, 6-2
querying, 6-6

PGA_TCP_PASS, 6-2
PGA_TCP_USER, 6-2
pga_trans table, A-6
pga_trans_attr table, A-7
pga_trans_calls table, A-9
pga_trans_values table, A-8
pga_usage, A-5
pga_usage constant, A-5
PGAADMIN, 3-1
pgacics.sql, 1-11
pgadb2i file, E-1
pgadb2id.sql file, 4-4, 4-20
pgadb2i.pkb, 1-6
pgadb2i.pkb file, 1-6, 1-13, 4-2, 4-4
pgadb2i.pkh file, 1-6, 1-13
pgadb2i.sql file, 4-4, E-1
pgaims file, E-1
pgaims.sql, 1-15
PGAINIT, 1-9, B-1

role in mapping SNA parameters to TCP/IP, 6-1
PGAINIT function, 1-4, 1-9
PGATCTL, B-5
PGATERM, B-5
PGATERM function, 1-4, 1-9
PGATRAC, B-6
PGAU, 4-1

accesses definitions in PG DD, 1-5
commands- also called "statements", 2-6
COMMIT processing, 2-2
defining and testing a TIP, 2-4
definition, 2-1

Index-6

used to generate TIP specifications, 1-5
definition names, 2-4
definition versioning, 2-5
definitions, 2-3
functions, 2-2
-generated TIP specifications, 1-8
generation, 2-3
interpretation of COBOL symbols in datatype

conversion, D-3
invoking, 2-3
keywords, 2-5
overview, 2-1
purpose of PGDL, 1-4
role in calling TIPs, on gateway using

TCP/IP, 7-1
ROLLBACK processing, 2-2
sample input, F-1
writing statements, 3-4

PGAU commands, 1-12, 1-17
CONNECT, 2-3, 2-6
CONNECT, parameters, 2-6
DEFINE CALL, 2-7, 2-25, 3-4, 4-23

call list, 3-2
on gateway using SNA, 1-13
on gateway using TCP/IP, 1-18
sample, F-2

DEFINE DATA, 2-8, 2-25, 3-4, 4-10, 4-23, 7-4,
A-11

on gateway using SNA, 1-12
on gateway using TCP/IP, 1-18
parameters, 2-8
sample, F-1

DEFINE DATA, datatype conversions
USAGE (ASIS), D-7
USAGE (PASS), D-2
USAGE (SKIP), D-7

DEFINE PGAU, call list, 3-3
DEFINE TRANSACTION, 1-13, 2-2, 2-10, 3-5,

4-23
on gateway using TCP/IP, 1-18
sample, F-2

DEFINE TRANSACTION, parameters, 2-10, 3-3
defining correlation between TIP and RTP, 2-1
DESCRIBE, 2-13
DESCRIBE, parameters, 2-13
DISCONNECT, 2-13
DISCONNECT, parameters, 2-13
EXECUTE, 2-14
EXECUTE, parameters, 2-14
EXIT, 2-14
EXIT, parameters, 2-14
formatting of Call and Transaction reports, 2-25
four main types, in control file, 1-12, 1-17
GENERATE, 2-15, 3-5, 3-7, 3-8, 4-10, 7-4, E-2

error messages, 8-3
on gateway using SNA, 1-13
on gateway using TCP/IP, 1-18
parameters, 2-15
problem analysis, 8-2
sample, F-2

support and non-support for parameters over
32K length, D-2

traces, 8-1
GROUP, 2-18, 3-7
HOST, 2-19

parameters, 2-19
on gateway using SNA, 1-13
PRINT, 2-20
REDEFINE DATA, 2-20, A-11

sample, F-6
REM, 2-23
REM, parameters, 2-23
REPORT, 2-23
REPORT, parameters, 2-24
SET, 2-26
SET, parameters, 2-26
SHOW, 2-27
SHOW, parameters, 2-27
SPOOL, 2-28
SPOOL, parameters, 2-28
TRANSACTION, 2-25
UNDEFINE CALL, 2-29
UNDEFINE CALL, parameters, 2-29
UNDEFINE DATA, 2-29
UNDEFINE DATA, parameters, 2-30
UNDEFINE TRANSACTION, 2-30
UNDEFINE TRANSACTION, parameters, 2-30
UNDEFINE, sample, F-6
VARIABLE, 2-31
VARIABLE, parameters, 2-31

PGAU script file
adding spool and echo, 3-7
creating, 3-5

pgau.trc file, 2-16, 2-18
PGAXFER, 7-7, B-4
PGAXFER function, 1-4, 1-9, 4-4, 7-3
PGDD (Data Dictionary)

environment sequence numbers, A-1
pgddausr.sql file, 4-27, 7-16
pgddcr8.sql file, 2-5, A-5
PGDL (Procedural Gateway Definition

Language), 2-2, B-1
definition, 1-4

pgtflip, 7-14
pgtflipd, 1-19
pgtflipd.sql, 7-9
pgtflipd.sql file, 7-4, 7-13, E-1
pgtflip.pkb, 1-6
pgtflip.pkb file, 1-18, 7-2, 7-4
pgtflip.pkh, 1-6
pgtflip.pkh file, 1-18
pgtflip.sql file, 7-4
PIC 9, 8-4, D-4
PIC G, 8-4

datatypes, 4-25, 7-14
PIC G datatype conversions, D-3
PIC G datatypes, D-2
PIC X, D-2
PIC X datatypes, 8-4, D-2
PKGEX(DC) diagnostic option, 8-5

Index-7

PKGEX(DR)
GENERATE diagnostic option, 8-2

PL/SQL, 1-5
call, A-9
code, B-1
code generator, 1-2, 8-4
data length limits, 8-8
datatypes, 1-8, 4-7, 4-8, 4-10, F-2, F-5

converted to RAW, 1-9
developing TIPs, D-1
enabling a trace, 8-12
function in the gateway, 1-1, 1-8
invoking DG4APPC, 1-11, 1-15
naming algorithms, D-8

delimiters, D-8
duplicate names, D-8
qualified compound names, D-8

parameters, 4-14, 7-8
record format, F-4
stored procedure, 1-11
transferring data

using RAW datatype, C-1
UTL_PG package function, 1-4
UTL_RAW function, 1-4
variable names, D-8

datatype conversion, D-8
variables, 3-8, D-6, D-8

PL/SQL package, 2-3, 2-7, 2-29, 2-31, 3-1, 4-4, 8-2,
B-1, E-2

components, 4-3, 7-3
contents

package specification, 4-3, 7-3
DBMS_PIPE, 3-1
definition, 1-4, 1-5
execute authority, 4-20, 7-14
function, 4-2, 7-2
functions, 1-8
grants required, 3-1
pagcics, 1-11
parameter, 2-17
See TIP
specifying names, 4-14, 7-8

PL/SQL stored procedure, 5-5
changing trace level, B-6
starting up communication with

mainframe, 1-11, 1-15
PL/SQL stored procedure specification

also called "TIP"
See PL/SQL package

PRINT command, 2-20
privileges

needed to use TIPs, 4-27
problem analysis

of data conversion and truncation errors, 8-8
with PG DD diagnostic references, 8-2
with PG DD select scripts, 8-3
with TIP runtime traces, 8-5

Procedural Gateway Administration
see PGA

Procedural Gateway Administration Utility

see PGAU, 1-8

R
RAW_TO_NUMBER FORMAT function, C-8
RAW_TO_NUMBER function, C-3
recompilation errors

causes, E-4
REDEFINE DATA statement, A-11, F-6
REDEFINES, D-7
REM command, 2-23
remote host transactions (RHT)

APPC conversation sharing, 4-20
attributes needed, 4-13, 7-7
client application, 4-7
defined using the PGAU DEFINE TRANSACTION

statement, 4-13, 7-7
evaluating, 3-2
multi-conversational, client applications, 4-8
one-shot, client applications, 4-7
persistent, client applications, 4-7
requirements

understanding, 4-3
steps involved in, 4-6
types

on gateway using SNA, 1-10, 4-4
on gateway using TCP/IP, 7-4

remote procedural call
See RPC

remote procedural call (RPC), A-9
calling the gateway, B-1
executing gateway functions, B-1
parameters, B-5
PGAINIT and PGAINIT_SEC, B-3
PGAINIT and PGAINIT_SEC, parameters, B-3
PGATCTL, B-5
PGATERM, B-5
PGATERM, parameters, B-5
PGATRAC, B-6
PGATRAC, parameters, B-6
PGAXFER, B-4
PGAXFER, parameters, B-4

remote procedure
definition, 1-4

remote transaction initiation
on gateway using SNA, 1-9
on gateway using TC/IP, 1-9

remote transaction program
See RTP

remote transaction termination
on gateway using SNA, 1-9
on gateway using TCP/IP, 1-9

RENAMES, D-6
REPORT statement, 3-5
RHT, See remote host transactions
ROLLBACK command, 2-2
ROLLBACK processing, 2-2
RPC

definition, 1-5
function

Index-8

PGAINIT, 1-4, 1-9
PGATERM, 1-4
PGAXFER, 1-4, 1-9
within the gateway, 1-1, 1-8

processing, 1-1
RPC interface

PGATCTL, B-5
PGATERM, B-5
PGATRAC, B-6
PGAXFER, B-4
See also, remote procedural call (RPC)

RTP
activities, 4-5
definition, 1-5
executing, 1-5
function in the gateway, 1-1
on gateway using SNA, 4-6
purpose, 4-3, 7-3

runtime traces, 8-5
controls, 8-6
conversion warnings, 8-6
data conversion tracing, 8-7
gateway exchange tracing, 8-7
runtime function entry/exit tracing, 8-7

S
sample

PGAU DEFINE CALL command, F-2
PGAU DEFINE DATA command, F-1
PGAU DEFINE TRANSACTION command, F-2
PGAU GENERATE command, F-2
PGAU REDEFINE DATA command, F-6
PGAU UNDEFINE command, F-6

sample definitions
implicit versioning, F-3

script file, 3-5
sequence objects

in the PGDD environment dictionary, A-1
SET command, 2-26
SET LOG_DESTINATION parameter, 8-9, 8-11
SET TRACE_LEVEL parameter, 8-9, 8-11, 8-12
Side Information Profile, 2-12, B-3
SIDE_NAME, 5-7
SIDEPROFILE (name), 2-11
simple DG4APPC communication

on gateway using SNA, 1-10
SNA

and gateway components, 1-7
communication between mainframe and Oracle

database, 1-10
communications function, 1-11
creating a TIP, 1-12
determining validity of TIP specification, E-2
examples and sample files used in this guide, 1-6
flexible call sequence, 4-12
function in the gateway, 1-1
gateway transaction types, 1-10
implementing commit-confirm, 5-1
overview of the gateway, using, 1-1

parameters, 1-9
PGAU DEFINE TRANSACTION command, 3-3
remote transaction initiation, 1-9
remote transaction termination on the

gateway, 1-9
steps to connecting Oracle database and

mainframe, 1-11
supported remote host languages, 3-2
TIP internals, E-1
uses APPC to access all systems, 1-2
writing TIPs, 1-12

socket file descriptor
returned by TCP/IP network to PGAINIT, 1-9

specification file
on gateway using SNA, 1-13
on gateway using TCP/IP, 1-18

SPOOL command, 2-28
SQL*Plus

connecting server and mainframe, 1-11
invoking, 3-7
recompiling TIP body changes, E-2
running scripts, 4-27, 7-15
test scripts, 8-3

statements
see PGAU commands

SYNCHRONIZED, D-7
SYNCHRONIZED LEFT, D-7
SYNCHRONIZED RIGHT, D-7

T
TCP/IP for IMS Connect, 1-15, 7-11

and gateway components, 1-7
and PGA_TCP_IMSC parameter table, 6-1
and PGAINIT, 6-1
and Remote Transaction Initiation, 1-9
Client application overview, 7-1
communication between gateway and Oracle

database, 1-14
content of PGA_TCP_IMSC table, 6-2
creating a TIP, 7-1
determining validity of TIP specification, E-2
elements of TIP-RTP correspondence, 7-4
examples and sample files used in this guide, 1-6
function in the gateway, 1-1
gateway support for, description, 1-3
IMS enabled, 1-5
mapping parameters using pg4tcpmap tool, 7-14
mapping SNA parameters to TCP/IP, 6-1
non-persistent socket transaction type, 1-14
OLTP in gateway architecture, 1-7
persistent socket transaction type, 1-14
PGAU DEFINE TRANSACTION command, 3-4
remote host languages supported, 3-2
remote transaction initiation, 1-9
remote transaction termination, 1-9
SENDs and RECEIVEs

TIP CALL correspondence, 7-5
setting initsid.ora parameters, 6-4
simple communication

Index-9

between gateway and integrating server, 1-14
steps to communication between server and

IMS, 1-15
steps to writing a TIP, 1-17
supports only IMS as OLTP, 1-3, 1-5
TIP granting privileges needed, 7-15
TIP internals, E-1
TRANSACTION correspondence, 7-7
transaction types, 1-14

terminal-oriented transactions
modifying, 4-26

terminating a TIP conversation, 4-19, 7-13
terms, gateway terms defined, 1-3
TIP, 1-6, 4-2, 7-2

APPC conversation sharing, 4-21, 4-22
background references, E-1
CALL correspondence, 4-11

on gateway using SNA, 4-11
on gateway using TCP/IP, 7-5
order restrictions, 4-13

calling
from the client application, 4-14, 7-8

calling and controlling
on gateway using SNA, 4-1
on gateway using TCP/IP, 7-1

client application development
content and purpose on gateway using

SNA, 4-3
content and purpose on gateway using

TCP/IP, 7-3
compiling, 3-7
content documentation (tipname.doc), 3-8
content file sections

GENERATION Status, 3-8
TIP Default Calls, 3-8
TIP Transaction, 3-8
TIP User Calls, 3-8
TIP User Declarations, 3-8
TIP User Variables, 3-8

control file, 2-2
controlling

runtime conversion warnings, 8-6
runtime data conversion tracing, 8-7
runtime function tracing, 8-7
runtime gateway exchange tracing, 8-7

conversation sharing used to circumvent large
TIPs, 4-23

conversion, 1-3, 4-25, 7-14
converting PL/SQL datatypes to RAW, 1-9
creating, 3-1
custom TIP writing, E-1
customized interface for each remote host

transaction (RTP), 4-6
DATA correspondence, 4-10

on gateway using TCP/IP, 7-4
datatype conversion support for COBOL, D-2
declaring variables to create a TIP, 4-14, 7-8
defining and generating, 3-6
defining, with PGAU, 2-4
definition, 1-5

definition errors, 8-1
dependent TIP body or specification changes, E-3
diagnostic parameters, 4-25
driver procedures

on gateway using SNA, 1-14
on gateway using TCP/IP, 1-19

flexible call sequence, 4-12
four steps to generate

on gateway using SNA, 1-12
on gateway using TCP/IP, 1-17

functions
in Oracle database, 1-9

generated by PGAU, 4-2
granting privileges to use, 3-1, 4-27, 7-15
independent TIP body changes, E-2
initializations, 4-18, 7-12

overriding, 4-17
overriding on gateway using TCP/IP, 7-11

initializing the conversation, 4-16, 7-10
internals, E-1
override parameters, 4-25
overriding default attributes, 4-18, 7-12
overview, 1-12, 1-17
privileges needed, 3-1, 4-27
public functions

tip_init, 4-5
tip_inqr, 4-5
tip_mode, 4-5
tip_term, 4-5
tip_updt, 4-5

recompiling, E-2, E-3
remote transaction

correspondence, 4-10
remote transaction correspondence, on gateway

using TCP/IP, 7-4
remote transaction initiation (PGAINIT), 1-9
requirements for corresponding with RHT

on gateway using SNA, 4-10
on gateway using TCP/IP, 7-4

requirements of the client application, 4-6
service, 4-21
specification file, 3-6

on gateway using SNA, 1-13
on gateway using TCP/IP, 1-18

specifications
generated by PGAU, 1-8

steps to writing
on gateway using SNA, 1-12
on gateway using TCP/IP, 1-17

terminating the conversation, 4-19, 7-13
trace controls, 8-6
tracing, 8-8
TRANSACTION correspondence, 4-13, 7-7

on gateway using SNA, 4-13
using transaction instance parameter

on gateway using TCP/IP, 7-11
writing

on gateway using SNA, 1-12
on gateway using TCP/IP, 3-4

TIP control file commands, 1-12, 1-13, 1-18

Index-10

on gateway using TCP/IP, 1-17
TIP specification, 4-2, E-2

changes, E-3
errors, E-4

TIP warnings and tracing
suppressing, 8-7

tipname.doc file, 3-8, 4-10, 4-14, 7-8
tipname.pkb file, 8-5
tname.ctl file, 3-5, 3-6
TP_NAME, 5-8
trace option, 8-1

TIP definition errors, 8-1
TRACE_LEVEL, 8-11
traces, 8-6, 8-7

diagnostic, 8-8
enable gateway server trace, 8-11
enabling APPC trace from PL/SQL, 8-12
enabling through initsid.ora, 8-11
gateway server, 8-10
purpose of initializing conversations, 4-16, 7-10
runtime, 8-5

trace controls, 8-6
suppressing, 8-7
TIP, 8-5, 8-7

TRANSACTION correspondence
on gateway using SNA, 4-13
on gateway using TCP/IP, 7-7

transaction instance parameter
on gateway using SNA, 4-17
on gateway using TCP/IP, 7-11

Transaction Interface Package
See TIP

transaction socket
transaction type for TCP/IP, 1-14

TRANSACTION tname, 2-10
transaction types

one-shot, persistent and multi-conversational, for
SNA, 1-10

transparency
(application), 1-2
(location), on gateway using SNA, 1-2

U
UNDEFINE statement, 3-6, F-6
USAGE(ASIS), D-7
USAGE(PASS), D-2

datatype conversion, D-2
FILLER, D-4
PIC 9, D-4
PIC G, D-3

format conversion
OCCURS DEPENDING ON, D-6
OCCURS n TIMES, D-6

USAGE(SKIP), D-7
utility

dg4pwd, 1-4
UTL_PG

input parameters
wmsgbsiz, C-2

output parameters
wmsgblk, C-3

package
definition, 1-4

parameters (input and output), C-2
PL/SQL package, 3-1

UTL_PG function, C-1
MAKE_NUMBER_TO_RAW_FORMAT, C-6
MAKE_RAW_TO_NUMBER_FORMAT, C-5
NUMBER_TO_RAW, C-4
NUMBER_TO_RAW and RAW_TO_NUMBER

argument values, C-11
NUMBER_TO_RAW_FORMAT, C-8
RAW_TO_NUMBER, C-3
RAW_TO_NUMBER_FORMAT, C-8
WMSG, C-10
WMSGCNT, C-9

UTL_PG input parameters
compname, C-2
compopts, C-2
envrnmnt, C-2
mask, C-2
maskopts, C-2
nlslang, C-2
wind, C-2

UTL_RAW PL/SQL package, 3-1, C-1
definition, 1-4

V
VARIABLE command, 2-31

W
WMSG function, C-10
WMSGCNT function, C-9
writing PGAU statements, 3-4

	Contents
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Legacy Compilers
	Conventions

	1 Introduction to Oracle Database Gateway for APPC
	Overview of the Gateway
	Features of the Gateway
	Terms
	Examples and Sample Files for the Gateway
	Architecture of the Gateway
	Communication with the Gateway
	RPC Functions
	TIP Function
	Remote Transaction Initiation
	Data Exchange
	Remote Transaction Termination

	Overview of a Gateway Using SNA
	Transaction Types for a Gateway Using SNA
	Simple Gateway Communication with the Oracle Database (SNA)
	Steps to Communicate Between Gateway and Mainframe Using SNA

	Writing TIPs to Generate PL/SQL Programs Using SNA
	Steps to Writing a TIP on a Gateway Using SNA

	Overview of a Gateway Using TCP/IP
	Transaction Types for a Gateway Using TCP/IP
	Simple Gateway Communication with the Oracle Database (TCP/IP)
	Preparing the Gateway to Communicate Using TCP/IP
	Steps to Communication Between the Gateway and IMS, Using TCP/IP

	Writing TIPs to Generate PL/SQL Programs Using TCP/IP
	Steps to Writing a TIP on a Gateway Using TCP/IP

	2 Procedural Gateway Administration Utility
	Overview of PGAU
	COMMIT/ROLLBACK Processing
	COMMIT Processing
	ROLLBACK Processing

	Invoking PGAU
	Definitions and Generation in PGAU
	Process to Define and Test a TIP
	Definition Names
	Definition Versioning
	Keywords

	PGAU Commands
	CONNECT
	DEFINE CALL
	DEFINE DATA
	DEFINE TRANSACTION
	DESCRIBE
	DISCONNECT
	EXECUTE
	EXIT
	GENERATE
	GROUP
	HOST
	PRINT
	REDEFINE DATA
	REM
	REPORT
	SET
	SHOW
	SPOOL
	UNDEFINE CALL
	UNDEFINE DATA
	UNDEFINE TRANSACTION
	VARIABLE

	3 Creating a TIP
	Granting Privileges for TIP Creators
	Evaluating the RHT
	Identify the Remote Host Transaction
	PGAU DEFINE CALL Command
	PGAU DEFINE DATA Command
	PGAU DEFINE TRANSACTION Command on a Gateway Using SNA
	PGAU DEFINE TRANSACTION Command on a Gateway Using TCP/IP
	Writing the PGAU Statements
	Writing a PGAU Script File

	Defining and Generating the TIP
	Compiling the TIP
	TIP Content Documentation (tipname.doc)

	4 Client Application Development (SNA Only)
	Overview of Client Application
	Preparing the Client Application
	Understanding the Remote Host Transaction Requirements
	TIP Content and Purpose
	Remote Host Transaction Types
	One-Shot Transactions
	Persistent Transactions
	Multi-Conversational Transactions

	Customized TIPs for Each Remote Host Transaction
	Client Application Requirements
	Ensuring TIP and Remote Transaction Program Correspondence
	DATA Correspondence
	CALL Correspondence
	Flexible Call Sequence
	Call Correspondence Order Restrictions

	TRANSACTION Correspondence

	Calling the TIP from the Client Application
	Declaring TIP Variables
	Initializing the Conversation
	Transaction Instance Parameter
	Overriding TIP Initializations
	Security Considerations

	Exchanging Data
	Terminating the Conversation
	Error Handling
	Granting Execute Authority

	Executing the Application
	APPC Conversation Sharing
	APPC Conversation Sharing Concepts
	APPC Conversation Sharing Usage
	APPC Conversation Sharing TIP Compatibility
	APPC Conversation Sharing for TIPs That Are Too Large
	APPC Conversation Sharing Example
	APPC Conversation Sharing Overrides and Diagnostics

	Application Development with Multi-Byte Character Set Support
	Modifying a Terminal-Oriented Transaction to Use APPC
	Privileges Needed to Use TIPs

	5 Implementing Commit-Confirm (SNA Only)
	Overview of Commit-Confirm
	Supported OLTPs
	Components Required to Support Commit-Confirm
	Application Design Requirements
	Commit-Confirm Architecture
	Components
	Interactions

	Commit-Confirm Flow
	Commit-Confirm Logic Flow, Step by Step
	Gateway Server Commit-Confirm Transaction Log

	6 PG4TCPMAP Commands (TCP/IP Only)
	Preparation for Populating the PGA_TCP_IMSC Table
	Overview
	Populating the PGA_TCP_IMSC Table
	Before You Run the pg4tcpmap Tool
	pg4tcpmap Tool Commands
	Inserting a Row into the PGA_TCP_IMSC Table
	Deleting Rows from the PGA_TCP_IMSC Table
	Querying the PGA_TCP_IMSC Table

	7 Client Application Development (TCP/IP Only)
	Overview of Client Application
	Preparing the Client Application
	TIP Content and Purpose
	Remote Host Transaction Types

	Ensuring TIP and Remote Transaction Program Correspondence
	DATA Correspondence
	CALL Correspondence
	Flexible Call Sequence
	Call Correspondence Order Restrictions

	TRANSACTION Correspondence

	Calling the TIP from the Client Application
	Declaring TIP Variables
	Initializing the Conversation
	Transaction Instance Parameter
	Overriding TIP Initializations
	Security Considerations

	Exchanging Data
	Terminating the Conversation
	Error Handling
	Granting Execute Authority

	Calling PG4TCPMAP
	Executing the Application
	Application Development with Multi-Byte Character Set Support
	Privileges Needed to Use TIPs

	8 Troubleshooting
	TIP Definition Errors
	Problem Analysis with PG DD Diagnostic References
	Problem Analysis with PG DD Select Scripts
	Data Conversion Errors
	Problem Analysis with TIP Runtime Traces
	TIP Runtime Trace Controls
	Generating Runtime Data Conversion Trace and Warning Support
	Controlling TIP Runtime Conversion Warnings
	Controlling TIP Runtime Function Entry/Exit Tracing
	Controlling TIP Runtime Data Conversion Tracing
	Controlling TIP Runtime Gateway Exchange Tracing

	Suppressing TIP Warnings and Tracing
	Problem Analysis of Data Conversion and Truncation Errors
	Gateway Server Tracing
	Defining the Gateway Trace Destination
	Enabling the Gateway Trace
	Enabling the Gateway Trace Using Initialization Parameters
	Enabling the Gateway Trace Dynamically from PL/SQL

	A Database Gateway for APPC Data Dictionary
	PG DD Environment Dictionary
	Environment Dictionary Sequence Numbers
	Environment Dictionary Tables
	pga_maint
	pga_environments
	pga_env_attr
	pga_env_values
	pga_compilers
	pga_datatypes
	pga_datatype_attr
	pga_datatype_values
	pga_usage
	pga_modes

	PG DD Active Dictionary
	Active Dictionary Versioning
	Active Dictionary Sequence Numbers
	Active Dictionary Tables
	pga_trans
	pga_trans_attr
	pga_trans_values
	pga_trans_calls
	pga_call
	pga_call_parm
	pga_data
	pga_fields
	pga_data_attr
	pga_data_values

	B Gateway RPC Interface
	Calling Gateway Functions to Execute Transaction Programs
	PGAINIT and PGAINIT_SEC
	PGAXFER
	PGATERM
	PGATCTL
	PGATRAC

	C The UTL_PG Interface
	UTL_PG Functions
	Common Parameters
	Common Input Parameters
	Common Output Parameter

	RAW_TO_NUMBER
	NUMBER_TO_RAW
	MAKE_RAW_TO_NUMBER_FORMAT
	MAKE_NUMBER_TO_RAW_FORMAT
	RAW_TO_NUMBER_FORMAT
	NUMBER_TO_RAW_FORMAT
	WMSGCNT
	WMSG

	NUMBER_TO_RAW and RAW_TO_NUMBER Argument Values

	D Datatype Conversions
	Length Checking
	Parameters Over 32K in Length

	Conversion
	USAGE(PASS)
	USAGE(ASIS)
	USAGE(SKIP)
	PL/SQL Naming Algorithms

	E Tip Internals
	Background Reading
	PL/SQL Package and TIP File Separation
	Independent TIP Body Changes
	Determine if a Specification Has Remained Valid

	Dependent TIP Body or Specification Changes
	Recompile the TIP Body

	Inadvertent Alteration of TIP Specification

	F Administration Utility Samples
	Sample PGAU DEFINE DATA Statements
	Sample PGAU DEFINE CALL Statements
	Sample PGAU DEFINE TRANSACTION Statement
	Sample PGAU GENERATE Statement
	Sample Implicit Versioning Definitions
	Sample PGAU REDEFINE DATA Statements
	Sample PGAU UNDEFINE Statements

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

