
TOSCA Version 2.0
Committee Specification Draft 06
20 June 2024

This stage:

https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd06/TOSCA-v2.0-csd06.md (Authoritative)
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd06/TOSCA-v2.0-csd06.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd06/TOSCA-v2.0-csd06.pdf

Previous stage:

https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd05/TOSCA-v2.0-csd05.docx
(Authoritative)
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd05/TOSCA-v2.0-csd05.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd05/TOSCA-v2.0-csd05.pdf

Latest stage:

https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.md (Authoritative)
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.pdf

Technical Committee:

OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) TC

Chair:

Chris Lauwers (lauwers@ubicity.com), Individual Member

Editors:

Chris Lauwers (lauwers@ubicity.com), Individual Member
Calin Curescu (calin.curescu@ericsson.com), Ericsson

Related work:

This specification replaces or supersedes:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 1 of 282

https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd06/TOSCA-v2.0-csd06.md
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd06/TOSCA-v2.0-csd06.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd06/TOSCA-v2.0-csd06.pdf
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd05/TOSCA-v2.0-csd05.docx
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd05/TOSCA-v2.0-csd05.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd05/TOSCA-v2.0-csd05.pdf
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.md
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.pdf
https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=f9412cf3-297d-4642-8598-018dc7d3f409
mailto:lauwers@ubicity.com
mailto:lauwers@ubicity.com
mailto:calin.curescu@ericsson.com
http://ericsson.com/

Topology and Orchestration Specification for Cloud Applications Version 1.0. Edited
by Derek Palma and Thomas Spatzier. OASIS Standard. Latest version:
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html.
TOSCA Simple Profile in YAML Version 1.3. Edited by Matt Rutkowski, Chris
Lauwers, Claude Noshpitz, and Calin Curescu. Latest stage: https://docs.oasis-
open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-
v1.3.html.

This specification is related to:

Introduction to TOSCA Version 2.0. Edited by Chris Lauwers and Calin Curescu. Work
in progress.

Declared XML namespace:

http://docs.oasis-open.org/tosca/ns/2.0

Abstract:

The Topology and Orchestration Specification for Cloud Applications (TOSCA) provides a
language for describing application components and their relationships by means of a service
topology, and for specifying the lifecycle management procedures for creation or modification
of services using orchestration processes. The combination of topology and orchestration
enables not only the automation of deployment but also the automation of the complete
service lifecycle management. The TOSCA specification promotes a model-driven approach,
whereby information embedded in the model structure (the dependencies, connections,
compositions) drives the automated processes.

Status:

This document was last revised or approved by the OASIS Topology and Orchestration
Specification for Cloud Applications (TOSCA) TC on the above date. The level of approval is
also listed above. Check the "Latest stage" location noted above for possible later revisions
of this document. Any other numbered Versions and other technical work produced by the
Technical Committee (TC) are listed at https://groups.oasis-open.org/communities/tc-
community-home2?CommunityKey=f9412cf3-297d-4642-8598-018dc7d3f409#technical.

TC members should send comments on this specification to the TC's email list. Any individual
may submit comments to the TC by sending email to Technical-Committee-
Comments@oasis-open.org. Please use a Subject line like "Comment on TOSCA".

This specification is provided under the RF on Limited Terms of the OASIS IPR Policy, the
mode chosen when the Technical Committee was established. For information on whether
any patents have been disclosed that may be essential to implementing this specification, and
any offers of patent licensing terms, please refer to the Intellectual Property Rights section of
the TC's web page (https://www.oasis-open.org/committees/tosca/ipr.php).

Note that any machine-readable content (Computer Language Definitions) declared

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 2 of 282

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
http://docs.oasis-open.org/tosca/ns/2.0
https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=f9412cf3-297d-4642-8598-018dc7d3f409#technical
mailto:Technical-Committee-Comments@oasis-open.org
https://www.oasis-open.org/policies-guidelines/ipr/#RF-on-Limited-Mode
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/committees/tosca/ipr.php
https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/#wpComponentsCompLang

Normative for this Work Product is provided in separate plain text files. In the event of a
discrepancy between any such plain text file and display content in the Work Product's prose
narrative document(s), the content in the separate plain text file prevails.

Key words:

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL"
in this document are to be interpreted as described in BCP 14 [RFC2119] and [RFC8174]
when, and only when, they appear in all capitals, as shown here.

Citation format:

When referencing this specification the following citation format should be used:

[TOSCA-v2.0]

TOSCA Version 2.0. Edited by Chris Lauwers and Calin Curescu. 20 June 2024. OASIS
Committee Specification Draft 06. https://docs.oasis-
open.org/tosca/TOSCA/v2.0/csd06/TOSCA-v2.0-csd06.html. Latest stage: https://docs.oasis-
open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html.

Notices

Copyright © OASIS Open 2024. All Rights Reserved.

Distributed under the terms of the OASIS IPR Policy.

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification,
and should be used only to refer to the organization and its official outputs.

For complete copyright information please see the full Notices section in an Appendix below.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 3 of 282

https://docs.oasis-open.org/tosca/TOSCA/v2.0/csd06/TOSCA-v2.0-csd06.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html
https://www.oasis-open.org/policies-guidelines/ipr/
https://www.oasis-open.org/

Table of Contents
1 Introduction

1.1 Changes from Earlier Versions
1.2 Document conventions
1.3 Glossary

1.3.1 Definitions of terms
1.3.2 Acronyms and abbreviations

2 TOSCA Overview
2.1 Objectives
2.2 TOSCA Features and Benefits

2.2.1 TOSCA is Model-Driven
2.2.2 TOSCA Models are Graphs
2.2.3 TOSCA Promotes Reuse and Modularity
2.2.4 TOSCA is Domain-Independent

2.3 TOSCA Core Concepts
2.4 Using TOSCA

2.4.1 TOSCA Files
2.4.2 Archive Format for Cloud Applications

3 TOSCA Language Abstractions
3.1 Service Templates, Node Templates, and Relationship Templates
3.2 Requirements and Capabilities
3.3 Decomposition of Node Representations
3.4 Interfaces, Operations, and Artifacts
3.5 Workflows
3.6 Policies

4 TOSCA Operational Model
4.1 TOSCA Functional Architecture
4.2 TOSCA Processor

4.2.1 Parser
4.2.2 Resolver

4.3 Orchestrator
4.4 Changes in the Representation Graph

5 TOSCA Grammar Overview
5.1 TOSCA Modeling Concepts

5.1.1 Type Definitions and Entity Definitions
5.1.2 Templates and Entity Assignments
5.1.3 Type Derivation, Augmentation, and Refinement
5.1.4 Template reuse

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 4 of 282

5.2 Mandatory Keynames
5.3 Common Keynames

5.3.1 metadata
5.3.2 description

6 TOSCA File Definition
6.1 Keynames
6.2 TOSCA Definitions Version
6.3 DSL Definitions
6.4 Type definitions

6.4.1 Common Keynames in Type Definitions
6.4.2 Type Derivation
6.4.3 Types of Types

6.4.3.1 Artifact Types
6.4.3.2 Data Types
6.4.3.3 Capability Types
6.4.3.4 Interface Types
6.4.3.5 Relationship Types
6.4.3.6 Node Types
6.4.3.7 Group Types
6.4.3.8 Policy Types

6.5 Repository Definitions
6.6 Function Definitions
6.7 Profiles

6.7.1 Grammar
6.7.2 TOSCA Simple Profile
6.7.3 Profile Versions

6.8 Imports and Namespaces
6.8.1 Import Definitions
6.8.2 Import Processing Rules

6.8.2.1 Importing Profiles
6.8.2.2 Importing TOSCA File

6.8.3 Examples
6.8.4 Namespaces

6.9 Service Template Definition
6.9.1 Service Template Grammar
6.9.2 Input Parameters
6.9.3 Node Templates
6.9.4 Relationship Templates
6.9.5 Output Parameters
6.9.6 Workflow Definitions

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 5 of 282

6.9.7 Group Definitions
6.9.8 Policy Definitions
6.9.10 Substitution Mapping

7 Nodes and Relationships
7.1 Node Type
7.2 Node Template
7.3 Relationship Type
7.4 Relationship Template

8 Capabilities and Requirements
8.1 Capability Type
8.2 Capability Definition
8.3 Capability Refinement
8.4 Capability Assignment
8.5 Requirement Definition
8.6 Requirement Refinement
8.7 Requirement Assignment

8.7.1 Supported Keynames
8.7.2 Requirement Assignment Grammar
8.7.4 Requirement Count
8.7.5 Capability Allocation

8.8 Node Filter definition
9 Properties, Attributes, and Parameters

9.1 TOSCA Built-In Types
9.1.1 Primitive Types

9.1.1.1 string
9.1.1.2 integer
9.1.1.3 float
9.1.1.4 boolean
9.1.1.5 bytes
9.1.1.6 nil

9.1.2 Special Types
9.1.2.1 timestamp
9.1.2.2 scalar-unit

9.1.2.2.2 scalar-unit.time
9.1.2.3 version

9.1.3 Collection Types
9.1.3.1 list
9.1.3.2 map

9.2 Data Type
9.3 Schema Definition

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 6 of 282

9.3 Property Definition
9.4 Property Assignment
9.5 Attribute Definition
9.6 Attribute Assignment
9.7 Parameter Definition
9.8 Parameter Value Assignment
9.9 Parameter Mapping Assignment
9.10 Validation Clause

10 TOSCA Functions
10.1 Function Syntax
10.2 TOSCA Built-In Functions

10.2.1 Representation Graph Query Functions
10.2.1.1 get_input
10.2.1.2 get_property
10.2.1.3 get_attribute
10.2.1.4 get_artifact
10.2.1.5 value
10.2.1.6 node_index
10.2.1.7 relationship_index
10.2.1.8 available_allocation

10.2.2 Boolean Functions
10.2.2.1 Boolean Logic Functions

10.2.2.1.1 and
10.2.2.1.2 or
10.2.2.1.3 not
10.2.2.1.4 xor

10.2.2.2 Comparison Functions
10.2.2.2.1 equal
10.2.2.2.2 greater_than
10.2.2.2.3 greater_or_equal
10.2.2.2.4 less_than
10.2.2.2.5 less_or_equal
10.2.2.2.6 valid_values
10.2.2.2.7 matches

10.2.2.3 Boolean List, Map and String Functions
10.2.2.3.1 has_suffix
10.2.2.3.2 has_prefix
10.2.2.3.3 contains
10.2.2.3.4 has_entry
10.2.2.3.5 has_key

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 7 of 282

10.2.2.3.6 has_all_entries
10.2.2.3.7 has_all_keys
10.2.2.3.8 has_any_entry
10.2.2.3.9 has_any_key

10.2.3 String, List, and Map Functions
10.2.3.1 length
10.2.3.2 concat
10.2.3.3 join
10.2.3.4 token

10.2.4 Set Functions
10.2.4.1 union
10.2.4.2 intersection

10.2.5 Arithmetic Functions
10.2.5.1 sum
10.2.5.2 difference
10.2.5.3 product
10.2.5.4 quotient
10.2.5.5 remainder
10.2.5.6 round
10.2.5.7 floor
10.2.5.8 ceil

10.3 TOSCA Path
10.4 Function Definitions

11 Interfaces, Operations, and Notifications
11.1 Interface Type
11.2 Interface Definition
11.3 Interface Assignment
11.4 Operation Definition
11.5 Operation Assignment
11.6 Notification Definition
11.7 Notification Assignment
11.8 Operation and Notification Implementations

12 Artifacts
12.1 Artifact Type
12.2 Artifact definition

13 Workflows
13.1 Declarative Workflows
13.2 Imperative Workflows

13.2.1 Workflow Precondition Definition
13.2.2 Workflow Step Definition

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 8 of 282

13.2.3 Activity Definition
13.2.3.1 Delegate Workflow Activity Definition
13.2.3.2 Set State Activity Definition
13.2.3.3 Call Operation Activity Definition
13.2.3.4 Inline Workflow Activity Definition

14 Creating Multiple Representations from Templates
14.1 Specifying Number of Node Representations
14.2 Node-Specific Input Values
14.3 Cardinality of Relationships

14.3.1 Many-to-One Relationships
14.3.2 One-to-Many Relationships
14.3.3 Full mesh
14.3.4 Matched Pairs
14.3.5 Random Pairs
14.3.6 Many-to-Many Relationships

14.4 Relationship-Specific Input Values
15 Substitution

15.1 Substitution Mapping
15.2 Property mapping
15.3 Attribute Mapping
15.4 Capability Mapping
15.5 Requirement Mapping

15.5.1 Mapping Multiple Requirements with the Same Name
15.5.2 Mapping a Requirement Multiple Times
15.5.3 Requirement Mapping and Selectable Nodes
15.5.4 Requirement Mapping Rules
15.5.5 Handling UNBOUNDED Requirement Count Ranges

15.6 Interface Mapping
16 Groups and Policies

16.1 Group Type
16.2 Group Definition
16.3 Policy Type
16.4 Policy Definition
16.5 Trigger Definition

17 Cloud Service Archive (CSAR) Format
17.1 Overall Structure of a CSAR

17.1.1 CSAR Archiving Formats
17.1.1.1 Tarballs
17.1.1.2 Zip Files

17.2 TOSCA Meta File

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 9 of 282

17.2.1 Block 0 Keynames in the TOSCA.meta File
17.2.2 Custom Keynames in the TOSCA.meta File

17.3 CSAR Without TOSCA.meta
18 Conformance

18.1 Conformance Targets
18.2 Conformance Clause 1: TOSCA YAML Service Template
18.3 Conformance Clause 2: TOSCA Processor
18.4 Conformance Clause 3: TOSCA Orchestrator
18.5 Conformance Clause 4: TOSCA Generator
18.6 Conformance Clause 5: TOSCA Archive

Appendix A. References
A.1 Normative References
A.2 Informative References

Appendix B. Safety, Security and Privacy Considerations
Appendix C. Acknowledgments

C.1 Special Thanks
C.2 Participants

Appendix D. Revision History
Appendix E. Example Appendix with subsections

E.1 Subsection title
E.1.1 Sub-subsection

Appendix F. Notices

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 10 of 282

1 Introduction
The Topology and Orchestration Specification for Cloud Applications (TOSCA) provides a
language for describing components and their relationships by means of a service topology,
and for specifying the lifecycle management procedures for creation or modification of
services using orchestration processes. The combination of topology and orchestration
enables not only the automation of deployment but also the automation of the complete
service lifecycle management. The TOSCA specification promotes a model-driven approach,
whereby information embedded in the model structure (the dependencies, connections,
compositions) drives the automated processes.

The content in this section is non-normative.

1.1 Changes from Earlier Versions
This version of the specification includes significant changes from TOSCA 1.3. In particular:

1. TOSCA v2.0 removes the Simple Profile type definitions from the standard. These type
definitions are now managed as an open source project in the tosca-community-
contributions github repository.

2. Rather than bundling Profiles with the TOSCA standard, TOSCA v2.0 provides support
for user-defined domain-specific profiles as follows:

It allows collections of type definitions to be bundled together into named profiles.
It supports importing profiles using their profile name.

3. TOSCA v2.0 formalizes support for in-life operation of a running service.
It formalizes the role of a representation model and clarifies how to create
representation models from service templates.
It documents how to create multiple node representations from the same node
template and multiple relationships from the same requirement assignment.
It defines an operational model that provides guidance for updating and/or
upgrading a running service and for responding to notifications about state
changes or errors.

4. TOSCA v2.0 introduces a new TOSCA Path syntax that allows a defined traversal of an
arbitary graph of nodes and relationships to an attribute or property.

5. TOSCA v2.0 significantly enhances support for functions. It formalizes function syntax, it
extends the set of built-in functions, and it introduces support for user-defined custom
functions.

6. TOSCA v2.0 harmonizes constraint syntax, filter syntax, and condition syntax using
boolean functions.

7. TOSCA v2.0 addresses shortcomings of the v1.3 substitution mapping grammar.
8. TOSCA v2.0 simplifies and extends the CSAR file format.
9. TOSCA v2.0 includes a broad set of syntax clarifications, including but not limited to:

The service template is renamed TOSCA file and service template is redefined.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 11 of 282

https://github.com/oasis-open/tosca-community-contributions

Grammar for relationship types, requirement definitions, and requirement
assignments has been extended and clarified.
Short notation for entry_schema and key_schema has been documented

1.2 Document conventions
Naming conventions
Font colors and styles
Typographic conventions

1.3 Glossary
1.3.1 Definitions of terms

The following terms are used throughout this specification and have the following definitions
when used in context of this document.

Term Definition

Representation
Model

A deployed service is a running instance of a service template. The
instance is typically derived by running a declarative workflow that is
automatically generated based on the node templates and relationship
templates defined in the service template.

Node
Template

A node template specifies the occurrence of a component node as part
of a service template. Each node template refers to a node type that
defines the semantics of the node (e.g., properties, attributes,
requirements, capabilities, interfaces). Node types are defined
separately for reuse purposes.

Relationship
Template

A relationship template specifies the occurrence of a relationship
between nodes in a service template. Each relationship template refers
to a relationship type that defines the semantics of the relationship (e.g.,
properties, attributes, interfaces, etc.). relationship types are defined
separately for reuse purposes.

Service
Template

A service template is used to specify the topology (or structure) and
orchestration (or invocation of management behavior) of services so that
they can be provisioned and managed in accordance with constraints
and policies.

Topology
Model

A Topology Model defines the structure of a service in the context of a
service template. A Topology model consists of a set of node template
and relationship template definitions that together define the topology of
a service as a (not necessarily connected) directed graph.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 12 of 282

Abstract Node
Template

An abstract node template is a node template that doesn’t define any
implementations for the TOSCA lifecycle management operations.
Service designers explicitly mark node templates as abstract using the
substitute directive. TOSCA orchestrators provide implementations for
abstract node templates by finding substituting templates for those node
templates.

Term Definition

1.3.2 Acronyms and abbreviations

Defined in this document

TOSCA Topology and Orchestration Specification for Cloud Applications
CSAR Cloud Service Archive A file format defined by OASIS TOSCA to contain
TOSCA files

Used by this specification

YAML Yet Another Markup Language The Language TOSCA uses for files
MACD Moves, Adds, Changes, and Deletions
DSL Domain Specific Language

Used as examples

DBMS Database Management System
EJB Enterprise Java Beans
SD-WAN Software Defined Wide Area Network
SQL Structured Query Language
TAR Tape Archive A file format originally used in unix
VPN Virtual Private Network
USD United States Dollar

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 13 of 282

2 TOSCA Overview
The Topology and Orchestration Specification for Cloud Applications (TOSCA) is a
domain-specific language (DSL) for automating Lifecycle Management of large complex
systems.

The TOSCA language allows service designers to describe system components and their
relationships by means of a service topology, and to specify the lifecycle management
procedures for the creation and modification of services using orchestration processes. The
combination of topology and orchestration enables not only the automation of deployment but
also the automation of the complete service lifecycle management (including scaling,
patching, upgrading, monitoring, etc.).

The content in this section is non-normative.

2.1 Objectives
Large systems such a cloud applications, telecommunications networks, and software
services are becoming increasingly more difficult to manage. This challenge is the result of a
recent technology trends such as the adoption of cloud-native architectures that build systems
as collections of microservices, the disaggregation of large hardware appliances, the
decoupling of hardware and software, and the adoption of edge deployments that move
application functionality closer to the end-user.

As a result of the above technology trends, large systems typically involve a wide variety of
technologies and include components from multiple vendors. This results in management
systems based on vendor-specific tools, dedicated component management systems, and
special-purpose controllers, each of which manages only a small subset of the system. To
make matters worse, these tools often use incompatible interfaces or data schemas, resulting
in integration nightmares. As the number of components grows—because the scale of the
system increases and disaggregation becomes the norm—so will the number of required
management tools.

Management of such systems can be greatly simplified if the creation and lifecycle
management of application, infrastructure, and network services can be fully automated and
supported across a variety of deployment environments. TOSCA was expressly designed to
address the complexity associated with managing large systems by providing a language for
specifying an information model and automating the lifecycle management of large complex
systems. The goal of TOSCA is to define a language that is agnostic to specific technological
and commercial ecosystems and that supports the design and operation of large systems
without being tied to specific technologies or specific vendors. This enables a uniform
management approach that can be used for all parts of the system and can integrate
components across all layers of the technology stack.

The capabilities offered by TOSCA will facilitate higher service continuity, reduce service
disruption and manual mitigation, increase interoperability, avoid lock-in, and achieve the

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 14 of 282

intended orchestration. Ultimately, this will benefit the consumers, developers, and providers
of more and more complex and heterogeneous networks, systems, and cloud-native
applications.

2.2 TOSCA Features and Benefits
2.2.1 TOSCA is Model-Driven

The TOSCA specification promotes a model-driven management approach, whereby
TOSCA processors maintain service models (digital twins) for all system components under
management. In a model-driven approach, all management actions are performed on service
models first and then propagated to the external real-world entities by the management
system. Similarly, changes to external resources are reflected into models first and then
handled by management system.

TOSCA's model-driven management approach is what enables its use for all Lifecycle
Management Phases: information embedded in the model structure (the dependencies,
connections, compositions) drives the automated processes. Specifically, it allows service
models to be used:

As desired state for Moves, Adds, Changes, and Deletions (MACDs)
As context for handling faults and events using Closed Loop Automation

In addition, changing or augmenting the model also automatically adapts the LCM /
orchestration behavior. Without the context provided by service models, lifecycle management
cannot be fully automated.

2.2.2 TOSCA Models are Graphs

TOSCA models systems as graphs, where the vertices represent the components of the
system and the edges represents relationships, dependencies, and other interactions
between these components.

The use of graphs enables declarative orchestration, where system designers can simply
create descriptions ("models") of their systems, and delegate to the orchestrator the task of
translating these descriptions into the commands required to realize the systems being
described. The use of graphs enables this as follows:

Relationships in a TOSCA graph encode dependencies that allow an orchestrator to
automatically determine the sequencing between the managment operations on
invoked on various components in the system, thereby avoiding the need for human-
defined workflows. Implementing lifecycle or other management operations on the
service can be achieved by traversing the graph.
Relationships in a TOSCA graph allow an orchestrator to automatically determine which
system components may be affected by a component failure or by a change to an
external resource. The orchestrator can then determine corrective actions that restore
the system as a whole to its nominal state, rather than just fixing individual components.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 15 of 282

Declarative management is often also referred to as desired state or intent-based
orchestration.

2.2.3 TOSCA Promotes Reuse and Modularity

TOSCA models are based on service templates that are created by service designers.
Service templates consist of node templates and relationship templates that have associated
node types and relationship types. Types in TOSCA represent reusable components that can
be used as building blocks from which services are constructed, thereby promoting modularity
and reuse.

In addition, TOSCA allows modular designs whereby service templates describe only parts of
a system rather than a complete end-to-end system definition. Composition of partial system
descriptions into complete system models can be done by an orchestrator at deployment
time. This enables automation of placement decisions, resource allocation, and system
integration.

TOSCA's modularity features allow some service design decisions to be made by an
orchestrator at deployment time rather than by a service designer at service design time.
TOSCA also allows for the definition of abstract components that hide technology and vendor-
specific implementation details. The choice of how to implement abstract components can be
left to the orchestrator at deployment time. This further increases the value of TOSCA as a
technology and vendor-neutral technology language orchestration. TOSCA supports the use of
policies to guide the service design decisions made by orchestrators at deployment time.

2.2.4 TOSCA is Domain-Independent

Since the fundamental abstraction defined by the TOSCA language is a graph, TOSCA is not
tied to any specific application domain. For example, TOSCA can be used to specify
automated lifecycle management of the following:

Infrastructure-as-a-Service Clouds: automate the deployment and management of
workloads in IaaS clouds such as OpenStack, Amazon Web Services, Microsoft Azure,
Google Cloud, and others.

Cloud-Native Applications: deploy containerized applications, micro-services, and
service meshes, for example by interfacing to orchestration platforms such as
Kubernetes.
Network Function Virtualization: define the management of Virtual Network Functions
and their composition into complex network services.
Software Defined Networking: support on-demand creation of network services (for
example SD-WAN).
Functions-as-a-Service: define abstract software applications without any deployment
or operational considerations.
IoT and Edge computing: deploy many very similar copies of a service at the network
edge.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 16 of 282

Process Automation: support open and interoperable process control architectures.

This list is by no means intended to be exhaustive and only serves to demonstrate the breadth
of application domains that can benefit from TOSCA’s automated lifecycle management
capabilities.

2.3 TOSCA Core Concepts

As stated above, the TOSCA language assumes a model-driven management paradigm.
Using model-driven management, a model representing the managed external components is
maintained and all management operations are performed on this model first and any
resulting changes to the model are then propagated to the external components. Similarly, any
status changes or errors experienced by the external components are reflected in the model
first before they are handled by the management system. The model maintained by the
management system must capture all aspects of the external components that are relevant for
the purpose of managing those components.

External components under management can consist of physical resources deployed in the
real world as well as logical or virtual components provisioned or configured on those
resources. In the context of TOSCA, we will refer to the physical or virtual components under
management as external implementations, and we will refer to the models as
representations. Note that the TOSCA language does not standardize any object models or
schemas for representations. It presumes the existence of such models, but the model details
are implementation specific.

A model-driven management system must include a component that is responsible for
keeping the representations and the external implementations synchronized. In the context of
this specification, we will refer to this component as the orchestrator. An orchestrator may
perform this synchronization task based on workflows, policies, or other mechanisms that are
defined using statements expressed in the TOSCA language, in which case we will refer to
the component as a TOSCA orchestrator. Alternatively, an orchestrator may also perform
this task based on domain-specific knowledge that is built-in to the orchestrator rather than
being defined using TOSCA. This specification allows for either approach.

The following diagram shows how external implementations are modeled using
representations, and how the Orchestrator synchronizes the two.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 17 of 282

Figure : Representations and Implementations

TOSCA representations don't just track individual components and their management
aspects; they also capture how the various components interact, with the goal of providing
complete system functionality. TOSCA accomplishes this by modeling the topology of
systems as graphs where nodes in the graph represent the components under management
and vertices in the graph represent containment, dependencies, interactions, or other
relationships between these components. In this specification, we use the term service
representation to refer to a graph that models the topology of an entire system or subsystem,
and we use the terms node representation and relationship representation respectively
to model the nodes and vertices in a service representation graph.

Information about how node and relationship representations are organized in service
representation graphs is captured in designs (a.k.a blueprints) that are created by service
designers and expressed in the TOSCA language. In this specification, we refer to those
designs as service templates and we use the term resolver to refer to the management
component that instantiates service representations based on service templates. TOSCA
service templates define service elements and their relationships which results in the service
representations to be created as graphs. Service templates consist of node templates from
which node representations are created, and relationship templates from which relationship
representations are created. Note that while TOSCA does not standardize representations, it
does standardize the grammar for defining templates.

The use of templates supports reuse of service designs while at the same time allowing for
service-specific variability. Specifically, node templates and relationship templates can use
TOSCA functions to specify that configuration values need to be provided as template
inputs to each deployment, or that configuration values need to be retrieved at deployment
time from other node or relationship representations in the service representation graph. At
deployment time, TOSCA resolvers evaluate these functions to generate the values to be
used when creating new service representations. TOSCA also includes grammar for creating
multiple node representations from the same node template and for creating multiple
relationship representations from the same relationship template. TOSCA supports modular
designs where different deployments can combine sub-system representations created from
different service templates into deployment-specific system representations.

The following diagram shows how representations are created from templates by a resolver:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 18 of 282

Figure : TOSCA Templates and Representations

To allow for design-time validation of service templates, all TOSCA templates defined by
those service templates have associated TOSCA types. TOSCA types define schemas and
constraints with which TOSCA templates have to comply. For example, a TOSCA node type
defines configurable properties that must be provided for the associated component, it
defines the runtime attributes that are expected to be available for the component, and it
specifies allowed and required interactions with other components. A TOSCA-based
management system must include a TOSCA parser/validator that checks if the templates
used in a TOSCA file are valid for the types with which they are associated. This allows many
kinds of errors to be flagged at service design time rather than at service deployment time.
The following diagram shows how templates are created from and validated against TOSCA
type definitions:

Figure : TOSCA Types and TOSCA Templates

The use of types in TOSCA also provides the additional benefits of abstraction, information
hiding, and reuse. TOSCA types can be organized in a type hierarchy where one or more
type definitions can inherit from another type, each derived type may then be refined. This
promotes reuse. The base type may be abstract and the derived types may be concrete which
promotes abstraction. TOSCA node types and TOSCA relationship types define an
externally visible management façade for entities of that type while hiding internal
implementation details. This management façade defines interfaces that can be used by an
orchestrator to interact with the external implementations represented by the entity. When
node types and relationship types are packaged together with internal implementation
artifacts for their interfaces, they become reusable building blocks that can greatly facilitate
the creation of end-to-end services. TOSCA types that define such reusable building blocks
are typically organized in domain-specific TOSCA profiles.

The following figure summarizes the various concepts introduced in this section. When a

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 19 of 282

TOSCA implementation implements multiple TOSCA processing modules such as parsing,
validating, and resolving, such an implementation is commonly referred to as a TOSCA
processor.

Figure : Summary of Core TOSCA Concepts

Note that this diagram is only intended to highlight concepts used in this specification, not to
suggest software architectures or implementations. Nor is this diagram intended to be
comprehensive or exclusive. Other kinds of processors and modules may qualify as
implementations of TOSCA, for example:

TOSCA translator: A tool that translates TOSCA files into documents that use another
language, such as Kubernetes Helm charts or Amazon CloudFormation templates.
TOSCA template generator: A tool that generates a TOSCA file. An example of
generator is a modeling tool capable of generating or editing a system design
expressed using TOSCA.

2.4 Using TOSCA
2.4.1 TOSCA Files

TOSCA files are files describing TOSCA service templates, TOSCA types, or a combination
thereof.

2.4.2 Archive Format for Cloud Applications

In order to support in a certain environment the execution and management of the lifecycle of a
cloud application, all corresponding artifacts have to be available in that environment. This
means that beside the TOSCA file of the cloud application, the deployment artifacts and
implementation artifacts have to be available in that environment. To ease the task of ensuring
the availability of all of these, this specification defines a corresponding archive format called
CSAR (Cloud Service ARchive).

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 20 of 282

A CSAR is a container file, i.e. it contains multiple files of possibly different file types. These
files are typically organized in several subdirectories, each of which contains related files (and
possibly other subdirectories etc.). The organization into subdirectories and their content is
specific for a particular cloud application. CSARs are zip or tar files, typically compressed. A
CSAR may contain a file called TOSCA.meta that describes the organization of the CSAR.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 21 of 282

3 TOSCA Language Abstractions
The TOSCA language introduces a YAML-based grammar for automating the lifecycle
management of application, infrastructure, and network services. The language defines a
metamodel for specifying both the structure of a service as well as its management aspects.
Using TOSCA statements expressed in a TOSCA file, service designers create a service
template that defines the structure of a service. Interfaces, operations, and workflows define
how service elements can be created and terminated as well as how they can be managed
during their whole lifetimes. Policies specify operational behavior of the service such as
quality-of-service objectives, performance objectives, and security constraints, and allow for
closed-loop automation.

The content in this section is non-normative.

3.1 Service Templates, Node Templates, and Relationship Templates
Within a TOSCA file, a service template defines the topology model of a service as a
directed graph. Each node in this graph is represented by a node template. A node template
specifies the presence of an entity of a specific node type as a component of a service. A
node type defines the semantics of such a component, including the configurable properties
of the component (via property definitions), its runtime state (via attribute definitions) and
the operations (via interface definitions) available to manipulate the component. In a service
template, a node template assigns values to the properties defined in the corresponding node
type. An orchestrator updates attribute values as a result of performing lifecycle management
operations or in response to notifications about changes in component state.

For example, consider a service that consists of an some computing application, a database
and some computing resource to run them on. A service template defining that service would
include one node template of the node type for the particular software application, another
node template of node type database management system or a more specific derivative
(MariaDB,perhaps), and a third node template of node type compute or more likely a more
specific derivative. The DBMS node type defines properties like the IP address of an instance
of this type, an operation for installing the database application with the corresponding IP
address, and an operation for shutting down an instance of this DBMS. A constraint in the
node template can specify a range of IP addresses available when making a concrete
application server available.

Node templates may include one or more relationship templates to other node templates in
the service template. These relationship templates represent the edges in the service
topology graph and model dependencies and other interactions between components. Note
that in this specification, relationship templates are more frequently referred to as
requirements for reasons that will be explained below. Relationship templates in TOSCA are
unidirectional: the node template that includes the relationship template is implicitly defined as
the source node of that relationship template and the relationship template explicitly
specifies its target node. Each relationship template refers to a relationship type that
defines the semantics of the relationship. Just like node types, relationship types define

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 22 of 282

properties, attributes, and interfaces. Node types and relationship types are typically defined
separately for reuse purposes and organized into profiles.

In the example above, a relationship can be established from the application server node
template to the database node template with the meaning depends on, and from both the
application and DBMS node templates to the compute node template with meaning deployed
on.

3.2 Requirements and Capabilities
We discussed earlier how relationship templates are used to link node templates together
into a service topology graph. However, it may not always be possible to define all node
templates for a given service topology within a single service template. For example, modular
design practices may dictate that different service sub-components be modelled using
separate service templates. This may result in relationships across multiple service
templates. Additionally, relationships may need to target components that already exist and
do not need to be instantiated by an orchestrator. For example, relationships may reference
physical resources that are managed in a resource inventory. Service templates may not
include node templates for these resources.

TOSCA accommodates both service template internal and external relationships using
requirements and capabilities of node templates. Requirements express that a component
depends on a feature provided by another component, or that the component has certain
requirements against the hosting environment such as for the allocation of certain resources
or the enablement of a specific mode of operation. Capabilities represent features exposed
by components that can be targeted by requirements of other components. A requirement
defined in one node template is fulfilled by establishing a relationship to a corresponding
capability defined in a second node template. If a requirement explicitly specifies a target
node template defined in the same service template, it acts as a relationship template as
defined in the previous section. A requirement that does not explicitly specify a target node
template is referred to as a dangling requirement. For simplicity, this specification uses the
term requirement for both relationship templates and dangling requirements.

All mandatory dangling requirements must be fulfilled by the TOSCA processor at service
deployment time. While dangling requirements are defined in the context of node templates,
fulfilling dangling requirements is done in the context of node representations. This means
that when finding candidates for fulfilling a dangling requirement, the TOSCA processor must
consider node representations rather than the templates from which these representations
were created. When fulfilling requirements, template directives to the TOSCA processor can
be used to specify if the target candidates are template-internal node representations, or
external representations created from multiple service templates, or representations for
external resources managed in an inventory. Thus, requirement fulfillment may result in
relationships that are established across service template boundaries.

Requirements and capabilities are modelled by annotating node types with requirement
definitions and capability definitions respectively. Capability definitions themselves have
associated capability types that are defined as reusable entities so that those definitions

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 23 of 282

can be used in the context of several node types. Just like node types and relationship types,
capability types can define properties and attributes. Requirement definitions are effectively
relationship definitions that specify the relationship type that will be used when creating the
relationship that fulfils the requirement.

The following figure summarizes the various TOSCA abstractions used for defining
requirements and capabilities:

Figure : Requirements and Capabilities

3.3 Decomposition of Node Representations
TOSCA provides support for decomposing service components using its substitution
mapping feature. This feature allows for the definition of abstract service designs that consist
of components that are largely independent of specific technologies or vendor
implementations. Technology or vendor-specific implementation details can be defined for
each abstract component using substituting service templates that describe the internals of
that component.

For example, a service template for a business application that is hosted on an application
server tier might focus on defining the structure and manageability behavior of the business
application itself. The internals of the application server tier hosting the application can be
provided in a separate service template built by another vendor specialized in deploying and
managing application servers. This approach enables separation of concerns as well as re-
use of common infrastructure templates.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 24 of 282

Figure : Node Decomposition

From the point of view of a service template (e.g. the business application service template
from the example above) that uses another service template, the other service template (e.g.
the application server tier) looks just like a node template. During deployment, however, the
node representation created from this node template can be substituted by a service created
from the second service template if it exposes the same external façade (i.e. properties,
capabilities, requirements, etc.) as the node for which it is a substitution. Thus, a substitution
by any service template that has the same facade as the substituted node becomes possible,
allowing for a hierarchical decomposition of service representations. This concept also allows
for providing alternative substitutions that can be selected by a TOSCA processor at service
deployment time. For example there might exist two service templates, one for a single node
application server tier and another for a clustered application server tier, and the appropriate
option can be selected on a deployment-by-deployment basis.

3.4 Interfaces, Operations, and Artifacts
Both node types and relationship types may define lifecycle operations that define the
actions an orchestration engine can invoke when instantiating a service from a service
template or when managing a deployed service. For example, a node type for some software
product might provide a create operation to handle the creation of an instance of a
component at runtime, or a start or stop operation to allow an orchestration engine to start or
stop the software component.

Operations that are related to the same management mission (e.g. lifecycle management) are
grouped together in interface definitions in node and relationship types. Just like other

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 25 of 282

TOSCA entities, interfaces have a corresponding interface type that defines the group of
operations that are part of the interface, the input parameters that are required by those
operations, and any output parameters returned by the operations. Interface types can also
define notifications that represent external events that are generated by the external
implementations and received by the orchestrator.

The implementations of interface operations can be provided as TOSCA artifacts. An artifact
represents the content needed to provide an implementation for an interface operation. A
TOSCA artifact could be an executable (e.g. a script, an executable program, an image), a
configuration file or data file, or something that might be needed so that another executable
can run (e.g. a library). Artifacts can be of different types, for example Ansible playbooks or
python scripts. The content of an artifact depends on its artifact type. Typically, descriptive
metadata (such as properties) will also be provided along with the artifact. This metadata
might be needed by an orchestrator to properly process the artifact, for example by describing
the appropriate execution environment.

3.5 Workflows
A deployed service is an instance of a service template. More precisely, a service is
deployed by first creating a service representation based on the service template describing
the service and then orchestrating the external implementations modelled by those
representations. If TOSCA orchestration is used, the external implementations are created by
running workflows that invoke interface operations defined in the types of the nodes and
relationships in the representation graph. TOSCA workflows can often be generated
automatically by the orchestrator by using the relationships in the service representation graph
to determine the order in which external implementations must be created. For example,
during the instantiation of a two-tier application that includes a web application that depends
on a database, an orchestration engine would first invoke the create operation on the
database component to install and configure the database, and it would then invoke the
create operation of the web application to install and configure the application (which
includes configuration of the database connection).

Interface operations invoked by workflows must use actual values for the various properties in
the node templates and relationship templates in the service template. These values are
tracked in the node representations and relationship representations in the service
representation graph. They can be provided as inputs passed in by users as triggered by
human interactions with the TOSCA processor. Alternatively, the templates can specify default
values for some properties, or use TOSCA functions to retrieve those values from other
entities in the service representation graph.

For example, the application server node template will be instantiated by installing an actual
application server at a concrete IP address considering the specified range of IP addresses.
Next, the process engine node template will be instantiated by installing a concrete process
engine on that application server (as indicated by the hosted on relationship template).
Finally, the process model node template will be instantiated by deploying the process model
on that process engine (as indicated by the deployed on relationship template).

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 26 of 282

3.6 Policies
Non-functional behavior or quality-of-services are defined in TOSCA by means of policies. A
policy can express such diverse things like monitoring behavior, payment conditions,
scalability, or continuous availability, for example.

A node template can be associated with a set of policies collectively expressing the non-
functional behavior or quality-of-services that each instance of the node template will expose.
Each policy specifies the actual properties of the non-functional behavior, like the concrete
payment information (payment period, currency, amount etc.) about the individual instances of
the node template.

These properties are defined by a policy type. Policy types might be defined in hierarchies
to properly reflect the structure of non-functional behavior or quality-of-services in particular
domains. Furthermore, a policy type might be associated with a set of node types the non-
functional behavior or quality-of-service it describes.

Policy templates provide actual values of properties of the types defined by policy types. For
example, a policy template for monthly payments for customers located in the USA will set the
“payment period” property to “monthly” and the “currency” property to “USD”, leaving the
“amount” property open. The “amount” property will be set when the corresponding policy
template is used for a policy within a node template. Thus, a policy template defines the
invariant properties of a policy, while the policy sets the variant properties resulting from the
actual usage of a policy template in a node template.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 27 of 282

4 TOSCA Operational Model
The content in this section is normative unless otherwise labeled except for:

the examples
references (unless they are labelled as normative)

TOSCA is designed to support all three phases of the service lifecycle:

1. Day 0—Service Design: Service designers use TOSCA to model services as
topology graphs that consist of nodes and relationships. Nodes model the components
of which a service is composed, and relationships model dependencies between these
service components.

2. Day 1—Service Deployment: TOSCA can also be used to define mechanisms for
deploying TOSCA service topologies on external platforms.

3. Day 2—Service Management: TOSCA can enable run-time management of services
by providing support for updating and/or upgrading deployed services and by providing
service assurance functionality.

This section presents a TOSCA functional architecture and an associated operational model
that supports the three service lifecycle phases outlined above. Note that this functional
architecture is not intended to prescribe how TOSCA must be implemented. Instead, it aims
to provide users of TOSCA with a mental model of how TOSCA implementations are
expected to process TOSCA files.

Note that it is not mandatory for compliant TOSCA implementations to support all three
service lifecycle phases. Some implementations may use TOSCA only for service design and
delegate orchestration and ongoing lifecycle management functionality to external (non-
TOSCA) orchestrators. Other implementations may decide to use TOSCA for all three phases
of the service lifecycle. However, a complete architecture must anticipate all three lifecycle
phases and must clearly distinguish between the four kinds of TOSCA entities defined in
Section 2.4.

4.1 TOSCA Functional Architecture
The following Figure shows the TOSCA functional architecture defined in this section. It
illustrates how the various TOSCA entities are used by the different functional blocks and how
they are related.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 28 of 282

Figure : TOSCA Functional Architecture

The functional architecture defines the following three blocks:

1. TOSCA Processor: This functional block defines functionality that must be provided by
all TOSCA implementations. TOSCA processors convert TOSCA-based service
definitions into service representations that can be processed by an Orchestrator.

2. Orchestrator: This functional block creates external implementations on various
resource platforms based on the service representations created by a TOSCA
processor. The orchestration functionality can itself be defined using TOSCA or can be
provided by external (non-TOSCA) orchestration platforms.

3. Platform: In the context of a TOSCA architecture, platforms represent external cloud,
networking, or other infrastructure resources on top of which service entities can be
created.

The remainder of this section describes each of these functional blocks in more detail.

4.2 TOSCA Processor
At the core of a compliant TOSCA implementation is a TOSCA Processor that can create
service representations from TOSCA service templates. A TOSCA Processor contains the
following functional blocks:

4.2.1 Parser

A TOSCA parser performs the following functions:

Accepts a single TOSCA file plus imported TOSCA files (files without a
service_template)
Can (optionally) import these files from one or more repositories, either individually or
as complete profiles
Outputs valid normalized node templates. Note that normalized node templates may
include unresolved (dangling) requirements.

4.2.2 Resolver

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 29 of 282

A resolver creates service representations based on normalized service templates. It
performs the following functions:

1. Creating Node Representations based on Normalized Node Templates.

Either one-to-one or one-to-many if multiplicity is involved.
Node templates with a select directive create a node in the local representation
graph that is a reference to the selected node (from the local or a remote
representation graph).
Node templates with a substitute directive create a node in the local
representation graph that is associated to a remote representation graph created
from the substitution template.
The resolver assigns values to node properties and attributes in node
representations based on values or functions defined in the corresponding node
templates.
Some property and attribute values cannot be initialized since they either depend
on other uninitialized properties or attributes or need to access other node
representations via relationships that have not been yet initialized.

2. Creating Relationships that Connect Node Representations

Some relationships can be created directly based on target node templates
specified in node template requirements.
Other relationships are created by fulfilling dangling requirements.

If a requirement uses a node_filter that refers to uninitialized properties or
attributes, then the fulfillment of this requirement is postponed until all
referred properties or attributes are initialized.
A circular dependency signifies a erroneous template and shall report an
error
After a relationship is created, properties and attributes that depend on it to
be initialized will be initialized.

At the end of this process all mandatory requirements must be satisfied and all
relationships are added to the representation graph. An unsatisfied non-optional
requirement results in an error.

3. Substitution Mapping

When substitution is directed for a node, the resolver creates a new service
representation based on the substituting template, basically creating a service that
represents the internals of the substituted node.
The substituting service is initialized from the properties of the substituted node
and the workflows of the substituting service act as operations for the substituted
node (that is, the behavior of the node is substituted by the substituting service).
This is defined via substitution mapping rules.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 30 of 282

4.3 Orchestrator
An orchestrator performs the following actions:

(Continuously) turns node representations into one or more node implementations
(Continuously) updates node representation attribute values (error if they do not adhere
to TOSCA type validation clauses or property definition validation clauses)
(Continuously) reactivates the resolver: outputs may change attribute values, which can
require refulfillment of dangling requirements or resubsitution of substituted nodes.
(Optionally) changes the node representations themselves for day 2 transformations.

4.4 Changes in the Representation Graph
During the lifetime of a service there can be several actions or events that change the
representation graph of the running service.

We can identify the several situations that mandate the change of the representation graph,
for example:

Update:
The service input values have changed and need to be re-evaluated while the
service is running.

Upgrade:
The service template has changed and needs to be re-evaluated while the service
is running.

Runtime failures:
Nodes or relationships in the representation graph have failed and need to be
recreated or healed while the service is running.

Change in dependencies
External nodes or relationships to external nodes have failed and new
relationships to external nodes need to be created (i.e. external requirements
need to be fulfilled again) while the service is running.

For the service to reach the new desired runtime state, operations that are associated with
the creation, deletion, and modification of nodes and relationships in the representation graph
need to be performed.

We can visualize (and the orchestrator can perform) these restorative actions via graph
traversals on the "old" and "new" representation graph.

First let's categorize the nodes and relationships in the "old" and "new" representation graphs
in the following four categories:

Unchanged: These are nodes and relationships that appear in both the "old" and "new"
representation graphs and have the same property values. Given that a template can be
upgraded, we correlate the same nodes and relationships via their symbolic node

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 31 of 282

names and requirement names.
Modified: These are nodes and relationships that appear in both the "old" and "new"
representation graphs and have different property values.
Obsolete: These are nodes and relationships that appear in the "old" representation
graph but not in the "new" representation graph.
Novel: These are nodes and relationships that do not appear in the "old" representation
graph but appear in the "new" representation graph.

We then perform deletions of the obsolete nodes by traversing the representation graph in
reverse dependency order as follows:

We start in parallel with all nodes that have no incoming dependency relationship
we perform operations associated with deleting on all adjacent relationships to this
node that are in the "obsolete" category.
we perform operations associated with deleting on the node itself if it is in the
"obsolete" category.
we move to nodes that have no incoming dependency relationship to nodes that have
not been processed yet.

After we have processed the deletion of the obsolete elements we traverse the "new"
representation graph in dependency order to perform the modifications and creations:

we start in parallel with the nodes that have no outgoing dependency relationship
we perform operations associated with creation resp. modification on the node itself if it
is in the "novel" resp. "modified" category
we perform operations associated with creation resp. modification on all adjacent
relationships in the "novel" resp. "modified" category if the node on the other side of the
relationship has been processed.
we move to nodes that have no outgoing dependency relationship to nodes that have
not been processed yet.

After this we can consider the service to be in the new desired runtime state, and the "old"
representation graph can be discarded and the "new" representation graph becomes the
current representation graph of the service.

Note that this graph traversal behavior should be associated with the relevant interface types
that are defined in a TOSCA profile, where it should be specified which relationship types
form the dependency relationships, which operation(s) are associated with the deletion,
modification, and creation of the nodes and relationships when the representation graph
changes.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 32 of 282

5 TOSCA Grammar Overview
The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

5.1 TOSCA Modeling Concepts
This section defines concepts used in support of the modeling functionality of the TOSCA
Version 2.0 specification. Specifically, it introduces grammar for defining TOSCA types and
templates as defined in Chapter 2, it introduces the concepts of entity definitions and entity
assignments, and presents rules for type derivation and entity refinement.

Explain separation of concerns and different roles. Refer to email from Peter.

5.1.1 Type Definitions and Entity Definitions

TOSCA templates are defined in TOSCA files and expressed using the TOSCA language. All
TOSCA templates are typed using TOSCA types that are also defined in TOSCA files and
expressed in the TOSCA language. Not only do types promote reuse, they also simplify the
design of TOSCA templates by allowing relevant TOSCA entities to use and/or modify
definitions already specified in the types.

Type definitions consist of pairs keynames and associated values that specify information
relevant to the type. While all TOSCA types share a number of common keynames, each type
definition has its own syntax, semantics, and set of keynames. TOSCA supports node types,
relationship types, capability types, interface types, artifact types, policy types, group types,
and data types.

Some keynames in TOSCA type definitions are used to specify entity definitions that
declare the presence of other entities in the context of the type. For example, most TOSCA
type definitions include property definitions and attribute definitions. Node types and
relationship types also include interface definitions, and node types have requirement
definitions and capability definitions. Interface types can include parameter definitions that
specify required inputs and expected outputs for interface operations.

Just like type definitions, entity definitions consist of pairs of keynames and values. Each
entity definition has it own syntax, semantics and set of keynames, but all entity definitions
share a type keyname that references the TOSCA type of the entity being defined. Other
keynames in entity definitions are used to further define or refine definitions already specified
in the corresponding entity type. TOSCA supports capability definitions, requirement
definitions, interface definitions, policy definitions, group definitions, property definitions,
attribute definitions, and parameter definitions.

5.1.2 Templates and Entity Assignments

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 33 of 282

The service templates introduced in Section 2 are defined in TOSCA files and expressed
using statements in the TOSCA language. Service representation graphs are directed graphs
of nodes and relationships resolved from service templates that consist of node templates
and requirements. Node templates specify a particular node type and then add additional
information using pairs of keynames and associated values. Service templates may include
other templates as well such as relationship templates, groups, policies etc.

Node types specified in node templates will typically include definition of entities, many node
templates will use keynames to specify additional information for those entity definitions. Such
information is referred to as an entity assignment. In general for each entity definition in the
type of a template, the template can include a corresponding entity assignment that provides
template-specific information about the entity. For example, node templates can include
property assignments that assign template-specific values for the properties defined using
property definitions in the node type. Property assignments can be provided as fixed values,
but more often they will be specified using a TOSCA function that retrieve input values or that
retrieve property or attribute values from other entities in a service representation graph. Entity
assignments make sure that the service template can be used to generate a complete
representation of the system under management.

5.1.3 Type Derivation, Augmentation, and Refinement

The TOSCA type system supports inheritance which means that types can be derived from a
parent type. A parent type can in turn be derived from its own parent type. There is no limit to
the depth of a chain of derivations. Inheritance is a useful feature in support of abstraction. For
example, base node types can be used to define abstract components without specifying
technology or vendor-specific details about those components. Concrete derived node types
can the be used to define technology-specific or vendor-specific specializations of the
abstract types.

The TOSCA specification includes type derivation rules that describe which keyname
definitions are inherited from the parent type and which definitions are intrinsic to the type
declaration and are not inherited. An example of an intrinsic definition is version, all type
definitions include a version keyword the value of which is never inherited from a parent type.

Except for keynames that are explicitly flagged as intrinsic to each type definition, derived
types inherit all the definitions of their parent type. Specifically, derived types inherit all entity
definitions from their parent. In addition, these entity definitions can be expanded or modified.

Expansion of entity definitions is done through entity augmentation. Derived types use
entity augmentation to add entity definitions to those already defined in the parent type.
Augmentation rules pertaining to an entity describe how derived types can add to the
entity definitions in the inherited parent type.
Modification of entity definitions is done through entity refinement. Derived types use
entity refinement to further constrain or otherwise specialize entities already defined in
the parent type. Refinement rules pertaining to an entity describe how such entity
definitions that are inherited from the parent type during a type derivation can be

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 34 of 282

expanded or modified.

The main reason for augmentation and refinement rules is to create a framework useful for a
consistent TOSCA type profile creation. The intuitive idea is that a derived type follows to a
large extent the structure and behavior of a parent type, otherwise it would be better to define
a new "not derived" type.

The guideline regarding the derivation rules is that a node of a derived type should be usable
instead of a node of the parent type during the selection and substitution mechanisms. These
two mechanisms are used by TOSCA templates to connect to TOSCA nodes and services
defined by other TOSCA templates:

The selection mechanism allows a node representation created a-priori from another
service template to be selected for usage (i.e., building relationships) by node
representations created from the current TOSCA template.
The substitution mechanism allows a node representation to be decomposed by a
service created simultaneously from a substituting template.

5.1.4 Template reuse

A single TOSCA template may be reused by including it in one or more other TOSCA
templates. Each template may be separately maintained and use it's own naming scheme.
The resolution of naming scheme conflicts is discussed later in this document.

5.2 Mandatory Keynames
The TOSCA metamodel includes complex definitions used in types (e.g., node types,
relationship types, capability types, data types, etc.), definitions and refinements (e.g.,
Requirement Definitions, Capability Definitions, Property and Parameter Definitions, etc.) and
templates (e.g., service template, node template, etc.) all of which include their own list of
reserved keynames that are sometimes marked as mandatory. If a keyname is marked as
mandatory it MUST be defined in that particular definition context. In some definitions, certain
keywords may be mandatory depending on the value of other keywords in the definition. In that
case, the keyword will be marked as conditional and the condition will be explained in the
description column. Note that in the context of type definitions, types may be used to derive
other types, and keyname definitions MAY be inherited from parent types (according to the
derivation rules of that type entity). A derived type does not have to provide a keyname
definition if this has already been defined in a parent type.

5.3 Common Keynames
Except where explicitly noted, all multi-line TOSCA grammar elements support the following
keynames:

Keyname Mandatory Type Description

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 35 of 282

metadata no map of
YAML
values

Defines a section used to declare additional
metadata information about the element being
defined.

description no string Declares a description for the TOSCA element
being defined.

Keyname Mandatory Type Description

Grammar for these keynames is described here and may not be repeated for each entity
definition.

5.3.1 metadata

This optional keyname is used to associate domain-specific metadata with a TOSCA
element. The metadata keyname allows a declaration of a map of keynames with values that
can use all types supported by the YAML 1.2.2 recommended schemas [Yaml-1.2] as follows:

metadata: <map_of_yaml_values>

Specifically, the following YAML types can be used for metadata values: map, seq, str, null,
bool, int, float.

The following shows an example that uses metadata to track revision status of a TOSCA file:

metadata:
 creation_date: 2024-04-14
 date_updated: 2024-05-01
 status: developmental

Data provided within metadata, wherever it appears, MAY be ignored by TOSCA
Orchestrators and SHOULD NOT affect runtime behavior.

5.3.2 description

This optional keyname provides a means to include single or multiline descriptions within a
TOSCA element as a YAML scalar string value as follows:

description: <description_string>

Standard YAML block scalar and flow scalar formats are supported for the description string.
Simple descriptions are treated as a single literal that includes the entire contents of the line
that immediately follows the description key:

description: This is an example of a single line description (no folding).

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 36 of 282

https://yaml.org/spec/1.2.2/#chapter-10-recommended-schemas

The following shows a multi-line flow scalar example:

description: "A multiline description
using a quoted string”

The YAML folded style may also be used for multi-line descriptions which folds line breaks as
space characters.

description: >
 This is an example of a multi-line description using YAML. It permits for
line
 breaks for easier readability...

 if needed. However, (multiple) line breaks are folded into a single space
 character when processed into a single string value.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 37 of 282

6 TOSCA File Definition
The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

A TOSCA file can contain definitions of reusable building blocks for use in cloud applications,
complete models of cloud applications, or both. This section describes the top-level TOSCA
keynames—along with their grammars—that are allowed to appear in a TOSCA file.

The major entities that can be defined in a TOSCA file are depicted in Figure 1.

Figure : Structural Elements of a TOSCA File

6.1 Keynames
The following is the list of recognized keynames for a TOSCA file:

Keyname Mandatory Type Description

tosca_definitions_version yes string Defines the version of the TOSCA
specification used in this TOSCA
file.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 38 of 282

description no string Declares a description for this
TOSCA file and its contents.

metadata no map of
YAML
values

Defines a section used to declare
additional metadata information.
Domain-specific TOSCA profile
specifications may define
keynames that are mandatory for
their implementations.

dsl_definitions no N/A Defines reusable YAML macros
(i.e., YAML alias anchors) for use
throughout this TOSCA file.

artifact_types no map of
artifact
Types

Declares a map of artifact type
definitions for use in this TOSCA
file and/or external TOSCA files.

data_types no map of
data types

Declares a map of TOSCA data
type definitions for use in this
TOSCA file and/or external
TOSCA files.

capability_types no map of
capability
types

Declares a map of capability type
definitions for use in this TOSCA
file and/or external TOSCA files.

interface_types no map of
interface
types

Declares a map of interface type
definitions for use in this TOSCA
file and/or external TOSCA files.

relationship_types no map of
relationship
types

Declares a map of relationship
type definitions for use in this
TOSCA file and/or external
TOSCA files.

node_types no map of
node types

Declares a map of node type
definitions for use in this TOSCA
file and/or external TOSCA files.

group_types no map of
group
types

Declares a map of group type
definitions for use in this TOSCA
file and/or external TOSCA files.

Keyname Mandatory Type Description

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 39 of 282

policy_types no map of
policy
types

Declares a map of policy type
definitions for use in this TOSCA
file and/or external TOSCA files.

repositories no map of
repository
definitions

Declares a map of external
repositories that contain artifacts
that are referenced in this TOSCA
file along with the addresses used
to connect to them in order to
retrieve the artifacts.

functions no map of
function
definitions

Declares a map of function
definitions for use in this TOSCA
file and/or external TOSCA files.

profile no string The profile name that can be used
by other TOSCA files to import the
type definitions in this document.

imports no list of
import
definitions

Declares a list of import
statements pointing to external
TOSCA files or well-known
profiles. For example, these may
be file locations or URIs relative to
the TOSCA file within the same
TOSCA CSAR file.

service_template no service
template
definition

Defines a template from which to
create a mode/representation of
an application or service. Service
templates consist of node
templates that represent the
application's or service's
components, as well as
relationship templates
representing relations between
these components.

Keyname Mandatory Type Description

The following rules apply:

The key tosca_definitions_version MUST be the first line of each TOSCA file.
TOSCA files do not have to define a service_template and MAY contain simply type
definitions, repository definitions, function definitions, or other import statements and be
imported for use in other TOSCA files. However, a TOSCA file that defines a profile

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 40 of 282

MUST NOT define a service_template.

The remainder of this chapter provides detailed descriptions of the keynames and associated
grammars used in a TOSCA file definition.

6.2 TOSCA Definitions Version
The mandatory tosca_definitions_version keyname provides a means to specify the
TOSCA version used within the TOSCA file as follows:

tosca_definitions_version: <tosca_version>

It is an indicator for the version of the TOSCA grammar that MUST be used to parse the
remainder of the TOSCA file. TOSCA uses the following version strings for the various
revisions of the TOSCA specification:

Version String TOSCA Specification

tosca_2_0 TOSCA Version 2.0

tosca_simple_yaml_1_3 TOSCA Simple Profile in YAML Version 1.3

tosca_simple_yaml_1_2 TOSCA Simple Profile in YAML Version 1.2

tosca_simple_yaml_1_1 TOSCA Simple Profile in YAML Version 1.1

tosca_simple_yaml_1_0 TOSCA Simple Profile in YAML Version 1.0

The version for this specification is tosca_2_0. The following shows an example
tosca_definitions_version in a TOSCA file created using the TOSCA Version 2.0
specification:

tosca_definitions_version: tosca_2_0

Note that it is not mandatory for TOSCA Version 2.0 implementations to support older
versions of the TOSCA specifications.

6.3 DSL Definitions
The optional dsl_definitions keyname provides a section where template designers can
define YAML-style macros for use elsewhere in the TOSCA file. DSL definitions use the
following grammar:

dsl_definitions:
 <dsl_definition_1>
 ...

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 41 of 282

 <dsl_definition_n>

The grammar for each <dsl_definition> is as follows:

<anchor_block>: &<anchor>
 <anchor_definitions>

where <anchor_block> defines a set of reusable YAML definitions (the
<anchor_definitions>) for which <anchor> can be used as an alias elsewhere in the
document.

The following example shows DSL definitions for common image property assignments:

dsl_definitions:
 ubuntu_image_props: &ubuntu_image_props
 architecture: x86_64
 type: linux
 distribution: ubuntu
 os_version: 14.04
 redhat_image_props: &redhat_image_props
 architecture: x86_64
 type: linux
 distribution: rhel
 os_version: 6.6

6.4 Type definitions
TOSCA provides a type system to describe reusable building blocks to construct a service
template (i.e. for the nodes, relationship, group and policy templates, and the data,
capabilities, interfaces, and artifacts used in the node and relationship templates). TOSCA
types are reusable TOSCA entities and are defined in their specific sections in the TOSCA
file.

In this section, we present the definitions of common keynames that are used by all TOSCA
type definitions. Type-specific definitions for the different TOSCA type entities are presented
further in the document:

Cross references need to be updated later

Node Type in Section 4.3.1 Node Type.
Relationship Type in Section 4.3.3 Relationship Type.
Interface Type in Section 4.3.6.1 Interface Type.
Capability Type in Section 4.3.5.1 Capability Type.
Data Type in Section 4.4.4 Data Type.
Artifact Type in Section 4.3.7.1 Artifact Type.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 42 of 282

Group Type in Section 4.6.1 Group Type.
Policy Type in Section 4.6.3 Policy Type.

6.4.1 Common Keynames in Type Definitions

The following keynames are used by all TOSCA type entities in the same way. This section
serves to define them at once. |Keyname|Mandatory|Type|Description| | :---- | :------ | :---- | :------
| |derived_from|no|string|An optional parent type name from which this type derives.|
|version|no|version|An optional version for the type definition.| |metadata|no|map|Defines a
section used to declare additional metadata information.| |description|no|string|An optional
description for the type.|

The common keynames in type definitions have the following grammar:

<type_name>:
 derived_from: <parent_type_name>
 version: <version_number>
 metadata:
 <metadata_map>
 description: <type_description>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

parent_type_name: represents the optional parent type name.

version_number: represents the optional TOSCA version number for the type.

entity_description: represents the optional description string for the type.

metadata_map: represents the optional metadata map of string.

6.4.2 Type Derivation

To simplify type creation and to promote type extensibility TOSCA allows the definition of a
new type (the derived type) based on another type (the parent type). The derivation process
can be applied recursively, where a type may be derived from a long list of ancestor types (the
parent, the parent of the parent, etc). Unless specifically stated in the derivation rules, when
deriving new types from parent types the keyname definitions are inherited from the parent
type. Moreover, the inherited definitions may be refined according to the derivation rules of
that particular type entity. For definitions that are not inherited, a new definition MUST be
provided (if the keyname is mandatory) or MAY be provided (if the keyname is not
mandatory). If not provided, the keyname remains undefined. For definitions that are inherited,
a refinement of the inherited definition is not mandatory even for mandatory keynames (since
it has been inherited). A definition refinement that is exactly the same as the definition in the
parent type does not change in any way the inherited definition. While unnecessary, it is not
wrong.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 43 of 282

The following are some generic derivation rules used during type derivation (the specific rules
of each TOSCA type entity are presented in their respective sections):

If not refined, usually a keyname/entity definition, is inherited unchanged from the parent
type, unless explicitly specified in the rules that it is “not inherited”.

New entities (such as properties, attributes, capabilities, requirements, interfaces,
operations, notification, parameters) may be added during derivation.

Already defined entities that have a type may be redefined to have a type derived from
the original type.

New validation clause is added to already defined keynames/entities (i.e. the defined
validation clause does not replace the validation clauses of the parent type but are
added to them).

Some definitions must be totally flexible, so they will overwrite the definition in the parent
type.

Some definitions must not be changed at all once defined (i.e. they represent some sort
of “signature” fundamental to the type).

During type derivation the common keynames in type definitions use the following rules:

derived_from: obviously, the definition is not inherited from the parent type. If not
defined, it remains undefined and this type does not derive from another type. If defined,
then this type derives from another type, and all its keyname definitions must respect the
derivation rules of the type entity.
version: the definition is not inherited from the parent type. If undefined, it remains
undefined.
metadata: the definition is not inherited from the parent type. If undefined, it remains
undefined.
description: the definition is not inherited from the parent type. If undefined, it remains
undefined.

6.4.3 Types of Types

TOSCA supports eight different types of types. These types can be defined in a TOSCA file
using the grammars described in this section.

6.4.3.1 Artifact Types

Artifact types can be defined in a TOSCA file using the optional artifact_types keyword
using the following grammar:

artifact_types:
 <artifact_type_defn_1>

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 44 of 282

 ...
 <artifact type_defn_n>

The following code snippet shows an example artifact type definition:

artifact_types:
 mycompany.artifacttypes.myFileType:
 derived_from: tosca.artifacts.File

A detailed description of the artifact type definition grammar is provided in Section XXX.

6.4.3.2 Data Types

Data types can be defined in a TOSCA file using the optional data_types keyword using the
following grammar:

data_types:
 <tosca_datatype_def_1>
 ...
 <tosca_datatype_def_n>

The following code snippet shows an example of data type definition:

data_types:
 # A complex datatype definition
 simple_contact_info:
 properties:
 name:
 type: string
 email:
 type: string
 phone:
 type: string
 # datatype definition derived from an existing type
 full_contact_info:
 derived_from: simple_contact_info
 properties:
 street_address:
 type: string
 city:
 type: string
 state:
 type: string
 postal_code:
 type: string

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 45 of 282

A detailed description of the data type definition grammar is provided in Section XXX.

6.4.3.3 Capability Types

Capability types can be defined in a TOSCA file using the optional capability_types
keyword using the following grammar:

capability_types:
 <capability_type_defn_1>
 ...
 <capability type_defn_n>

The following code snippet shows example capability type definitions:

capability_types:
 mycompany.mytypes.myGenericFeature:
 properties:
 # more details ...
 mycompany.mytypes.myfeatures.myFirstCustomFeature:
 derived_from: mycompany.mytypes.myfeatures.myGenericFeature
 properties:
 # more details ...
 mycompany.mytypes.myfeatures.transactSQL:
 derived_from: mycompany.mytypes.myfeatures.myGenericFeature
 properties:
 # more details ...

A detailed description of the capability type definition grammar is provided in Section XXX.

6.4.3.4 Interface Types

Interface types can be defined in a TOSCA file using the optional interface_types keyword
using the following grammar:

interface_types:
 <interface_type_defn_1>
 ...
 <interface type_defn_n>

The following code snippet shows an example interface type definition:

interface_types:
 mycompany.interfaces.service.Signal:
 operations:
 signal_begin_receive:
 description: Operation to signal start of some message processing.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 46 of 282

 signal_end_receive:
 description: Operation to signal end of some message processed.

A detailed description of the interface type definition grammar is provided in Section XXX.

6.4.3.5 Relationship Types

Relationship types can be defined in a TOSCA file using the optional relationship_types
keyword using the following grammar:

relationship_types:
 <relationship_type_defn_1>
 ...
 <relationship type_defn_n>

The following code snippet shows example relationship type definitions:

relationship_types:
 mycompany.mytypes.HostedOn:
 properties:
 # more details ...
 mycompany.mytypes.myCustomClientServerType:
 derived_from: mycompany.mytypes.HostedOn
 properties:
 # more details ...
 mycompany.mytypes.myCustomConnectionType:
 properties:
 # more details ...

A detailed description of the relationship type definition grammar is provided in Section XXX.

6.4.3.6 Node Types

Node types can be defined in a TOSCA file using the optional node_types keyword using the
following grammar:

node_types:
 <node_type_defn_1>
 ...
 <node_type_defn_n>

The following code snippet shows example node type definitions:

node_types:
 Database:
 description: "An abstract node type for all databases"

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 47 of 282

 WebApplication:
 description: "An abstract node type"
 my_webapp_node_type:
 derived_from: WebApplication
 properties:
 my_port:
 type: integer
 my_database_node_type:
 derived_from: Database
 capabilities:
 mycompany.mytypes.myfeatures.transactSQL

A detailed description of the node type definition grammar is provided in Section XXX.

6.4.3.7 Group Types

Group types can be defined in a TOSCA file using the optional group_types keyword using
the following grammar:

group_types:
 <group_type_defn_1>
 ...
 <group type_defn_n>

The following code snippet shows an example group type definition:

group_types:
 mycompany.mytypes.myScalingGroup:
 derived_from: mycompany.mytypes.mygroups

A detailed description of the group type definition grammar is provided in Section XXX.

6.4.3.8 Policy Types

Policy types can be defined in a TOSCA file using the optional policy_types keyword using
the following grammar:

policy_types:
 <policy_type_defn_1>
 ...
 <policy type_defn_n>

The following code snippet shows an example policy type definition:

policy_types:
 mycompany.mytypes.myScalingPolicy:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 48 of 282

 derived_from: Scaling

A detailed description of the policy type definition grammar is provided in Section XXX.

6.5 Repository Definitions

A repository definition defines an external repository that contains TOSCA files and/or
artifacts that are referenced or imported by this TOSCA file. Repositories are defined using
the optional repositories keyname as follows:

repositories:
 <repository_definition_1>
 ...
 <repository_definition_n>

The following is the list of recognized keynames for a TOSCA repository definition:

Keyname Mandatory Type Description

description no string Declares a description for the repository being
defined.

metadata no map of
YAML
values

Defines a section used to declare additional
metadata information about the repository being
defined.

url yes string The URL or network address used to access the
repository.

These keynames can be used to define a repository using a grammar as follows:

<repository_name>:
 description: <repository_description>
 metadata:
 <metadata_definitions>
 url: <repository_address>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

repository_name: represents the mandatory symbolic name of the repository as a string
repository_description: contains an optional description of the repository.
metadata_definitions: contains an optional map of metadata using YAML types
repository_address: represents the mandatory URL to access the repository as a string.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 49 of 282

If only the url needs to be specified, repository definitions can also use a single-line grammar
as follows:

<repository_name>: <repository_address>

The following example show repository definitions using both multi-line as well as single-line
grammars.

repositories:
 my_code_repo:
 description: My project’s code repository in GitHub
 url: https://github.com/my-project/
 external_repo: https://foo.bar

6.6 Function Definitions

A function definition defines an custom function that can be used within this TOSCA file.
Function definitions may include one or more function signatures as well as function
implementations. Functions are defined using the optional functions keyname as follows:

functions:
 <function_definition_1>
 ...
 <function_definition_n>

The following example shows the definition of a square root function:

functions:
 sqrt:
 signatures:
 - arguments:
 - type: integer
 validation: { $greater_or_equal: [$value, 0] }
 result:
 type: float
 implementation: scripts/sqrt.py
 - arguments:
 - type: float
 validation: { $greater_or_equal: [$value, 0.0] }
 result:
 type: float
 implementation: scripts/sqrt.py
 description: >
 This is a square root function that defines two signatures:
 the argument is either integer or float and the function

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 50 of 282

 returns the square root as a float.

6.7 Profiles
A TOSCA profile is a named collection of TOSCA type definitions, repository definitions,
artifacts, and function definitions that logically belong together. One can think of TOSCA
profiles as platform libraries exposed by the TOSCA processor and made available to all
services that use that processor. Profiles in TOSCA are similar to libraries in traditional
computer programming languages. They are intended to define collections of domain-specific
components that can be used by service designers to compose complex service templates.
Entities defined in TOSCA profiles are used as follows:

Types defined in a TOSCA profile provide reusable building blocks on which services
can be composed.
Artifacts defined in a TOSCA profile can provide implementations for the TOSCA types
defined in the profile.

TOSCA implementations can organize supported profiles in a catalog to allow other service
templates to import those profiles by profile name. This avoids the need for every service that
uses those profiles to include the profile type definitions in their service definition packages.

TOSCA files that define profiles can be bundled together with other TOSCA files in the same
CSAR package. For example, a TOSCA profile that defines abstract node types can be
packaged together with TOSCA files that define substituting service templates for those
abstract types.

6.7.1 Grammar

A TOSCA file defines a TOSCA Profile using the profile keyword as follows:

profile: <profile_name>

Using this grammar, the profile keyword assigns a profile name to the collection of types,
repositories, and functions defined in this TOSCA file. The specified profile_name can be an
arbitrary string value that defines the name by which other TOSCA files can import this profile.
TOSCA does not place any restrictions on the value of the profile name string. However, we
encourage a Java-style reverse-domain notation with version as a best-practice convention.
For example, the following profile statement is used to define Version 2.0 of a set of
definitions suitable for describing cloud computing in an example company:

profile: com.example.tosca_profiles.cloud_computing:2.0

The following defines a domain-specific profile for Kubernetes:

profile: io.kubernetes:1.30

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 51 of 282

TOSCA parsers MUST process profile definitions according to the following rules:

TOSCA files that define a profile (i.e., that contain a profile keyname) MUST NOT also
define a service template.
If the parser encounters the profile keyname in a TOSCA file, then the corresponding
profile name will be applied to all types defined in that file as well as to types defined in
any imported TOSCA files.
If one of those imported files itself contains also defines the profile keyname—and that
profile name is different from the name of the importing profile, then that profile name
overrides the profile name value from that point in the import tree onward, recursively.

6.7.2 TOSCA Simple Profile

Version 1.x of the TOSCA specification included a collection of normative type definitions for
building cloud applications. This collection of type definitions was defined as the TOSCA
Simple Profile. Implementations of TOSCA Version 1.x were expected to include
implementations for the types defined in the TOSCA Simple Profile, and service templates
defined using TOSCA Version 1.x implicitly imported the corresponding TOSCA Simple
Profile version.

Starting with TOSCA Version 2.0, the TOSCA Simple Profile type definitions are no longer
part of the TOSCA standard and support for the TOSCA Simple Profile is no longer
mandatory. Instead, the definition of the TOSCA Simple Profile has been moved to an OASIS
Open Github repository with the goal of being maintained by the TOSCA community and
governed as an open-source project. In addition, TOSCA Version 2.0 removes the implicit
import of the TOSCA Simple Profile. Service templates that want to continue to use the
TOSCA Simple Profile type definitions must explicitly import that profile.

Eliminating mandatory support for the TOSCA Simple Profile makes it easier for TOSCA to
be used for additional application domains. For example, the European Telecommunications
Standards Institute (ETSI) has introduced a TOSCA profile for Network Functions
Virtualization defines Virtualized Network Function Descriptors (VNFDs), Network Service
Descriptors (NSDs) and a Physical Network Function Descriptors (PNFDs).

We should give a couple of additional examples.

6.7.3 Profile Versions

TOSCA Profiles are likely to evolve over time and profile designers will release different
versions of their profiles. For example, the TOSCA Simple Profile has gone through minor
revisions with each release of the TOSCA Version 1 standard. It is expected that profile
designers will use a version qualifier to distinguish between different versions of their profiles,
and service template designers must use the proper string name to make sure they import the
desired versions of these profiles.

Do we impose a structure on profile names that distinguishes the version
qualifier from the base profile name? If so, is there a specific separator

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 52 of 282

character or string (in which case the use of the separator must be escaped
somehow (or disallowed) in profile names.

When multiple versions of the same profile exist, it is possibly that service templates could mix
and match different versions of a profile in the same service definition. The following code
snippets illustrate this scenario:

Assume a profile designer creates version 1 of a base profile that defines (among other
things) a Host capability type and a corresponding HostedOn relationship type as follows:

tosca_definitions_version: tosca_2_0
profile: org.base:v1
capability_types:
 Host:
 description: Hosting capability
relationship_types:
 HostedOn:
 valid_capability_types: [Host]

Now let’s assume a different profile designer creates a platform-specific profile that defines
(among other things) a Platform node type. The Platform node type defines a capability of
type Host. Since the Host capability is defined in the org.base:v1 profile, that profile must
be imported as shown in the snippet below:

tosca_definitions_version: tosca_2_0
profile: org.platform
imports:
 - profile: org.base:v1
 namespace: p1
node_types:
 Platform:
 capabilities:
 host:
 type: p1:Host

At some later point of time, the original profile designer updates the org.base profile to
Version 2. The updated version of this profile just adds a Credential data type (in addition to
defining the Host capability type and the HostedOn relationship type), as follows:

tosca_definitions_version: tosca_2_0
profile: org.base:v2
capability_types:
 Host:
 description: Hosting capability
relationship_types:
 HostedOn:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 53 of 282

 valid_capability_types: [Host]
data_types:
 Credential:
 properties:
 key:
 type: string

Finally, let’s assume a service designer creates a template for a service that is to be hosted
on the platform defined in the org.platform profile. The template introduces a Service node
type that has a requirement for the platform’s Host capability. It also has a credential property
of type Credential as defined in org.base:v2:

tosca_definitions_version: tosca_2_0
imports:
 - profile: org.base:v2
 namespace: p2
 - profile: org.platform
 namespace: pl
node_types:
 Service:
 properties:
 credential:
 type: p2:Credential
 requirements:
 - host:
 capability: p2:Host
 relationship: p2:HostedOn
service_template:
 node_templates:
 service:
 type: Service
 properties:
 credential:
 key: password
 requirements:
 - host: platform
 platform:
 type: pl:Platform

This service template is invalid, since the platform node template does not define a
capability of a type that is compatible with the valid_capability_types specified by the host
requirement in the service node template. TOSCA grammar extensions are needed to
specify that the Host capability type defined in org.base:v2 is the same as the Host
capability type defined in org.base:v1

The example in this section illustrates a general version compatibility issue that exists when

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 54 of 282

different versions of the same profile are used in a TOSCA service.

A number of suggestions for these extensions are currently being discussed.
Grammar extensions will be included in this document one they are agreed
upon.

6.8 Imports and Namespaces

Modern software projects typically use modular designs that divide large systems into smaller
subsystems (modules) that together achieve complete system functionality. TOSCA includes
a number of features in support of functionality, including the ability for a TOSCA file to import
TOSCA definitions from another TOSCA file. For example, a first TOSCA file could contain
reusable TOSCA type definitions (e.g., node types, relationship types, artifact types, etc.),
function definitions, or repository definitions created by a domain expert. A system integrator
could create a second TOSCA file that defines a service template comprised of node
templates and relationship templates that use those types. TOSCA supports this scenario by
allowing the second TOSCA file to import the first TOSCA file, thereby making the definitions
in the first file available to the second file. This mechanism provides an effective way for
companies and organizations to define domain-specific types and/or describe their software
applications for reuse in other TOSCA files.

6.8.1 Import Definitions

Import definitions are used within a TOSCA file to uniquely identify and locate other TOSCA
files that have type, repository, and function definitions to be imported (included) into this
TOSCA file. Import definitions are defined in a TOSCA file using the optional imports
keyname as follows:

imports:
 - <import_definition_1>
 - ...
 - <import_definition_n>

The value of the imports keyname consists of a list of import definitions that identify the
TOSCA files to be imported. The following is the list of recognized keynames for a TOSCA
import definition:

Keyname Mandatory Type Description

url conditional string The url that references a TOSCA file to be imported.
An import statement must include either a url or a
profile, but not both.

profile conditional string The profile name that references a named type profile
to be imported. An import statement must include
either a url or a profile, but not both.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 55 of 282

repository conditional string The optional symbolic name of the repository
definition where the imported file can be found as a
string. The repository name can only be used when a
url is specified.

namespace no string The optional name of the namespace into which to
import the type definitions from the imported template
or profile.

description no string Declares a description for the import definition.

metadata no map
of
YAML
values

Defines a section used to declare additional
metadata information about the import definition.

Keyname Mandatory Type Description

These keynames can be used to import individual TOSCA files using the following grammar:

imports:
 - url: <file_uri>
 repository: <repository_name>
 namespace: <namespace_name>

The following grammar can be used for importing TOSCA profiles:

imports:
 - profile: <profile_name>
 namespace: <namespace_name>

In the above grammars, the pseudo values that appear in angle brackets have the following
meaning:

file_uri: contains the URL that references the service template file to be imported as a
string.
repository_name: represents the optional symbolic name of the repository definition
where the imported file can be found as a string
profile_name: the name of the well-known profile to be imported.
namespace_name: represents the optional name of the namespace into which type
definitions will be imported. The namespace name can be used to form a namespace-
qualified name that uniquely references type definitions from the imported file or profile.
If no namespace name is specified, type definitions will be imported into the root
namespace.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 56 of 282

If only the <file_uri> needs to be specified, import definitions can also use a single-line
grammar as follows:

imports:
 - <file_uri_1>
 - <file_uri_2>

6.8.2 Import Processing Rules

TOSCA processors and tooling MUST handle import statements as follows:

6.8.2.1 Importing Profiles

If the profile keyname is used in the import definition, then the TOSCA processor SHOULD
attempt to import the profile by name:

If <profile_name> represents the name of a profile that is known to the TOSCA
processor, then it SHOULD cause that profile's type definitions to be imported.
If <profile_name> is not known, the import SHOULD be considered a failure.

6.8.2.2 Importing TOSCA File

If the url keyname is used, the TOSCA processor SHOULD attempt to import the file
referenced by <file_uri> as follows:

If the <file_uri> includes a URL scheme (e.g. file: or https:) then<file_uri> is considered
to be a network accessible resource. If the resource identified by <file_URL> represents
a valid TOSCA file, then it SHOULD cause that TOSCA file to be imported.

Note that if in addition to a URL with a URL scheme, the import definition also
specifies a <repository_name> (using the repository key), then that import
definition SHOULD be considered invalid.

If the <file_uri> does not include a URL scheme, it is considered a relative path URL.
The TOSCA processor SHOULD handle such a <file_uri> as follows:

If the import definition also specifies a <repository_name> (using the repository
keyname), then <file_uri> refers to the path name of a file relative to the root of the
named repository

If the import definition does not specify a <profile_name> then <file_uri> refers to
a TOSCA file located in the repository that contains the TOSCA file that includes
the import definition. If the importing TOSCA file is located in a CSAR file, then
that CSAR file should be treated as the repository in which to locate the TOSCA
file that must be imported.

If <file_uri> starts with a leading slash (‘/’) then <file_uri> specifies a path
name starting at the root of the repository.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 57 of 282

If <file_uri> does not start with a leading slash, then <file_uri> specifies a
path that is relative to the importing document’s location within the
repository. Double dot notation (‘../’) can be used to refer to parent
directories in a file path name.

If <file_uri> does not reference a valid TOSCA file file, then the import SHOULD be
considered a failure.

6.8.3 Examples

The first example shows how to use an import definition import a well-known profile by name:

Importing a profile
imports:
- profile: org.oasis-open.tosca.simple:2.0

The next example shows an import definition used to import a network-accessible resource
using the https protocol:

Absolute URL with scheme
imports:
- url: https://myorg.org/tosca/types/mytypes.yaml

The following shows an import definition used to import a TOSCA file located in the same
repository as the importing file. The file to be imported is referenced using a path name that is
relative to the location of the importing file. This example shows the short notation:

Short notation supported
imports:
- ../types/mytypes.yaml

The following shows the same example but using the long notation:

Long notation
imports:
- url: ../types/mytypes.yaml

The following example mixes short-notation and long-notation import definitions:

Short notation and long notation supported
imports:
 - relative_path/my_defns/my_typesdefs_1.yaml
 - url: my_defns/my_typesdefs_n.yaml
 repository: my_company_repo
 namespace: mycompany

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 58 of 282

The following example shows how to import TOSCA files using absolute path names (i.e. path
names that start at the root of the repository):

Root file
imports:
- url: /base.yaml

And finally, the following shows how to import TOSCA files from a repository that is different
than the repository that contains the importing TOSCA file:

External repository
imports:
- url: types/mytypes.yaml
 repository: my_repository

6.8.4 Namespaces

When importing TOSCA files or TOSCA profiles, there exists a possibility for name collision.
For example, an imported file may define a node type with the same name as a node type
defined in the importing file.

For example, let say we have two TOSCA files, A and B, both of which contain a node type
definition for MyNode:

TOSCA File B

tosca_definitions_version: tosca_2_0
description: TOSCA File B

node_types:
 MyNode:
 derived_from: SoftwareComponent
 properties:
 # omitted here for brevity
 capabilities:
 # omitted here for brevity

TOSCA File A

tosca_definitions_version: tosca_2_0
description: TOSCA File A
imports:
 - url: /templates/TOSCAFileB.yaml
node_types:
 MyNode:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 59 of 282

 derived_from: Root
 properties:
 # omitted here for brevity
 capabilities:
 # omitted here for brevity
service_template:
 node_templates:
 my_node:
 type: MyNode

As you can see, TOSCA file A imports TOSCA file B which results in duplicate definitions of
the MyNode node type. In this example, it is not clear which type is intended to be used for the
my_node node template.

To address this issue, TOSCA uses the concept of namespaces:

Each TOSCA file defines a root namespace for all type definitions defined in that file.
Root namespaces are unnamed.

When a TOSCA file imports other TOSCA files, it has two options:

It can import any type definitions from the imported TOSCA files into its root
namespace.

Or it can import type definitions from the imported TOSCA files into a separate
named namespace. This is done using the namespace keyname in the associated
import definition. When using types imported into a named namespace, those
type names must be qualified by using the namespace name as a prefix.

The following snippets update the previous example using namespaces to disambiguate
between the two MyNode type definitions. This first snippet shows the scenario where the
MyNode definition from TOSCA file B is intended to be used:

tosca_definitions_version: tosca_2_0
description: TOSCA file A
imports:
 - url: /templates/TOSCAFileB.yaml
 namespace: fileB
node_types:
 MyNode:
 derived_from: Root
 properties:
 # omitted here for brevity
 capabilities:
 # omitted here for brevity
service_template:
 node_templates:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 60 of 282

 my_node:
 type: fileB:MyNode

The second snippet shows the scenario where the MyNode definition from TOSCA file A is
intended to be used:

tosca_definitions_version: tosca_2_0
description: TOSCA file A
imports:
 - url: /templates/TOSCAFileB.yaml
 namespace: fileB
node_types:
 MyNode:
 derived_from: Root
 properties:
 # omitted here for brevity
 capabilities:
 # omitted here for brevity
service_template:
 node_templates:
 my_node:
 type: MyNode

In many scenarios, imported TOSCA files may in turn import their own TOSCA files, and
introduce their own namespaces to avoid name collisions. In those scenarios, nested
namespace names are used to uniquely identify type definitions in the import tree.

The following example shows a mytypes.yaml TOSCA file that imports a Kubernetes profile
into the k8s namespace. It defines a SuperPod node type that derives from the Pod node type
defined in that Kubernetes profile:

tosca_definitions_version: tosca_2_0
description: mytypes.yaml
imports:
- profile: io.kubernetes:1.30
 namespace: k8s
node_types:
 MyNode: {}
 SuperPod:
 derived_from: k8s:Pod

The mytypes.yaml file is then imported into the main.yaml TOSCA file, which defines both a
node template of type SuperPod as well as a node template of type Pod. Nested namespace
names are used to identify the Pod node type from the Kubernetes profile:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 61 of 282

tosca_definitions_version: tosca_2_0
description: main.yaml
imports:
- url: mytypes.yaml
 namespace: my
service_template:
 node_templates:
 mynode:
 type: my:MyType
 pod:
 type: my:k8s:Pod

Within each namespace (including the unnamed root namespace), names must be unique.
This means that duplicate local names (i.e., within the same TOSCA file SHALL be
considered an error. These include, but are not limited to duplicate names found for the
following definitions:

Repositories (repositories)
Data Types (data_types)
Node Types (node_types)
Relationship Types (relationship_types)
Capability Types (capability_types)
Artifact Types (artifact_types)
Interface Types (interface_types)
Policy Types (policy_types)
Group Types (group_types)
Function definitions (functions)

6.9 Service Template Definition
This section defines the service template of a TOSCA file. The main ingredients of the service
template are node templates representing components of the application and relationship
templates representing links between the components. These elements are defined in the
nested node_templates section and the nested relationship_templates sections,
respectively. Furthermore, a service template allows for defining input parameters, output
parameters, workflows as well as grouping of node templates and associated policies.

6.9.1 Service Template Grammar

The following is the list of recognized keynames for a TOSCA service template:

Keyname Mandatory Type Description

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 62 of 282

description no string The optional description for
the service template.

metadata no map of YAML values Defines a section used to
declare additional
metadata information
about this service template.

inputs no map of parameter
definitions

An optional map of input
parameters (i.e., as
parameter definitions) for
the service template.

node_templates yes map of node
templates

A mandatory map of node
template definitions for the
service template.

relationship_templates no map of relationship
templates

An optional map of
relationship templates for
the service template.

groups no map of group
definitions

An optional map of Group
definitions whose
members are node
templates defined within
this same service template.

workflows no map of workflow
definitions

An optional map of
workflow definitions for the
service template.

policies no list of policy
definitions

An optional list of policy
definitions for the service
template.

outputs no map of parameter
definitions

An optional map of output
parameters (i.e., as
parameter definitions) for
the service template.

Keyname Mandatory Type Description

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 63 of 282

substitution_mappings no substitution_mapping An optional declaration that
exports the service
template as an
implementation of a Node
type. This also includes the
mappings between the
external node type's
capabilities and
requirements to existing
implementations of those
capabilities and
requirements on node
templates declared within
the service template.

Keyname Mandatory Type Description

The overall grammar of the service_template section is shown below. Detailed grammar
definitions are provided in subsequent subsections.

service_template:
 description: <template_description>
 metadata: <metadata definition>
 inputs: <input_parameters>
 outputs: <output_parameters>
 node_templates: <node_templates>
 relationship_templates: <relationship_templates>
 workflows : <workflow_definitions>
 groups: <group_definitions>
 policies:
 - <policy_definition_list>
 substitution_mappings:
 <substitution_mappings>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

input_parameters: represents the optional map of input parameter definitions for the
service template.

output_parameters: represents the optional map of output parameter definitions for the
service template.

group_definitions: represents the optional map of group definitions whose members are
node templates that also are defined within this service template.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 64 of 282

policy_definition_list: represents the optional ordered list of policy definitions for the
service template.

workflow_definitions: represents the optional map of imperative workflow definitions for
the service template.

node_templates: represents the mandatory map of node template definitions for the
service template.

relationship_templates: represents the optional map of relationship templates for the
service template.

substitution_mappings: defines how services created from this template can substitute
other nodes.

Note that duplicate template names within a service template SHALL be considered an error.
These include, but are not limited to duplicate names found for the following template types:

Node Templates (node_templates)
Relationship Templates (relationship_templates)
Inputs (inputs)
Outputs (outputs)
Workflows (workflows)
Policies (policies)
Groups (groups)

More detailed explanations for each of the service template grammar’s keynames appears in
the sections below.

6.9.2 Input Parameters

The inputs section of a service template provides a means to define parameters using
TOSCA parameter definitions, their allowed values via validation clauses and default values.
Input parameters defined in the inputs section of a service template can be mapped to
properties of node templates or relationship templates within the same service template and
can thus be used for parameterizing the instantiation of the service template.

When deploying a service from the service template, values must be provided for all
mandatory input parameters that have no default value defined. If no input is provided, then the
default value is used.

The grammar of the inputs section is as follows:

inputs:
 <parameter_definitions>

The following code snippet shows a simple inputs example without any validation clause:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 65 of 282

inputs:
 fooName:
 type: string
 description: Simple string parameter without a validation clause.
 default: bar

The following is an example of input parameter definitions with a validation clause:

inputs:
 SiteName:
 type: string
 description: String parameter with validation clause.
 default: My Site
 validation: { $greater_or_equal: [$value, 9] }

6.9.3 Node Templates

The node_templates section of a service template lists the node templates that describe the
components that are used to compose applications.

The grammar of the node_templates section is a follows:

node_templates:
 <node_template_defn_1>
 ...
 <node_template_defn_n>

The following code snippet shows an example of a node_templates section:

node_templates:
 my_webapp_node_template:
 type: WebApplication

 my_database_node_template:
 type: Database

6.9.4 Relationship Templates

The relationship_templates section of a service template lists the relationship templates
that describe the relations between components that are used to compose cloud applications.
Note that the explicit definition of relationship templates is optional, since relationships
between nodes get implicitly defined by referencing other node templates in the requirements
sections of node templates.

The grammar of the relationship_templates section is as follows:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 66 of 282

relationship_templates:
 <relationship_template_defn_1>
 ...
 <relationship_template_defn_n>

The following code snippet shows an example of a relationship_templates section:

relationship_templates:
 my_connects_to_relationship:
 type: ConnectsTo
 interfaces:
 Configure:
 inputs:
 speed: { $$get_attribute: [SELF, SOURCE, connect_speed] }

6.9.5 Output Parameters

The outputs section of a service template provides a means to define the output parameters
that are available from a deployed TOSCA service. It allows for exposing attributes defined in
node templates or relationship templates within the containing service_template to users of a
service.

The grammar of the outputs section is as follows:

outputs:
 <parameter_definitions>

The following code snippet shows an example of the outputs section:

outputs:
 server_address:
 description: The first private IP address for the provisioned server.
 value: { $get_attribute: [node5, networks, private, addresses, 0] }

6.9.6 Workflow Definitions

The workflows section of a service template allows for declaring imperative workflows that
can operate on entities in the service template.

The grammar of the workflows section is as follows:

workflows:
 <workflow_defn_1>
 ...
 <workflow_defn_n>

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 67 of 282

The following example shows the definition of a workflow

workflows:
 scaling_workflow:
 steps:
 TO BE PROVIDED

6.9.7 Group Definitions

The groups section of a service template allows for grouping node representations created
from one or more node templates within a TOSCA service template. This grouping can then
be used to apply policies to the group.

The grammar of the groups section is as follows:

groups:
 <group_defn_1>
 ...
 <group_defn_n>

The following example shows the definition of three Compute nodes in the node_templates
section of a service_template as well as the grouping of two of the Compute nodes in a group
server_group_1.

node_templates:
 server1:
 type: Compute
 # more details ...
 server2:
 type: Compute
 # more details ...
 server3:
 type: Compute
 # more details ...
groups:
 # server2 and server3 are part of the same group
 server_group_1:
 type: mycompany.mytypes.myScalingGroup
 members: [server2, server3]

6.9.8 Policy Definitions

The policies section of a service template allows for declaring policies that can be applied to
entities in the service template.

The grammar of the policies section is as follows:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 68 of 282

policies:
 - <policy_defn_1>
 - ...
 - <policy_defn_n>

The following example shows the definition of a placement policy.

policies:
 - my_placement_policy:
 type: mycompany.placement

6.9.10 Substitution Mapping

The substitution_mappingssection of a service template declares this service template as a
candidate for substituting nodes marked with the substitute directive in other service
templates.

The grammar of a substitution_mapping is as follows:

substitution_mappings>:
 <substitution_mapping>

The following code snippet shows an example substitution mapping.

service_template:
 inputs:
 cpus:
 type: integer
 validation: { $less_than: [$value, 5] }
 substitution_mappings:
 node_type: MyService
 properties:
 num_cpus: cpus
 capabilities:
 bar: [some_service, bar]
 requirements:
 foo: [some_service, foo]
 node_templates:
 some_service:
 type: MyService
 properties:
 rate: 100
 capabilities:
 bar:
 ...

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 69 of 282

 requirements:
 - foo:
 ...

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 70 of 282

7 Nodes and Relationships
The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

7.1 Node Type

A node type is a reusable entity that defines the structure of observable properties and
attributes of a node, the capabilities and requirements of that node, as well as its supported
interfaces and the artifacts it uses.

A node type definition is a type of TOSCA type definition and as a result supports the
common keynames listed in Section 6.4.1. In addition, the node type definition has the
following recognized keynames:

Keyname Mandatory Type Description

properties no map of property
definitions

An optional map of property definitions
for the node type.

attributes no map of attribute
definitions

An optional map of attribute definitions
for the node type.

capabilities no map of
capability
definitions

An optional map of capability definitions
for the node type.

requirements no list of
requirement
definitions

An optional list of requirement definitions
for the node type.

interfaces no map of interface
definitions

An optional map of interface definitions
supported by the node type.

artifacts no map of artifact
definitions

An optional map of artifact definitions for
the node type.

These keynames can be used according to the following grammar:

<node_type_name>:
 derived_from: <parent_node_type_name>
 version: <version_number>
 metadata:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 71 of 282

 <map of string>
 description: <node_type_description>
 properties:
 <property_definitions>
 attributes:
 <attribute_definitions>
 capabilities:
 <capability_definitions>
 requirements:
 - <requirement_definitions>
 interfaces:
 <interface_definitions>
 artifacts:
 <artifact_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

node_type_name: represents the mandatory symbolic name of the node type being
declared.

parent_node_type_name: represents the name (string) of the node type from which this
node type definition derives (i.e. its parent type). Parent node types names can be
qualified using a namespace prefix.

property_definitions: represents the optional map of property definitions for the node
type.

attribute_definitions: represents the optional map of attribute definitions for the node
type.

capability_definitions: represents the optional map of capability definitions for the node
type.

requirement_definitions: represents the optional list of requirement definitions for the
node type. Note that requirements are intentionally expressed as a list of TOSCA
Requirement definitions that SHOULD be resolved (processed) in sequence by
TOSCA processors. Requirement names must be unique within the context of a node
type definition.

interface_definitions: represents the optional map of interface definitions supported by
the node type.

artifact_definitions: represents the optional map of artifact definitions for the node type

During node type derivation, the keynames follow these rules:

properties: existing property definitions may be refined; new property definitions may be

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 72 of 282

added.

attributes: existing attribute definitions may be refined; new attribute definitions may be
added.

capabilities: existing capability definitions may be refined; new capability definitions
may be added.

requirements: existing requirement definitions may be refined; new requirement
definitions may be added.

interfaces: existing interface definitions may be refined; new interface definitions may
be added.

artifacts: existing artifact definitions (identified by their symbolic name) may be
redefined; new artifact definitions may be added.

note that an artifact is created for a specific purpose and corresponds to a
specific file (with e.g. a path name and checksum); if it cannot meet its purpose in
a derived type then a new artifact should be defined and used.

thus, if an artifact defined in a parent node type does not correspond anymore with
the needs in the child node type, its definition may be completely redefined; thus,
an existing artifact definition is not refined, but completely overwritten.

The following code snippet shows an example node type definition:

my_app_node_type:
 derived_from: SoftwareComponent
 description: My company’s custom applicaton
 properties:
 my_app_password:
 type: string
 description: application password
 validation:
 $and:
 - { $greater_or_equal: [$value, 6] }
 - { $less_or_equal: [$value, 10] }
 attributes:
 my_app_port:
 type: integer
 description: application port number
 requirements:
 - some_database:
 capability: EndPoint.Database
 node: Database
 relationship: ConnectsTo

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 73 of 282

7.2 Node Template

A node template specifies the occurrence of one or more instances of a component of a
given type in an application or service. A node template defines application-specific values
for the properties, relationships, or interfaces defined by its node type.

The following is the list of recognized keynames for a TOSCA node template definition:

Keyname Mandatory Type Description

type yes string The mandatory name of the node type on
which the node template is based.

description no string An optional description for the node template.

metadata no map of
string

Defines a section used to declare additional
metadata information.

directives no list of string An optional list of directive values to provide
processing instructions to orchestrators and
tooling.

properties no map of
property
assignments

An optional map of property value
assignments for the node template.

attributes no map of
attribute
assignments

An optional map of attribute value
assignments for the node template.

requirements no list of
requirement
assignments

An optional list of requirement assignments
for the node template.

capabilities no map of
capability
assignments

An optional map of capability assignments for
the node template.

interfaces no map of
interface
assignments

An optional map of interface assignments for
the node template.

artifacts no map of
artifact
definitions

An optional map of artifact definitions for the
node template.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 74 of 282

count no non-
negative
integer

An optional keyname that specifies how many
node representations must be created from
this node template. If not defined, the
assumed count value is 1.

node_filter no node filter The optional filter definition that TOSCA
orchestrators will use to select an already
existing node if this node template is marked
with the select directive.

copy no string The optional (symbolic) name of another node
template from which to copy all keynames
and values into this node template.

Keyname Mandatory Type Description

These keynames can be used according to the following grammar:

<node_template_name>:
 type: <node_type_name>
 description: <node_template_description>
 directives: [<directives>]
 metadata:
 <map of string>
 properties:
 <property_assignments>
 attributes:
 <attribute_assignments>
 requirements:
 - <requirement_assignments>
 capabilities:
 <capability_assignments>
 interfaces:
 <interface_assignments>
 artifacts:
 <artifact_definitions>
 copy: <node_count_value>
 node_filter:
 <node_filter_definition>
 copy: <source_node_template_name>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

node_template_name: represents the mandatory symbolic name of the node template

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 75 of 282

being defined.

node_type_name: represents the name of the node type on which the node template is
based.

directives: represents the optional list of processing instruction keywords (as strings) for
use by tooling and orchestrators. Valid directives supported by this version of the
standard are create, select, and substitute. If no directives are specified, create is
used as the default value.

property_assignments: represents the optional map of property assignments for the
node template that provide values for properties defined in its declared node type.

attribute_assignments: represents the optional map of attribute assignments for the
node template that provide values for attributes defined in its declared node type.

requirement_assignments: represents the optional list of requirement assignments for
the node template for requirement definitions provided in its declared node type.

capability_assignments: represents the optional map of capability assignments for the
node template for capability definitions provided in its declared node type.

interface_assignments: represents the optional map of interface assignments for the
node template interface definitions provided in its declared node type.

artifact_definitions: represents the optional map of artifact definitions for the node
template that augment or replace those provided by its declared node type.

node_count_value: represents the number of node representations that must be created
from this node template. If not specified, a default value of 1 is used.

node_filter_definition: represents the optional node filter TOSCA orchestrators will use
for selecting a matching node template.

source_node_template_name: represents the optional (symbolic) name of another node
template from which to copy all keynames and values into this node template. Note that
he source node template provided as a value on the copy keyname MUST NOT itself
use the copy keyname (i.e., it must itself be a complete node template description and
not copied from another node template).

The following code snippet shows an example node template definition:

node_templates:
 mysql:
 type: DBMS.MySQL
 properties:
 root_password: { $get_input: my_mysql_rootpw }
 port: { $get_input: my_mysql_port }

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 76 of 282

 requirements:
 - host: db_server
 interfaces:
 Standard:
 operations:
 configure: scripts/my_own_configure.sh

7.3 Relationship Type

A relationship type is a reusable entity that defines the structure of observable properties and
attributes of a relationship as well as its supported interfaces.

A relationship type definition is a type of TOSCA type definition and as a result supports the
common keynames listed in Section 6.4.1. In addition, the relationship type definition has the
following recognized keynames:

Keyname Mandatory Definition/Type Description

properties no map of property
definitions

An optional map of property
definitions for the
relationship type.

attributes no map of attribute
definitions

An optional map of attribute
definitions for the
relationship type.

interfaces no map of interface
definitions

An optional map of interface
definitions supported by the
relationship type.

valid_capability_types no list of string An optional list of one or
more names of capability
types that are valid targets
for this relationship. If
undefined, all capability
types are valid.

valid_target_node_types no list of string An optional list of one or
more names of node types
that are valid targets for this
relationship. If undefined, all
node types are valid targets.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 77 of 282

valid_source_node_types no list of string An optional list of one or
more names of node types
that are valid sources for this
relationship. If undefined, all
node types are valid
sources.

Keyname Mandatory Definition/Type Description

These keynames can be used according to the following grammar:

<relationship_type_name>:
 derived_from: <parent_relationship_type_name>
 version: <version_number>
 metadata:
 <map of string>
 description: <relationship_description>
 properties:
 <property_definitions>
 attributes:
 <attribute_definitions>
 interfaces:
 <interface_definitions>
 valid_capability_types: [<capability_type_names>]
 valid_target_node_types: [<target_node_type_names>]
 valid_source_node_types: [<source_node_type_names>]

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

relationship_type_name: represents the mandatory symbolic name of the relationship
type being declared as a string.

parent_relationship_type_name: represents the name (string) of the relationship type
from which this relationship type definition derives (i.e., its “parent” type). Parent node
type names can be qualified using a namespace prefix.

property_definitions: represents the optional map of property definitions for the
relationship type.

attribute_definitions: represents the optional map of attribute definitions for the
relationship type.

interface_definitions: represents the optional map of interface definitions supported by
the relationship type.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 78 of 282

capability_type_names: represents the optional list of valid target capability types for the
relationship. Target capability type names can be qualified using a namespace prefix. If
undefined, the valid target types are not restricted at all (i.e., all capability types are
valid).

target_node_type_names: represents the optional list of valid target node types for the
relationship. Target node type names can be qualified using a namespace prefix. If
undefined, the valid types are not restricted at all (i.e., all node types are valid).

source_node_type_names: represents the optional list of valid source node types for
the relationship. Source node type names canbe qualified using a namespace prefix. If
undefined, the valid types are not restricted at all (i.e., all node types are valid).

During relationship type derivation the keyname definitions follow these rules:

properties: existing property definitions may be refined; new property definitions may be
added.

attributes: existing attribute definitions may be refined; new attribute definitions may be
added.

interfaces: existing interface definitions may be refined; new interface definitions may
be added.

valid_capability_types: A derived type is only allowed to further restrict the list of valid
capability types, not to expand it. This means that if valid_capability_types is defined in
the parent type, each element in the derived type's list of valid capability types must
either be in the parent type list or derived from an element in the parent type list; if
valid_target_types is not defined in the parent type then no derivation restrictions need
to be applied.

valid_target_node_types: same derivation rules as for valid_capability_types

valid_source_node_types: same derivation rules as for valid_capability_types

The following code snippet shows an example relationship type definition:

mycompanytypes.myrelationships.AppDependency:
 derived_from: tosca.relationships.DependsOn
 valid_capability_types: [mycompanytypes.mycapabilities.SomeAppCapability]

7.4 Relationship Template

A relationship template specifies the occurrence of a relationship of a given type between
nodes in an application or service. A relationship template defines application-specific values
for the properties, relationships, or interfaces defined by its relationship type.

TOSCA allows relationships between nodes to be defined inline using requirement

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 79 of 282

assignments within node templates or out-of-band using relationship templates as defined in
this section. While the use of requirement assignments is more common, the use of
relationship templates decouples relationship definitions from specific node templates,
allowing reuse of these relationship templates by multiple node templates. Relationship
templates are local within a service template and so have a limited scope.

Note that relationship template grammar is underspecified currently and needs further work.

The following is the list of recognized keynames for a TOSCA relationship template definition:

Keyname Mandatory Type Description

type yes string The mandatory name of the relationship type on
which the relationship template is based.

description no string An optional description for the relationship
template.

metadata no map of
string

Defines a section used to declare additional
metadata information.

properties no map of
property
assignments

An optional map of property assignments for
the relationship template.

attributes no map of
attribute
assignments

An optional map of attribute assignments for the
relationship template.

interfaces no map of
interface
assignments

An optional map of interface assignments for
the relationship template.

copy no string The optional (symbolic) name of another
relationship template from which to copy all
keynames and values into this relationship
template.

These keynames can be used according to the following grammar:

<relationship_template_name>:
 type: <relationship_type_name>
 description: <relationship_type_description>
 metadata:
 <map of string>
 properties:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 80 of 282

 <property_assignments>
 attributes:
 <attribute_assignments>
 interfaces:
 <interface_assignments>
 copy:
 <source_relationship_template_name>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

relationship_template_name: represents the mandatory symbolic name of the
relationship template being declared.

relationship_type_name: represents the name of the relationship type the relationship
template is based upon.

relationship_template_description: represents the optional description string for the
relationship template.

property_assignments: represents the optional map of property assignments for the
relationship template that provide values for properties defined in its declared
relationship type.

attribute_assignments: represents the optional map of attribute assignments for the
relationship template that provide values for attributes defined in its declared
relationship type.

interface_assignments: represents the optional map of interface assignments for the
relationship template for interface definitions provided by its declared relationship type.

source_relationship_template_name: represents the optional (symbolic) name of
another relationship template to copy into (all keynames and values) and use as a basis
for this relationship template.

source_relationship_template_name: represents the optional (symbolic) name of
another relationship template from which to copy all keynames and values into this
relationship template. Note that he source relationship template provided as a value on
the copy keyname MUST NOT itself use the copy keyname (i.e., it must itself be a
complete relationship template description and not copied from another relationship
template).

The following code snippet shows an example relationship template definition.

relationship_templates:
 storage_attachment:
 type: AttachesTo

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 81 of 282

 properties:
 location: /my_mount_point

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 82 of 282

8 Capabilities and Requirements
The content in this section is non-normative. The content in this section is normative unless
otherwise labeled except:

the examples
references unless labelled as normative.

8.1 Capability Type

A capability type is a reusable entity that describes the properties and attributes of a
capability that a node type can declare to expose. Requirements that are declared as part of
one node can be fulfilled by the capabilities declared by another node.

A capability type definition is a type of TOSCA type definition and as a result supports the
common keynames listed in Section 6.4.1. In addition, the capability type definition has the
following recognized keynames:

Keyname Mandatory Type Description

properties no map of
property
definitions

An optional map of property
definitions for the capability type.

attributes no map of
attribute
definitions

An optional map of attribute
definitions for the capability type.

valid_source_node_types no list of
string

An optional list of one or more valid
names of node types that are
supported as valid sources of any
relationship established to the
declared capability type. If
undefined, all node types are valid
sources.

valid_relationship_types no list of
string

An optional list of one or more valid
names of relationship types that are
supported as valid types of any
relationship established to the
declared capability type. If
undefined, all relationship types are
valid.

These keynames can be used according to the following grammar:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 83 of 282

<capability_type_name>:
 derived_from: <parent_capability_type_name>
 version: <version_number>
 metadata:
 <map of string>
 description: <capability_description>
 properties:
 <property_definitions>
 attributes:
 <attribute_definitions>
 valid_source_node_types: [<node_type_names>]
 valid_relationship_types: [<relationship_type_names>]

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

capability_type_name: represents the mandatory name of the capability type being
declared as a string.

parent_capability_type_name: represents the name of the capability type from which
this capability type derives (i.e., its parent type). Parent capability type names can be
qualified using a namespace prefix.

property_definitions: represents the optional map of property definitions for the
capability type.

attribute_definitions: represents the optional map of attribute definitions for the
capability type.

node_type_names: represents the optional list of one or more type names for nodes
that are allowed to establish a relationship to a capability of this capability type; if
undefined, the valid source types are not restricted at all (i.e. all node types are valid).

relationship_type_names: represents the optional list of one or more type names for
relationship that are allowed to be established to a capability of this capability type; if
undefined, the valid types are not restricted at all (i.e. all relationship types are valid).

During capability type derivation the keyname definitions follow these rules:

properties: existing property definitions may be refined; new property definitions may be
added.

attributes: existing attribute definitions may be refined; new attribute definitions may be
added.

valid_source_node_types: A derived type is only allowed to further restrict the list of
valid source node types, not to expand it. This means that if valid_source_node_types is

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 84 of 282

defined in the parent type, each element in the derived type's list of valid source node
types must either be in the parent type list or derived from an element in the parent type
list; if valid_source_node_types is not defined in the parent type then no derivation
restrictions need to be applied.

valid_relationship_types: same derivations rules as for valid_source_node_types.

The following code snippet shows an example capability type definition:

MyFeature:
 description: a custom feature of my company’s application
 properties:
 my_feature_setting:
 type: string
 my_feature_value:
 type: integer
 valid_source_node_types:
 - MyCompanyNodes

8.2 Capability Definition

A capability definition defines a typed set of data that a node can expose and that is used to
describe a relevant feature of the component described by the node that can be used to fulfill
a requirement exposed by another node. A capability is defined as part of a node type
definition and may be refined during node type derivation.

The following is the list of recognized keynames for a TOSCA capability definition:

Keyname Mandatory Type Description

type yes string The mandatory name of the
capability type on which this
capability definition is based.

description no string The optional description of the
Capability definition.

metadata no map of
string

Defines a section used to declare
additional metadata information.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 85 of 282

properties no map of
property
refinements

An optional map of property
refinements for the capability
definition. The referred properties
must have been defined in the
capability type definition referred
by the type keyword. New
properties may not be added.

attributes no map of
attribute
refinements

An optional map of attribute
refinements for the capability
definition. The referred attributes
must have been defined in the
capability type definition referred
by the type keyword. New
attributes may not be added.

valid_source_node_types no list of string An optional list of one or more
valid names of node types that
are supported as valid sources of
any relationship established to the
declared capability type. If
undefined, all node types are valid
sources. If
valid_source_node_types is
defined in the capability type,
each element in this list must
either be or derived from an
element in the list defined in the
type.

Keyname Mandatory Type Description

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 86 of 282

valid_relationship_types no list of string An optional list of one or more
valid names of relationship types
that are supported as valid types
of any relationship established to
the declared capability type. If
undefined, all relationship types
are valid. If
valid_relationship_types is
defined in the capability type,
each element in this list must
either be or derived from an
element in the list defined in the
type.

Keyname Mandatory Type Description

Note that the occurrences keyname is deprecated in TOSCA 2.0. By default, the number of
occurrences is UNBOUNDED, i.e. any number of relationships can be created with a certain
capability as a target. To constrain the creation of a relationship to a target capability, the new
allocation keyname is used within a requirement assignment.

These keynames can be used according to the following grammar:

<capability_definition_name>:
 type: <capability_type>
 description: <capability_description>
 properties:
 <property_refinements>
 attributes:
 <attribute_refinements>
 valid_source_node_types: [<node_type_names>]
 valid_relationship_types: [<relationship_type_names>]

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

capability_definition_name: represents the symbolic name of the capability as a string.
Capability symbolic names SHALL be unique; it is an error if a capability name is found
to occur more than once.

capability_type: represents the mandatory name of a capability type on which the
capability definition is based.

property_refinements: represents the optional map of property refinements for
properties already defined in the capability type; new properties may not be added.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 87 of 282

attribute_refinements: represents the optional map of attribute refinements for attributes
already defined in the capability type; new attributes may not be added.

node_type_names: represents the optional list of one or more node type names for
nodes that are allowed to establish a relationship to this capability.

if valid_source_node_types is defined in the capability type, each element in this
list MUST either be in that list or derived from an element in that list; if
valid_source_types is not defined in the capability type then no restrictions are
applied.

relationship_type_names: represents the optional list of one or more relationship type
names for relationships that are allowed to be established to this capability

if valid_relationship_types is defined in the capability type, each element in this list
MUST either be in that list or derived from an element in that list; if
valid_source_types is not defined in the capability type then no restrictions are
applied.

The following single-line grammar may be used when only the capability type needs to be
declared, without further refinement of the definitions in the capability type:

<capability_definition_name>: <capability_type>

The following code snippet shows an example capability definition:

some_capability:
 type: MyCapabilityTypeName
 properties:
 limit:
 default: 100

The following shows a capability definition using single-line grammar:

some_capability: MyCapabilityTypeName

8.3 Capability Refinement
If a node type defines a capability with the same name as a capability that is already defined
in one of its parent node types, then that capability definition is considered a capability
refinement rather than a capability definition. Capability refinements adhere to the following
refinement rules for the supported keynames:

type: in a capability refinement, the type keyname is no longer mandatory. If the type is
omitted, the type of the refined capability definition will be used. If the type is specified, it
must be derived from (or the same as) the type in the capability definition in the parent

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 88 of 282

node type definition.

description: a new definition is unrestricted and will overwrite the one inherited from the
capability definition in the parent node type definition.

properties: not applicable to the definitions in the parent node type but to the definitions
in the capability type referred by the type keyname (see grammar above for the rules).

attributes: not applicable to the definitions in the parent node type but to the definitions
in the capability type referred by the type keyname (see grammar above for the rules).

valid_source_node_types: not applicable to the definitions in the parent node type but to
the definitions in the capability type referred by the type keyname (see grammar above
for the rules).

valid_relationship_types: not applicable to the definitions in the parent node type but to
the definitions in the capability type referred by the type keyname (see grammar above
for the rules).

8.4 Capability Assignment
A capability assignment allows node template authors to assign values to properties and
attributes for a capability definition that is part of the node template’s type definition.

The following is the list of recognized keynames for a TOSCA capability assignment:

Keyname Mandatory Type Description

properties no map of property assignments An optional map of
property assignments for
the capability definition.

attributes no map of attribute assignments An optional map of
attribute assignments for
the capability definition.

directives no An optional list of directive values to
provide processing instructions to
orchestrators and tooling.

Note that the occurrences keyname is deprecated in TOSCA 2.0. By default, the number of
“occurrences” is UNBOUNDED, i.e. any number of relationships can be created with a certain
capability as a target. To constrain the creation of a relationship to a target capability, the new
allocation keyname is used within a requirement assignment.

Thes capability definition keynames can be used according to the following grammar:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 89 of 282

<capability_definition_name>:
 properties:
 <property_assignments>
 attributes:
 <attribute_assignments>
 directives: <directives_list>

In the above grammars, the pseudo values that appear in angle brackets have the following
meaning:

capability_definition_name: represents the symbolic name of the capability as a string.

property_assignments: represents the optional map of property assignments that
provide values for properties defined in the Capability definition.

attribute_assignments: represents the optional map of attribute assignments that
provide values for attributes defined in the Capability definition.

directives_list: represents the optional list of strings that defines if this capability allows
relationships from source nodes created within this service template (internal) or from
source nodes created outside this service template as available to the TOSCA
environment (external) or if it should use a combination of the above. Valid values for
the strings are as follows:

internal: relationships to this capability can be created from source nodes
created within this template.

external: relationships to this capability can be created from source nodes
created outside this template as available to the TOSCA environment.

The order of the strings in the list defines which scope should be attempted first when
fulfilling the assignment.

If no directives are defined, the default value is left to the particular implementation.

The following code snippet shows an example capability assignment:

node_templates:
 some_node_template:
 capabilities:
 some_capability:
 properties:
 limit: 100

8.5 Requirement Definition

The requirement definition describes a requirement of a TOSCA node that needs to be

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 90 of 282

fulfilled by a matching capability declared by another TOSCA node. A requirement is defined
as part of a node type definition and may be refined during node type derivation.

The following is the list of recognized keynames for a TOSCA requirement definition:

Keyname Mandatory Type Description

description no string The optional description of the requirement
definition.

metadata no map of
string

Defines a section used to declare additional
metadata information.

relationship yes relationship
definition

The mandatory keyname used to define the
relationship created as a result of fulfilling the
requirement.

node no string The optional keyname used to provide the
name of a valid node type that contains the
capability definition that can be used to fulfill the
requirement.

capability yes string The mandatory keyname used to specify the
capability type for capabilities that can be used
to fulfill this requirement. If the requirement
definition defines a target node type, the
capability keyname can also be used instead to
specify the symbolic name of a capability
defined by that target node type.

node_filter no node filter The optional filter definition that TOSCA
orchestrators will use to select a type-
compatible target node that can fulfill this
requirement at runtime.

count_range no range of
integer

The optional minimum required and maximum
allowed number of relationships created by the
requirement. If this key is not specified, the
implied default of [0, UNBOUNDED] will be
used. Note: the keyword UNBOUNDED is also
supported to represent any positive integer.

The relationship keyname in a requirement definition specifies a relationship definition that
provides information needed by TOSCA Orchestrators to construct a relationship to the
TOSCA node that contains the matching target capability. Relationship definitions support the
following keynames:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 91 of 282

Keyname Mandatory Type Description

type yes string The mandatory keyname used to provide the
name of the relationship type used for the
relationship.

description no string The optional description of the relationship
definition.

metadata no map of
string

Defines a section used to declare additional
metadata information.

properties no map of
property
refinements

An optional map of property refinements for the
relationship definition. The referred properties
must have been defined in the relationship type
definition referred by the type keyword. New
properties may not be added.

attributes no map of
attribute
refinements

An optional map of attribute refinements for the
relationship definition. The referred attributes
must have been defined in the relationship type
definition referred by the type keyword. New
attributes may not be added.

interfaces no map of
interface
refinements

The optional keyname used to define interface
refinements for interfaces defined by the
relationship type.

The keynames supported by requirement definitions and relationship definitions can be used
according to the following grammar:

<requirement_definition_name>:
 description: <requirement_description>
 capability: <capability_type_name> | <capability_symbolic_name>
 node: <node_type_name>
 relationship:
 type: <relationship_type_name>
 properties: <property_refinements>
 attributes: <attribute_refinements>
 interfaces: <interface_refinements>
 node_filter: <node_filter_definition>
 count_range: [<min_count>, <max_count>]

If the relationship definition only needs to specify the relationship type without refining
properties, attributes, or interfaces then as a convenience the following short-hand grammar
can also be used:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 92 of 282

<requirement_definition_name>:
 description: <requirement_description>
 capability: <capability_symbolic_name> | <capability_type_name>
 node: <node_type_name>
 relationship: <relationship_type_name>
 node_filter: <node_filter_definition>
 count_range: [<min_count>, <max_count>]

In the above grammars, the pseudo values that appear in angle brackets have the following
meaning:

requirement_definition_name: represents the mandatory symbolic name of the
requirement definition as a string. Requirement definition names SHALL be unique
within a node type definition; it is an error if the same requirement name occurs more
than once.

capability_type_name: represents the mandatory name of a capability type that can be
used to fulfill the requirement.

capability_symbolic_name: represents the mandatory symbolic name of the capability
definition within the target node type; a capability_symbolic_name is only allowed if a
node_type_name is provided.

node_type_name: represents the optional name of a node type that contains either a
capability of type <capability_type_name> or a capability named
<capability_symbolic_name> that can be used to fulfill the requirement.

relationship_type_name: represents the mandatory name of a relationship type to be
used to construct a relationship from this requirement definition (i.e. in the source node)
to a matching capability definition (in a target node).

interface_refinements: represents refinements for one or more already declared
interface definitions in the relationship type (as declared on the type keyname)

allowing for the declaration of new parameter definitions for these interfaces or for
specific operation or notification definitions of these interfaces or for the change of
the description or implementation definitions.

property_refinements: represents the optional map of property refinements for
properties already defined in the relationship type; new properties may not be added.

attribute_refinements: represents the optional map of attribute refinements for attributes
already defined in the relationship type; new attributes may not be added.

node_filter_definition: represents the optional node filter TOSCA orchestrators will use
to fulfill the requirement when selecting a target node, or to verify that the specified node
template fulfills the requirement (if a node template was specified during requirement

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 93 of 282

assignment).

min_count, max_count: represents the optional range between a minimum required and
maximum allowed count of the requirement

this range constrains how many relationships from this requirement towards target
capabilities (in target nodes) are created, and that number MUST be within the
range specified here.

If the count_range keyname is not present, then a default declaration will be
assumed as follows:

count_range: [0, UNBOUNDED]

8.6 Requirement Refinement
If a node type defines a requirement with the same name as a requirement that is already
defined in one of its parent node types, then that requirement definition is considered a
requirement refinement rather than a requirement definition. Requirement refinements
adhere to the following refinement rules for the supported keynames:

description: a new definition is unrestricted and will overwrite the one inherited from the
requirement definition in the parent node type definition.

capability: the type of the capability must be derived from (or the same as) the capability
type in the requirement definition in the parent node type definition.

if the capability was specified using the symbolic name of a capability definition in
the target node type, then the capability keyname definition MUST remain
unchanged in any subsequent refinements or during assignment.

node: must be derived from (or the same as) the node type in the requirement definition
in the parent node type definition; if node is not defined in the parent type then no
restrictions are applied;

the node type specified by the node keyname must also contain a capability
definition that fulfills the requirement set via the capability keyname above.

relationship: must be derived from (or the same as) the relationship type in the
requirement definition in the parent node type definition.

node_filter: a new definition is unrestricted and will be considered in addition (i.e. logical
and) to the node_filter definition in the parent node type definition; further refinements
may add further node filters.

count_range: the new range MUST be within the range defined in the requirement
definition in the parent node type definition.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 94 of 282

8.7 Requirement Assignment

A requirement assignment is used by node template authors to provide assignments for the
corresponding requirement definition in the node template's node type. This includes
specifying target nodes, either by providing symbolic names of target nodes or by providing
selection criteria for TOSCA orchestrators to find candidate nodes that can be used to fulfill
the requirement. In addition, requirement assignments must uniquely identify the specific
target capability in the target node for the requirement. Requirement assignments must also
assign values to properties and attributes defined in the relationship definition that is part of
the requirement definition, and provide values for the input parameters defined by the
relationship definition's interfaces.

Note that several requirement assignments in a node template can have the same symbolic
name, each referring to different counts of the corresponding requirement definition. The
number of instances a particular assignment allows is set via the count keyname.
Nevertheless, the sum of the count values for all of the requirement assignments with the same
symbolic name MUST be within the range of count_range specified by the corresponding
requirement definition.

8.7.1 Supported Keynames

The following is the list of recognized keynames for a TOSCA requirement assignment:

Keyname Mandatory Type Description

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 95 of 282

node no string or 2-
entry list

The optional keyname used to identify the target
node of the requirement:
- This can either be the symbolic name of a node
template, where the TOSCA processor will
select a node representation created from that
template. If the count of the node template is 1
then the potential target is unique, otherwise the
processor can select from several node
representations.
- It can also be a 2-entry list, where the first entry
is a string denoting the symbolic name of a node
template, while the second entry is an index, thus
uniquely identifying the node representation
when multiple representations are created from
the same node template. The index is a non-
negative integer, with 0 being the first index.
Note that functions like nodeindex 
* or*relationship_index may be used to match
the target index withe the source/relationship
index. More information on multiplicity and node
and relationship indexes can be found in
Chapter 14.
- Finally, it can also be the name of a node type
that the TOSCA processor will use to select a
type-compatible target node to fulfill the
requirement.

capability no string The optional keyname used to identify the target
capability of the requirement. This can either be
the name of a capability defined within a target
node or the name of a target capability type that
the TOSCA orchestrator will use to select a type-
compatible target node to fulfill the requirement
at runtime.

relationship conditional relationship
assignment
or string

The conditional keyname used to provide values
for the relationship definition in the
corresponding requirement definition. This
keyname can also be overloaded to define a
symbolic name that references a relationship
template defined elsewhere in the service
template.

Keyname Mandatory Type Description

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 96 of 282

allocation no allocation
block

The optional keyname that allows the inclusion of
an allocation block. The allocation block
contains a map of property assignments that
semantically represent allocations from the
property with the same name in the target
capability. The allocation acts as a capacity filter
for the target capability in the target node. When
the requirement is resolved, a capability in a
node is a valid target for the requirement
relationship if for each property of the target
capability, the sum of all existing allocations plus
the current allocation is less_or_equal to the
property value.

count no non-
negative
integer

An optional keyname that sets the cardinality of
the requirement assignment, that is how many
relationships must be established from this
requirement assignment. If not defined, the
default count for an assignment is 1. Note that
there can be multiple requirement assignments
for a requirement with a specific symbolic name.
The sum of all count values of assignments for a
requirement with a specific symbolic name must
be within the count_range defined in the
requirement definition. Moreover, the sum of all
count values of non-optional assignments for a
requirement with a specific symbolic name must
also be within the count_range defined in the
requirement definition.

node_filter no node filter The optional filter definition that TOSCA
orchestrators will use to select a type-
compatible target node that can fulfill the
requirement at runtime.

directives no list of string An optional list of directive values to provide
processing instructions to orchestrators and
tooling.

Keyname Mandatory Type Description

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 97 of 282

optional no boolean Describes if the fulfillment of this requirement
assignment is optional (true) or not (false). If not
specified, the requirement assignment must be
fulfilled, i.e. the default value is false. Note also,
that non-optional requirements have
precedence, thus during a service deployment,
the optional requirements for all nodes should be
resolved only after the non-optional requirements
for all nodes have been resolved.

Keyname Mandatory Type Description

The relationship keyname in a requirement assignment typically specifies a relationship
assignment that provides information needed by TOSCA Orchestrators to construct a
relationship to the TOSCA node that is the target of the requirement. Relationship
assignments support the following keynames:

Keyname Mandatory Type Description

type no string The optional keyname used to provide the name
of the relationship type for the requirement
assignment’s relationship.

properties no map of
property
assignments

An optional map of property assignments for the
relationship.

attributes no map of
attribute
assignments

An optional map of attribute assignments for the
relationship.

interfaces no map of
interface
assignments

An optional map of interface assignments for the
corresponding interface definitions in the
relationship type.

8.7.2 Requirement Assignment Grammar

The keynames supported by requirement assignments and relationship assignments can be
used according to the following grammar:

<requirement_name>:
 capability: <capability_symbolic_name> | <capability_type_name>
 node: <node_template_name> | <tuple_of_node_template_and_index> |
<node_type_name>
 relationship:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 98 of 282

 type: <relationship_type_name>
 properties: <property_assignments>
 attributes: <attribute_assignments>
 interfaces: <interface_assignments>
 node_filter: <node_filter_definition>
 count: <count_value>
 directives: <directives_list>
 optional: <is_optional>
 allocation: <allocation_property_assignments>

In some cases, a relationship assignment only needs to refine the type of the relationship and
does not need to assign properties, attributes, or interfaces. In that case, a single-line
relationship assignment grammar can be used where the value of the relationship keyname
in the requirement assignment refers to the symbolic name of the type of the relationship. This
single-line relationship grammar is shown here:

<requirement_name>:
 capability: <capability_symbolic_name> | <capability_type_name>
 node: <node_template_name> | <tuple_of_node_template_and_index> |
<node_type_name>
 relationship: <relationship_type_name>
 node_filter: <node_filter_definition>
 count: <count_value>
 directives: <directives_list>
 optional: <is_optional>
 allocation: <allocation_property_assignments>

As stated in the description of the supported keynames, the relationship keyname in a
requirement assignment can also be overloaded to specify the symbolic name of a
relationship template to use for creating the relationship to the target node when fulfilling the
requirement. In that case, the following single-line relationship grammar is used:

<requirement_name>:
 capability: <capability_symbolic_name> | <capability_type_name>
 node: <node_template_name> | <tuple_of_node_template_and_index> |
<node_type_name>
 relationship: <relationship_template_name>
 node_filter: <node_filter_definition>
 count: <count_value>
 directives: <directives_list>
 optional: <is_optional>
 allocation: <allocation_property_assignments>

When single-line relationship grammar is used, TOSCA Processors MUST first try to resolve
the value of the relationship keyword as the symbolic name of a relationship type. If no

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 99 of 282

relationship type with that name is found, the Processor MUST then try to find a relationship
template with that name. If no such relationship template is found, the grammar must be
determined to be in error.

And finally, to simplify requirement assignment grammar, the following single-line grammar
may be used if only a concrete node template for the target node needs to be assigned:

<requirement_name>: <node_template_name>

In the above grammars, the pseudo values that appear in angle brackets have the following
meaning:

requirement_name: represents the symbolic name of a requirement assignment as a
string.

capability_symbolic_name: represents the optional name of the capability definition
within the target node type or node template;

if the capability in the requirement definition was specified using the symbolic
name of a capability definition in a target node type, then the capability keyname
definition MUST remain unchanged in any subsequent refinements or during
assignment.

if the capability in the requirement definition was specified using the name of a
capability type, then the capability definition referred here by the
capability_symbolic_name must be of a type that is the same as or derived from
the said capability type in the requirement definition.

capability_type_name: represents the optional name of a capability type definition within
the target node type or node template this requirement needs to form a relationship with;

may not be used if the capability in the requirement definition was specified using
the symbolic name of a capability definition in a target node type.

otherwise the capability_type_name must be of a type that is the same as or
derived from the type defined by the capability keyname in the requirement
definition.

node_template_name: represents the optional name of a node template that contains
the capability that fulfills this requirement;

in addition, the node type of the node template must be of a type that is the same
as or derived from the type defined by the node keyname (if the node keyname is
defined) in the requirement definition,

note that if the template has count > 1 there are several target node representation
candidates,

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 100 of 282

in addition, the node representation created from the template must fulfill the node
filter requirements of the node_filter (if a node_filter is defined) in the Requirement
definition.

tuple_of_node_template_and_index: represents an optional 2-entry list, where the first
entry is the name of a node template, and the second entry is an index;

the node template is subject to the same conditions as presented above,

the index is a non-negative integer,

for indexes outside the count range of the template, no valid target node
representation candidate will exist.

node_type_name: represents the optional name of a node type that contains the
capability that fulfills this requirement;

in addition, the node_type_name must be of a type that is the same as or derived
from the type defined by the node keyname (if the node keyname is defined) in the
requirement definition.

relationship_template_name: represents the optional name of a relationship template to
be used when relating the requirement to the capability in the target node.

in addition, the relationship type of the relationship template must be of a type that
is the same as or derived from the type defined by the relationship keyname (if the
relationship keyname is defined) in the requirement definition.

relationship_type_name: represents the optional name of a relationship type that is
compatible with the capability type in the target node;

in addition, the relationship_type_name must be of a type that is the same as or
derived from the type defined by the relationship keyname in the requirement
definition.

property_assignments: within the relationship declaration, it represents the optional map
of property assignments for the declared relationship.

attribute_assignments: within the relationship declaration, it represents the optional map
of attribute assignments for the declared relationship.

interface_assignments: represents the optional map of interface assignments for the
declared relationship used to provide parameter assignments on inputs and outputs of
interfaces, operations and notifications or changing the implementation definition.

allocation_property_assignments: within the allocation declaration, it represents the
optional map of property assignments that semantically represent allocations from the
property with the same name in the target capability. Syntactically their form is the same

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 101 of 282

as for a normal property assignments.

node_filter_definition: represents the optional node filter TOSCA orchestrators will use
to fulfill the requirement for selecting a target node; if a node template was specified
during requirement assignment, the TOSCA orchestrator verifies that the specified node
template fulfills the node filter.

this node_filter does not replace the node_filter definition in the requirement
definition, it is applied in addition to that.

count_value: represents the optional cardinality of this requirement assignment, that is
how many relationships are to be established from this requirement assignment
specification.

If count is not defined, the default count_value for an assignment is 1.

directives_list: represents the optional list of strings that defines if this requirement
needs to be fulfilled using target nodes created within this service template only, target
nodes created outside this service template only, or both. Valid values for the strings are
as follows:

internal: this requirement is fulfilled using target nodes created within this
template.

external: this requirement is fulfilled using target nodes created outside this
template as available to the TOSCA environment.

The order of the strings in the list defines which directive should be attempted first when
fulfilling the assignment.

If no directives are defined, the default value is left to the particular implementation.

is_optional: represents the optional boolean value specifying if this requirement
assignment is optional or not.

If is_optional is false, the assignment MUST be fulfilled.

If is_optional is true, the assignment SHOULD be fulfilled, but if not possible the
service deployment is still considered valid.

The default value for is_optional is false.

Non-optional requirements have precedence, thus during a service deployment, the
optional requirements for all nodes should be fulfilled only after the non-optional
requirements for all nodes have been fulfilled.

The following code snippet shows an example requirement assignment. It defines a web
application node template named ‘my_application_node_template’ of type WebApplication
that declares a requirement named host that needs to be fulfilled by any node that derives

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 102 of 282

from the node type WebServer:

service_template:
 node_templates:
 my_application_node_template:
 type: WebApplication
 requirements:
 - host:
 node: WebServer

In this case, the WebApplication type defines a host requirement that uses relationship type
HostedOn relate to the target node. The host requirement also specifies a capability type of
Container to be the specific target of the requirement in the target node.

The following example targets a WebServer created from the tomcat_server template that has
the same multiplicity index as the actual my_application node.

service_template:
 node_templates:
 my_application:
 type: WebApplication
 count: 3
 requirements:
 - host:
 node: [tomcat_server, $node_index]

The following example shows a requirement named database that describes a requirement
for a connection to a capability of type Endpoint.Database in a node template called
my_database. However, the connection requires a custom relationship type
(my.types.CustomDbConnection’) declared on the keyname ‘relationship’.

service_template:
 node_templates:
 my_application_node_template:
 requirements:
 - database:
 node: my_database
 capability: Endpoint.Database
 relationship: my.types.CustomDbConnection

8.7.4 Requirement Count

A node template may include multiple requirement assignments with the same symbolic
requirement name. In addition, each of these requirement assignments may define their own
count value, and some requirement assignments may be marked as optional. This section
specifies rules for handling requirement counts:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 103 of 282

The sum of all count values for requirement assignments with a specific symbolic name
MUST be within the count_range defined in the corresponding requirement definition.

Moreover, the sum of all count values for non-optional requirement assignments with a
specific symbolic name MUST also be within the count_range defined in the
requirement definition.

If a node template does not define an explicit requirement assignment for a requirement
defined in its corresponding node type, an implicit requirement assignment will be
created automatically if the lower bound of the count_range in the requirement definition
is greater than zero

The automatically created requirement assignments use the same values for the
capability, node, relationship, and node_filter keynames as defined in the
corresponding requirement definition.
Additionally, the count_value is assumed to be equal to the min_count value of the
requirement definition in the corresponding node type.

The following example illustrates requirement assignment count rules. It uses the types
defined in the following code snippet:

tosca_definitions_version: tosca_2_0
capability_types:
 Service:
 description: >-
 Ability to provide service.
relationship_types:
 ServedBy:
 description: >-
 Connection to a service.
node_types:
 Client:
 requirements:
 - service:
 capability: Service
 relationship: ServedBy
 node: Server
 count_range: [1, 4]
 Server:
 capabilities:
 service:
 type: Service

In this example, the Client node type defines a service requirement with a count_range of
[1, 4]. This means that a client can have up to four service connections to Server nodes, but

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 104 of 282

only one of those is mandatory.

Any service template that uses the Client node type must specify the correct number of
requirement assignments, i.e, the number of mandatory requirements must be greater than or
equal to the lower bound of the count_range and he total number of requirement assignments
(optional as well as mandatory) must be less than or equal to the upper bound of the count
range.

The following shows a valid service template that uses Client and Server nodes.

tosca_definitions_version: tosca_2_0
imports:
 - types.yaml
service_template:
 node_templates:
 server1:
 type: Server
 server2:
 type: Server
 server3:
 type: Server
 client:
 type: Client
 directives: [substitute]
 requirements:
 - service: server1
 - service: server2
 - service: server3

In this example, the requirement assignments specify the target nodes directly, but it is also
valid to leave requirements dangling as in the following example:

tosca_definitions_version: tosca_2_0
imports:
 - types.yaml
service_template:
 node_templates:
 server1:
 type: Server
 server2:
 type: Server
 server3:
 type: Server
 client:
 type: Client
 directives: [substitute]

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 105 of 282

 requirements:
 - service: server1
 - service:
 optional: true
 - service:
 optional: true

In this example, only the first service assignment is mandatory. The next two are optional.
However, after the orchestrator fulfills the dangling (optional) requirements, the resulting
service topology for this second example will likely be identical to the service topology in the
first example, since the orchestrator is able to fulfill both of the optional requirements using
server nodes in this topology.

Note that after requirements have been fulfilled, it no longer matters whether the requirement
were mandatory or optional. All that matters is that if the service topology is valid, the number
of established relationships is guaranteed to fall within the count_range specified in the
corresponding requirement definition.

8.7.5 Capability Allocation

The value of the allocation keyword in a requirement assignment acts as a capacity filter for
the target capability in the target node. When the requirement is fulfilled, a capability in a node
is a valid target for the requirement if, for each property of the target capability, the sum of all
existing allocations plus the current allocation is less than or equal to the property value.

The following allocation rules apply:

The sum of allocations from all the incoming relationships for a certain capability
property cannot exceed the value of the property.

If the allocation refers (via its name) to a property that does not exist in a capability, then
the allocation statement is invalid.

Of course, allocations can be defined only for integer, float, or scalar property types.

The following example shows a capacity allocation on the properties of a target capability of
type Compute. When this requirement is fulfilled, a node is a valid target and a relationship is
created only if both the capacity allocations for num_cpu and mem_size are fulfilled, that is if
the sum of the capacity allocations from all established relationships + current allocation is
less or equal to the value of each respective property in the target capability.

So assuming that num_cpu property in the target capability of a candidate node has value 4
and the sum of capacity allocations of the other fulfilled requirements to that capability for
num_cpu is 1 then then there is enough remaining capacity (4 – 1 = 3) to fulfill the current
allocation (2), and a relationship to that node is established. Another node with num_cpu with
value 2 could not be a valid target since 1 (existing) + 2 (current) = 3, and that is larger than
the property value which is 2. Of course, similar calculations must be done for the mem_size

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 106 of 282

allocation.

service_template:
 node_templates:
 my_critical_application_node_template:
 requirements:
 - host:
 node: Compute
 allocation:
 num_cpu: 2
 mem_size: 128 MB

8.8 Node Filter definition
In addition to the node, relationship and capability types, a filter, with the keyname node_filter,
may be provided in requirement definitions and requirement assignments to constrain the
allowed set of potential target nodes based upon their properties and their capabilities’
properties. This allows TOSCA orchestrators to help find the best fit when selecting among
multiple potential target nodes for the expressed requirements. Also, if a node template was
specified during requirement assignment it allows TOSCA orchestrators to verify that the
specified node template fulfills the requirement.

Node filters are defined using condition clauses as shown in the following grammar:

node_filter: <condition_clause>

In the above grammar, the condition_clause represents a Boolean expression that will be
used to select (filter) TOSCA nodes that are valid candidates for fulfilling the requirement that
defines the node filter. TOSCA orchestrators use node filters are follows:

Orchestrators select an initial set of target node candidates based on the target
capability type and/or the target node type specified in the requirement definition.

A node in this initial set is a valid target node candidate if, when that node is used as the
target node for the requirement, the node filter condition clause evaluates to True.

Note that the context within which the node filter must be evaluated is the relationship
that is established to the target node as a result of fulfilling the requirement. Specifically,
this means that the SELF keyword in any TOSCA Path expressions refer to that
relationship.

The following example shows a node filter that will be used to select a Compute node based
upon the values of its defined capabilities. Specifically, this filter will select Compute nodes
that support a specific range of CPUs (i.e., num_cpus value between 1 and 4) and memory
size (i.e., mem_size of 2 or greater) from its declared host capability.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 107 of 282

service_template:
 node_templates:
 my_node_template:
 # other details omitted for brevity
 requirements:
 - host:
 node_filter:
 $and:
 - $in_range:
 - $get_property: [SELF, CAPABILITY, num_cpus]
 - [1, 4]
 - $greater_or_equal:
 - $get_property: [SELF, CAPABILITY, mem_size]
 - 512 MB

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 108 of 282

9 Properties, Attributes, and Parameters
This section presents how data are handled in TOSCA via properties, attributes, and
parameters. As with other entities in TOSCA, all data are typed. TOSCA data types can be
divided into built-in data types and user-defined types. Built-in types comprise primitive types,
special types, and collection types. Custom (user-defined) types can be user-defined
refinements of the built-in types as well as complex data types.

The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

9.1 TOSCA Built-In Types
The following table summarizes the TOSCA built-in data types. All of these type names are
reserved and cannot be used for custom data types. Note, however, that it is possible to
derive a custom data type from a primitive type, for example to add a validation clause or to
specify a default value.

Primitive Types Special Types Collection Types

string timestamp list

integer scalar-unit map

float scalar-unit.time

boolean version

bytes

nil

9.1.1 Primitive Types

The TOSCA primitive types have been specified to allow for the broadest possible support for
implementations. TOSCA types use the following guiding principles:

1. Because TOSCA files are written in YAML they must support all the literal primitives in
YAML. However, it is important to also allow for consistency of representation of external
data, e.g. service template inputs and outputs, property and attribute values stored in a
database, etc.

2. Adherence to 64-bit precision to ensure portability of numeric data.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 109 of 282

3. TOSCA parsers shall not automatically convert between primitive types. Thus, care
should be taken to use the correct YAML notation for that type. Details will be provided
below.

9.1.1.1 string

A TOSCA string is an array of Unicode runes. (For storing an arbitrary array of bytes see the
bytes type, below.)

Because TOSCA adheres to 64-bit precision, the minimum length of strings is 0 and the
maximum length of strings is 4,294,967,295.

TOSCA does not specify a character encoding. For example, a string could be encoded as
UTF-8 or UTF-16. The exact encoding used depends on the implementation.

Be aware that YAML parsers will attempt to parse unquoted character sequences as other
types (booleans, integers, floats, etc.) before falling back to the !!string type. For example, the
unquoted sequence 0.1 would be interpreted as a YAML !!float. Likewise, the unquoted
sequence nan would become the !!float value of not-a-number. However, in TOSCA a string
value must be specified in YAML as a !!string.

A TOSCA parser shall not attempt to convert other primitive types to strings if a string type is
required. This requirement is necessary for ensuring portability, because there is no single,
standard representation for the other types, e.g. scientific notations for decimals, the words
true vs. True for booleans, etc. In YAML users should thus add quotation marks around literal
strings that YAML would otherwise interpret as other types.

This following example would be invalid if there were no quotation marks around 0.1:

node_types:
 Node:
 properties:
 name:
 type: string

service_template:
 node_templates:
 node:
 type: Node
 properties:
 name: "0.1"

Please note:

1. There are various ways to specify literal !!string data in YAML for handling indentation,
newlines, as well as convenient support for line folding for multiline strings. All may be
used in TOSCA. A TOSCA parser shall not modify the YAML string in any way, e.g. no

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 110 of 282

trimming of whitespace or newlines. [YAML 1.2 chapter 6]

2. The TOSCA functions concat, join, token, length, and matches are all Unicode-aware.
Specifically, the length of a string is a count of its runes, not the length of the byte array,
which may differ according to the encoding. [See XXX]

3. The TOSCA functions that check for equality, equal and valid_values, should work
regardless of the Unicode encoding. For example, comparing two strings that are !, one
of which is in UTF-8 and is encoded as 0x21, the other which is in UTF-16 and is
encoded as 0x0021, would result in equality. For simplicity, implementations may
standardize on a single encoding, e.g., UTF-8, and convert all other encodings to it.
[See XXX]

4. Relatedly, although in YAML 1.2 a !!string is already defined as a Unicode sequence
[YAML 1.2 section 10.1.1.3], this sequence can be variously encoded according to the
character set and encoding of the YAML stream [YAML 1.2 chapter 5]. The
consequence is that a TOSCA string specified in literal YAML may inherit the encoding
of the YAML document. Again, implementations may prefer to convert all strings to a
single encoding.

5. TOSCA strings cannot be the null value but can be empty strings (a string with length
zero). [See nil, below]

6. YAML is a streaming format, but TOSCA strings are explicitly not streams and thus do
have a size limit. Thus, TOSCA implementations should check against the size limit.

Tal’s comment: for functions we should specify their exact behavior for various
primitive types. Some won’t work on all types, e.g. “length” should not work on
integers.

9.1.1.2 integer

A TOSCA integer is a 64-bit signed integer.

For simplicity, TOSCA does not have integers of other bit widths, nor does it have an
unsigned integer type. However, it is possible to enforce most of these variations using data
type validation clauses [see XXX].

For example, this would be a custom data type for unsigned 16-bit integers:

data_types:
 UInt16:
 derived_from: integer
 validation: { $in_range: [$value, [0, 0xFFFF]] }

YAML allows for the standard decimal notation as well as hexadecimal and octal notations
[YAML 1.2 example 2.19]. In the above example we indeed used the hexadecimal notation.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 111 of 282

https://yaml.org/spec/1.2/spec.html#Basic
https://yaml.org/spec/1.2/spec.html#id2802842
https://yaml.org/spec/1.2/spec.html#Characters
https://yaml.org/spec/1.2/spec.html#id2761509

Please note:

1. The JSON schema for YAML 1.2 [YAML 1.2 chapter 10.2] allows for compatibility with
JSON, such that YAML would be a superset of JSON. However, note that the JSON
format does not distinguish between integers and floats, and thus many JSON
implementations use floats instead of integers.

2. TOSCA does not specify the endianness of integers and indeed makes no
requirements for data representation.

9.1.1.3 float

A TOSCA float is a 64-bit (double-precision) floating-point number [IEEE 754], including the
standard values for negative infinity, positive infinity, and not-a-number.

Be aware that YAML parsers will parse numbers with a decimal point as !!float even if they
could be represented as !!int, and likewise numbers without a decimal point would always be
parsed as !!int.

A TOSCA parser shall not attempt to convert a YAML !!int to a float except where the int is
supplied as the value of a TOSCA property of type float. Type conversion in this exceptional
case is to prevent the need for users to add a “.0” suffix to literal integers that must be floats.

Thus following example MUST NOT result in an error:

node_types:
 Node:
 properties:
 speed:
 type: float

service_template:
 node_templates:
 node:
 type: Node
 properties:
 speed: 10

Please note:

1. In addition to decimal, YAML also allows for specifying floats using scientific notation as
well as special unquoted words for negative infinity, positive infinity, and not-a-number
[YAML 1.2 example 2.20].

2. TOSCA does not specify how to convert to other precisions nor to other formats, e.g.
Bfloat16 and TensorFloat-32.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 112 of 282

https://yaml.org/spec/1.2/spec.html#id2803231
https://yaml.org/spec/1.2/spec.html#id2761530

3. TOSCA does not specify the endianness of floats and indeed makes no requirements
for data representation.

9.1.1.4 boolean

A TOSCA boolean is a single bit.

Note that in YAML literal booleans can be only either the unquoted all-lowercase words “true”
or “false”.

A TOSCA parser shall not attempt to convert these values, nor variations such as “yes” or
“True”, as quoted strings to booleans, nor shall it attempt to convert integer values (such as 1
and 0) to booleans. This requirement is necessary for ensuring portability as well as clarity.

9.1.1.5 bytes

TOSCA bytes are an array of arbitrary bytes. Because we adhere to 64-bit precision, the
minimum length of bytes is 0 and the maximum length of bytes is 4,294,967,295.

To specify literal bytes in YAML you must use a Base64-encoded !!string [RFC 2045 section
6.8]. There exist many free tools to help you convert arbitrary data to Base64.

Example:

ode_types:
 Node:
 properties:
 preamble:
 type: bytes

service_template:
 node_templates:
 node:
 type: Node
 properties:
 preamble: "\
R0lGODlhDAAMAIQAAP//9/X17unp5WZmZgAAAOfn515eXvPz7Y6OjuDg4J+fn5\
OTk6enp56enmlpaWNjY6Ojo4SEhP/++f/++f/++f/++f/++f/++f/++f/++f/+\
+f/++f/++f/++f/++f/++SH+Dk1hZGUgd2l0aCBHSU1QACwAAAAADAAMAAAFLC\
AgjoEwnuNAFOhpEMTRiggcz4BNJHrv/zCFcLiwMWYNG84BwwEeECcgggoBADs="

Please note:

1. There is no standard way to represent literal bytes in YAML 1.2. Though some YAML
implementations may support the !!binary type working draft, to ensure portability
TOSCA implementations shall not accept this YAML type.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 113 of 282

https://yaml.org/type/binary.html

2. The TOSCA function “length” works differently for the bytes type vs. the string type. For
the latter the length is the count of Unicode runes, not the count of bytes.

3. TOSCA bytes values cannot be the null value but can be empty arrays (a bytes value
with length zero). [See “nil”, below]

9.1.1.6 nil

The TOSCA nil type always has the same singleton value. No other type can have this value.

This value is provided literally in YAML via the unquoted all-lowercase word “null”.

Example:

node_types:
 Node:
 properties:
 nothing:
 type: nil
 required: true

service_template:
 node_templates:
 node:
 type: Node
 properties:
 nothing: null

Note that a nil-typed value is distinct from an unassigned value. For consistency TOSCA
requires you to assign nil values even though their value is obvious. Thus, the above example
would be invalid if we did not specify the null value for the property at the node template.

Following is a valid example of not assigning a value:

node_types:
 Node:
 properties:
 nothing:
 type: nil
 required: false

service_template:
 node_templates:
 node:
 type: Node

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 114 of 282

9.1.2 Special Types
9.1.2.1 timestamp

The TOSCA timestamp type represents a local instant in time containing two elements: the
local notation plus the time zone offset.

TOSCA timestamps are represented as strings following [RFC 3339], which in turn uses a
simplified profile of [ISO 8601]. TOSCA adds an exception to RFC 3339: though RFC 3339
supports timestamps with unknown local offsets, represented as the "-0" timezone, TOSCA
does not support this feature and will treat the unknown time zone as UTC. There are two
reasons for this exception: the first is that many systems do not support this distinction and
TOSCA aims for interoperability, and the second is that timestamps with unknown time zones
cannot be converted to UTC, making it impossible to apply comparison functions. If this
feature is required, it can be supported via a custom data type (see XXX).

Please note:

It is strongly recommended that all literal YAML timestamps be enclosed in quotation
marks to ensure that they are parsed as strings. Otherwise, some YAML parsers might
interpret them as the YAML !!timestamp type, which is rejected by TOSCA (see below).

The TOSCA functions "equal", "greater_than", "greater_or_equal", "less_than", and
"less_or_equal" all use the universal instant, i.e. as the local instant is converted to UTC
by applying the timezone offset.

Some YAML implementations may support the !!timestamp type working draft, but to
ensure portability TOSCA implementations shall not accept this YAML type. Also note
that the YAML !!timestamp supports a relaxed notation with whitespace, which does not
conform to RFC 3339.

RFC 3339 is based on the Gregorian calendar, including leap years and leap seconds,
and is thus explicitly culturally biased. It cannot be used for non-Gregorian locales. Other
calendar representations can be supported via custom data types (see XXX).

Time zone information is expressed and stored numerically as an offset from UTC, thus
daylight savings and other local changes are not included.

TOSCA does not specify a canonical representation for timestamps. The only
requirement is that representations adhere to RFC 3339.

9.1.2.2 scalar-unit

The TOSCA scalar-unit types can be used to define scalar values along with an associated
unit.

TOSCA scalar-unit typed values have the following grammar:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 115 of 282

https://tools.ietf.org/html/rfc3339
https://www.iso.org/iso-8601-date-and-time-format.html
https://tools.ietf.org/html/rfc3339#section-4.3
https://yaml.org/type/timestamp.html

<scalar> <unit_symbol_name>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

scalar: is a mandatory scalar value

unit_symbol_name: is a mandatory name string.

The following additional requirements apply:

Any number of spaces (including zero or none) SHALL be allowed between the scalar
value and the unit symbol.

The unit symbol MUST be defined in a concrete scalar type definition.

It SHALL be considered an error if either the scalar or unit symbol portion is missing on
a property or attribute declaration derived from any scalar-unit type.

The scalar-unit type is abstract and cannot be used 'as is' in a valid TOSCA document, rather
it must be refined into a concrete scalar type by means of a type definition. Scalar type
definitions use the common key names.

A concrete scalar type is defined using the following grammar:

<scalar_unit_name>:
 derived_from: <scalar-unit_type_name>
 data_value_type: <data_type_name>
 unit_suffix: <suffix>
 unit_symbol_map:
 <unit_symbol_1>: <unit_symbol_multiplier_1>
 ...
 <unit_symbol_n>: <unit_symbol_multiplier_n>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

<scalar-unit_type_name>: represents the mandatory name of the parent type which
must be either scalar-unit or a data type derived from scalar-unit.

<data_type_name>: The TOSCA data type of the scalar. MUST be either TOSCA
float, TOSCA intger or derived from them.

<suffix>: An optional string. If not present then unit_symbol_name is equal to
unit_symbol. If present then unit_symbol_name is equal to
unit_symbol&&unit_suffix. It is provided as a convenience so that metric units
can use YAML anchor and alias to avoid repeating the table of SI prefixes. The

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 116 of 282

multiplier for unit_symbol_name has an implict value of 1.0

<unit_symbol> A name string, with no white space, used to identify the unit.

<unit_symbol_multiplier> A value of type TOSCA float which MUST be used by a
TOSCA parser to convert values with the symbol into values in the base unit.

Note that unit_symbol_name, unit_symbol and unit_suffix are all case sensitive.

The following gives an example of the use of a scalar_units:

data_types:
 non_negative_number:
 derived_from: float
 validation: { $greater_or_equal: [$value, 0] }

 bitrate:
 version: 2.0
 description: bitrate allowing multiples of 1024 as well as 1000 but not
including prefixes above 10^12
 derived_from: scalar-unit
 data_value_type: non_negative_number
 unit_symbol_map:
 B: 1 # No unit_suffix defined so base unit must be included in the list
 kB: 1000 # No unit_suffix defined so unit_symbol includes the B character
as well as the k
 KiB: 1024
 MB: 1000000
 MiB: 1048576
 GB: 1000000000
 GiB: 1073741824
 TB: 1000000000000
 TiB: 1099511627776

 length:
 derived_from: scalar-unit
 unit_symbol_map: &ISO80000
 # symbols for smaller multipliers ommitted for brevity
 μ: 0.0001
 m: 0.001
 c: 0.01
 d: 0.1
 da: 10 # symbols may be muliple characters
 h: 100 # integer auto converted to float
 k: 1000
 M: 1000000

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 117 of 282

 # symbols for larger multipliers omiited
 unit_suffix: m ## Note suffix is defined so will be appended to entries in
the unit_symbol_map

 mass:
 derived_from: scalar-unit
 unit_symbol_map: *ISO80000 # Note map is used by both length and mass by
means of YAML anchor and alias
 unit_suffix: g

node_types:
 box:
 properties:
 weight:
 type: mass
 height:
 type: length
 width:
 type: length
 validation: { $less_than: [15 cm] } ## Validation is in centimeters
 throughput:
 type: bitrate
service_template:
 node_templates:
 node:
 type: box
 properties:
 weight: 10.0kg # No space
 height: 0.1 m
 width: 125.3 mm ## Defintion is in millimeters, conversion of units
within a scalar is performed by the parser
 throughput: 10 KiB # Integer auto converted to float

Derivation of scalar-types uses the following rules:

- derived_from, data_value_type and unit_suffix may not be changed
- Additonal entries may be added to the unit_symbol_map

9.1.2.2.2 scalar-unit.time

TOSCA no longer has an in-built date type for time but one can be defined using the scalar-
unit abstract class as shown in the following example:

data_types:
 scalar-unit.time:
 version: 2.0

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 118 of 282

 description: Time including non-SI units accepted for use with the SI units
 derived_from: scalar-unit
 data_value_type: float
 unit_symbol_map:
 # symbols for smaller multipliers ommitted for brevity
 μs: 0.0001
 ms: 0.001
 cs: 0.01
 ds: 0.1
 das: 10
 hs: 100
 ks: 1000
 Ms: 1000000
 min: 60
 h: 3600 # hour
 d: 86400 # day
 # symbols for larger multipliers omiited

9.1.2.3 version

The TOSCA version type represents a version string.

TOSCA versions provide a normative means to represent a version string which enables the
comparison and management of version information over time.

TOSCA version strings have the following grammar:

<major_version>.<minor_version>[.<fix_version>[.<qualifier>[-<build_version>]]
]

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

major_version: is a mandatory integer value greater than or equal to 0 (zero)

minor_version: is a mandatory integer value greater than or equal to 0 (zero).

fix_version: is an optional integer value greater than or equal to 0 (zero).

qualifier: is an optional string that indicates a named, pre-release version of the
associated code that has been derived from the version of the code identified by the
combination major_version, minor_version and fix_version numbers.

build_version: is an optional integer value greater than or equal to 0 (zero) that can be
used to further qualify different build versions of the code that has the same
qualifer_string.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 119 of 282

A version value of zero (i.e., ‘0.0’, or ‘0.0.0’) SHALL indicate there no version provided.

When specifying a version string that contains just a major and a minor version number, the
version string must be enclosed in quotes to prevent the YAML parser from treating the
version as a floating point value.

The TOSCA version type is compatible with the Apache Maven versioning policy [Maven-
Version]. It supports version comparison as follows:

When comparing TOSCA versions, all component versions (i.e., major, minor and fix)
are compared in sequence from left to right.

TOSCA versions that include the optional qualifier are considered older than those
without a qualifier.

TOSCA versions with the same major, minor, and fix versions and have the same
qualifier string, but with different build versions can be compared based upon the build
version.

Qualifier strings are considered domain-specific. Therefore, this specification makes no
recommendation on how to compare TOSCA versions with the same major, minor and
fix versions, but with different qualifiers strings and simply considers them different
branches derived from the same code.

The following are examples of valid TOSCA version strings:

basic version strings
‘6.1’
2.0.1

version string with optional qualifier
3.1.0.beta

version string with optional qualifier and build version
1.0.0.alpha-10

9.1.3 Collection Types
9.1.3.1 list

The TOSCA list type allows for specifying multiple values for a a parameter or property. For
example, if an application allows for being configured to listen on multiple ports, a list of ports
could be configured using the list data type.

Note that all entries in a list must be of the same type. The type (for simple entries) or schema
(for complex entries) is defined by the mandatory entry_schema attribute of the respective
property definition, attribute definitions, or input or output parameter definitions. Schema
definitions can be arbitrarily complex (they may themselves define a list).

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 120 of 282

TOSCA list values are essentially normal YAML lists. They support the square bracket
notation as follows:

[<list_entry_1>, <list_entry_2>, ...]

TOSCA list values also support bulleted list notation as follows:

- <list_entry_1>
- ...
- <list_entry_n>

In the above grammars, the pseudo values that appear in angle brackets have the following
meaning:

<list_entry_*>: represents one entry of the list.

The following example shows a list assignment using the square bracket notation:

 listen_ports: [80, 8080]

The following example shows the same list assignment using the bulleted list notation:

listen_ports:
 - 80
 - 8080

The following example shows a list declaration with an entry schema based upon a simple
integer type (which has an additional validation clause):

<some_entity>:
 ...
 properties:
 listen_ports:
 type: list
 entry_schema:
 description: listen port entry (simple integer type)
 type: integer
 validation: { $less_or_equal: [$value, 128] }

The following example shows a list declaration with an entry schema based upon a complex
type:

<some_entity>:
 ...
 properties:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 121 of 282

 products:
 type: list
 entry_schema:
 description: Product information entry (complex type) defined elsewhere
 type: ProductInfo

9.1.3.2 map

The TOSCA map type allows for specifying multiple values for a parameter of property as a
map. In contrast to the list type, where each entry can only be addressed by its index in the list,
entries in a map are named elements that can be addressed by their keys.

Note that entries in a map for one property or parameter must be of the same type. The type
(for simple entries) or schema (for complex entries) is defined by the entry_schema attribute
of the respective property definition, attribute definition, or input or output parameter definition.
In addition, the keys that identify entries in a map must be of the same type as well. The type
of these keys is defined by the key_schema attribute of the respective property_definition,
attribute_definition, or input or output parameter_definition. If the key_schema is not specified,
keys are assumed to be of type string.

TOSCA maps are normal YAML dictionaries. They support the following single-line grammar:

{ <entry_key_1>: <entry_value_1>, ..., <entry_key_n>: <entry_value_n> }

In addition, TOSCA maps also support the following multi-line grammar:

<entry_key_1>: <entry_value_1>
...
<entry_key_n>: <entry_value_n>

In the above grammars, the pseudo values that appear in angle brackets have the following
meaning:

entry_key_*: the mandatory key for an entry in the map. While YAML allows arbitrary
data to be used as dictionary keys, TOSCA map keys must be strings.

entry_value_*: is the value of the respective entry in the map

The following example shows the single-line option which is useful for only short maps with
simple entries:

notation option for shorter maps
user_name_to_id_map: { user1: 1001, user2: 1002 }

The next example shows the multi-line option where each map entry is on a separate line; this
option is typically useful or more readable if there is a large number of entries, or if the entries

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 122 of 282

are complex.

notation for longer maps
user_name_to_id_map:
 user1: 1001
 user2: 1002

The following example shows a declaration of a property of type map with an entry schema
definition based upon the built-in string type (which has an additional validation clause):

<some_entity>:
 ...
 properties:
 emails:
 type: map
 entry_schema:
 description: basic email address
 type: string
 validation: { $less_or_equal: [$value, 128] }

The next example shows a map with an entry schema definition for contact information:

<some_entity>:
 ...
 properties:
 contacts:
 type: map
 entry_schema:
 description: simple contact information
 type: ContactInfo

9.2 Data Type

A data type defines the schema for user-defined data types in TOSCA. User-defined data
types comprise derived types that derive from from the TOSCA built-in types and complex
types that define collections of properties that each have their own data types.

A data type definition is a type of TOSCA type definition and as a result supports the common
keynames listed in Section 6.4.1. In addition, the data type definition has the following
recognized keynames:

Keyname Mandatory Type Description

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 123 of 282

validation no validation
clause

The optional validation clause that must
evaluate to True for values of this data type to
be valid.

properties no map of
property
definitions

The optional map property definitions that
comprise the schema for a complex data type
in TOSCA.

key_schema conditional schema
definition

For data types that derive from the TOSCA
map data type, the optional schema definition
for the keys used to identify entries in
properties of this data type. If not specified, the
key_schema defaults to string. If present, the
key_schema must derive from string. For data
types that do not derive from the TOSCA map
data type, the key_schema is not allowed.

entry_schema conditional schema
definition

For data types that derive from the TOSCA
map or list data types, the mandatory schema
definition for the entries in properties of this
data type. For data types that do not derive
from the TOSCA list or map data type, the
entry_schema is not allowed.

Keyname Mandatory Type Description

These keynames can be used according to the following grammar:

<data_type_name>:
 derived_from: <existing_type_name>
 version: <version_number>
 metadata: <map of yaml_values>
 description: <datatype_description>
 validation: <validation_clause>
 properties: <property_definitions>
 key_schema: <key_schema_definition>
 entry_schema: <entry_schema_definition>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

data_type_name: represents the mandatory symbolic name of the data type as a string.

existing_type_name: represents the optional name of a valid TOSCA built-in type or
data type from which this new data type derives.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 124 of 282

validation_clause: represents the optional validation clause that must evaluate to True
for values of this data type to be valid.

property_definitions: represents the optional map of one or more property definitions
that provide the schema for the data type

property_definitions are only allowed for complex type definitions and MAY NOT
be added to custom data types derived_from TOSCA built-in types.

key_schema_definition: if the data type derives from the TOSCA map type (i.e
existing_type_name is a map or derives from a map), it represents the optional schema
definition for the keys used to identify entry properties of this type.

entry_schema_definition: if the data type derives from the TOSCA map or list types (i.e.
existing_type name is a map or list or derives from a map or list), it represents the
mandatory schema definition for the entries in properties of this type.

The following requirements apply:

A valid datatype definition MUST have either a valid derived_from declaration or at
least one valid property definition.

A validation clause SHALL be type-compatible with the type declared by the
derived_from keyname.

If a properties keyname is provided, it SHALL contain one or more valid property
definitions.

During data type derivation the keyname definitions follow these rules:

validation: a new validation clause may be defined; this validation clause does not
replace the validation clause defined in the parent type but is considered in addition to
it.

properties: existing property definitions may be refined; new property definitions may be
added.

key_schema: the key_schema definition may be refined according to schema
refinement rules.

entry_schema: the entry_schema definition may be refined according to schema
refinement rules.

The following code snippet shows an example data type definition that derives from the built-in
string type:

ShortString:
 derived_from: string

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 125 of 282

 validation: { $less_or_equal: [$value, 16] }

The next example defines a complex data type that represents a phone number:

PhoneNumber:
 properties:
 countrycode:
 type: integer
 areacode:
 type: integer
 number:
 type: integer

The following example shows a complex data type that derives from and extends a previously
defined complex data type:

ExtendPhoneNumber:
 derived_from: PhoneNumber
 properties:
 phone_description:
 type: string
 validation: { $less_or_equal: [$value, 128] }

9.3 Schema Definition
All entries in a map or list for one property or parameter must be of the same type. Similarly,
all keys for map entries for one property or parameter must be of the same type as well. A
TOSCA schema definition must be used to specify the type (for simple entries) or schema (for
complex entries) for keys and entries in TOSCA set types such as the TOSCA list or map.

If the schema definition specifies a map key, the type of the key schema must be derived
originally from the string type (which basically ensures that the schema type is a string with
additional validation clause). As there is little need for complex keys this caters to more
straight-forward and clear specifications. If the key schema is not defined it is assumed to be
string by default.

Schema definitions appear in data type definitions when derived_from a map or list type or in
parameter, property, or attribute definitions of a map or list type.

The following is the list of recognized keynames for a TOSCA schema definition:

Keyname Mandatory Type Description

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 126 of 282

type yes string The mandatory data type for the key or entry. If
this schema definition is for a map key, then the
referred type must be derived originally from
string.

description no string The optional description for the schema.

validation no validation
clause

The optional validation clause that must
evaluate to True for the property.

key_schema no schema
definition

When the schema itself is of type map, the
optional schema definition that is used to
specify the type of the keys of that map’s entries
(if key_schema is not defined it is assumed to
be “string” by default). For other schema types,
the key_schema must not be defined.

entry_schema conditional schema
definition

When the schema itself is of type map or list, the
schema definition is mandatory and is used to
specify the type of the entries in that map or list.
For other schema types, the entry_schema must
not be defined.

Keyname Mandatory Type Description

These keynames can be used according to the following grammar:

<schema_definition>:
 type: <schema_type>
 description: <schema_description>
 metadata: <map_of_yaml_values>
 validation: <schema_validation_clause>
 key_schema: <key_schema_definition>
 entry_schema: <entry_schema_definition>

The following single-line grammar may be used when only the schema type needs to be
declared:

<schema_definition>: <schema_type>

In the above grammars, the pseudo values that appear in angle brackets have the following
meaning:

schema_type: represents the mandatory type name for entries of the specified schema

if this schema definition is for a map key, then the schema_type must be derived

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 127 of 282

originally from string.

schema_validation_clause: represents the optional validation clause for entries of the
specified schema.

key_schema_definition: if the schema_type is map, it represents the optional schema
definition for the keys of that map’s entries.

entry_schema_definition: if the schema_type is map or list, it represents the mandatory
schema definition for the entries in that map or list.

A schema definition uses the following definition refinement rules when the containing entity
type is derived:

type: must be derived from (or the same as) the type in the schema definition in the
parent entity type definition.

description: a new definition is unrestricted and will overwrite the one inherited from the
schema definition in the parent entity type definition.

validation: a new definition is unrestricted; this validation clause does not replace the
validation clause defined in the schema definition in the parent entity type but is
considered in addition to it.

key_schema: may be refined (recursively) according to schema refinement rules.

entry_schema: may be refined (recursively) according to schema refinement rules.

9.3 Property Definition
A property definition defines a named, typed value and related data that can be associated
with an entity defined in this specification (e.g., node types, relationship types, capability
types, etc.). Properties are used by template authors to provide configuration values to
TOSCA entities that indicate their desired state when they are instantiated. The value of a
property can be retrieved using the $get_property function within TOSCA service templates.

The following is the list of recognized keynames for a TOSCA property definition:

Keyname Mandatory Type Description

type yes string The mandatory data type for the property.

description no string The optional description for the property.

metadata no map of
yaml
values

Defines a section used to declare additional
metadata information.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 128 of 282

required no boolean An optional key that declares a property as
required (true) or not (false). Defaults to true.

default no <must
match
property
type>

An optional key that may provide a value to be
used as a default if not provided by another
means. The default keyname SHALL NOT be
defined when property is not required (i.e. the
value of the required keyname is false).

value no <see
below>

An optional key that may provide a fixed value to
be used. A property that has a fixed value
provided (as part of a definition or refinement)
cannot be subject to a further refinement or
assignment. That is, a fixed value cannot be
changed.

validation no validation
clause

The optional validation clause for the property.

key_schema conditional schema
definition

The schema definition for the keys used to
identify entries in properties of type TOSCA
map (or types that derive from map). If not
specified, the key_schema defaults to string.
For properties of type other than map, the
key_schema is not allowed.

entry_schema conditional schema
definition

The schema definition for the entries in
properties of TOSCA collection types such as
list, map, or types that derive from list or map) If
the property type is a collection type, the entry
schema is mandatory. For other types, the
entry_schema is not allowed.

Keyname Mandatory Type Description

Property definitions have the following grammar:

<property_name>:
 type: <property_type>
 description: <property_description>
 required: <property_required>
 default: <default_value>
 value: <property_value> | <property_value_expression>
 status: <status_value>
 validation: <validation_clause>
 key_schema: <key_schema_definition>

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 129 of 282

 entry_schema: <entry_schema_definition>
 metadata:
 <metadata_map>

The following single-line grammar is supported when only a fixed value or fixed value
expression needs to be provided to a property:

<property_name>: <property_value> | <property_value_expression>

This single-line grammar is equivalent to the following:

<property_name>:
 value: <property_value> | <property_value_expression>

Note that the short form can be used only during a refinement (i.e. the property has been
previously defined).

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

property_name: represents the mandatory symbolic name of the property as a string.

property_type: represents the mandatory data type of the property.

property_required: represents an optional boolean value (true or false) indicating
whether or not the property is required. If this keyname is not present on a property
definition, then the property SHALL be considered required (i.e., true) by default.

default_value: contains a type-compatible value that is used as a default value if a value
is not provided by another means (via the fixed_value definition or via property
assignment);

the default_value shall not be defined for properties that are not required (i.e.
property_required is “false”) as they will stay undefined.

<property_value> or <property_value_expression>: contains a type-compatible value or
value expression that may be defined during property definition or refinement to set and
fix the value definition of the property.

note that a value definition cannot be changed; once defined, the property cannot
be further refined or assigned. Thus, value definitions should be avoided in
data_type definitions.

validation_clause: represents the optional Boolean expression that must evaluate to true
for a value of this property to be valid.

key_schema_definition: if the property_type is map or derives from map, represents the

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 130 of 282

optional schema definition for the keys used to identify entries in that map.

entry_schema_definition: if the property_type is map or list, or derives from map or list,
represents the mandatory schema definition for the entries in that map or list.

A property definition within data, capability, node, relationship, group, policy, and artifact types
(including capability definitions in node types) matching the name of a property in the derived
entity type uses the following refinement rules to combine the two property definitions together:

type: must be derived from (or the same as) the type in the property definition in the
parent entity type definition.

description: a new definition is unrestricted and will overwrite the one inherited from the
property definition in the parent entity type definition.

required: if defined to “false” in the property definition parent entity type it may be
redefined to “true”; note that if undefined it is automatically considered as being defined
to “true”.

default: a new definition is unrestricted and will overwrite the one inherited from the
property definition in the parent entity type definition (note that the definition of a default
value is only allowed if the required keyname is (re)defined as “true”).

value: if undefined in the property definition in the parent entity type, it may be defined to
any type-compatible value; once defined, the property cannot be further refined or
assigned.

validation: a new definition is unrestricted; this validation clause does not replace the
validation clause defined in the property definition in the parent entity type but is
considered in addition to it.

key_schema: if defined in the property definition in the parent entity type it may be
refined according to schema refinement rules.

entry_schema: if defined in the property definition in the parent entity type it may be
refined according to schema refinement rules.

The following code snippet shows an example property definition with a validation clause:

properties:
 num_cpus:
 type: integer
 description: Number of CPUs requested for a software node instance.
 default: 1
 required: true
 validation: { $valid_values: [$value, [1, 2, 4, 8]] }

The following shows an example of a property refinement. Consider the definition of an

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 131 of 282

Endpoint capability type:

Endpoint:
 properties:
 protocol:
 type: string
 required: true
 default: tcp
 port:
 type: PortDef
 required: false
 secure:
 type: boolean
 required: false
 default: false

The Endpoint.Admin capability type refines the secure property of the Endpoint capability type
from which it derives by forcing its value to always be true:

Endpoint.Admin:
 derived_from: Endpoint
 # Change Endpoint secure indicator to true from its default of false
 properties:
 secure: true

9.4 Property Assignment
A property assignment is used to assign a value to a property within a TOSCA template. A
TOSCA property assignment has no keynames. Property assignments have the following
grammar:

<property_name>: <property_value> | <property_value_expression>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

property_name: represents the name of a property that will be used to select a property
definition with the same name within on a TOSCA entity (e.g., node template,
relationship template, etc.) which is declared in its declared type (e.g., a node type,
node template, capability type, etc.).

property_value, property_value_expression: represent the type-compatible value to
assign to the property. Property values may be provided as the result of the evaluation of
an expression or a function.

The following requirements apply:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 132 of 282

Properties that have a (fixed) value defined during their definition or during a
subsequent refinement may not be assigned (as their value is already set).

If a required property has no value defined or assigned, its default value is assigned

A non-required property that is not assigned stays undefined, thus the default keyname
is irrelevant for a non-required property.

9.5 Attribute Definition
An attribute definition defines a named, typed value that can be associated with an entity
defined in this specification (e.g., a node, relationship or capability type). Specifically, it is
used to expose the actual state of some a TOSCA entity after it has been deployed and
instantiated (as set by the TOSCA orchestrator).

Attribute definitions are very similar to property definitions; however, properties of entities
reflect a configuration value that carries the template author’s requested or desired value (i.e.,
desired state) which the orchestrator (attempts to) use when instantiating the entity. Attributes
on the other hand reflect the actual value (i.e., actual state) that provides the actual instantiated
value. For example, a property can be used to request the IP address of a node using a
property (setting); however, the actual IP address after the node is instantiated may by
different and made available by an attribute. To allow both the desired state and the actual
state to be tracked, TOSCA orchestrators MUST automatically create an attribute for every
declared property (with the same symbolic name) to allow introspection of both the desired
state (property) and actual state (attribute). If an attribute is reflected from a property, its initial
value is the value of the reflected property.

Attribute values can be retrieved via the $get_attribute function from the representation
model and used as values to other entities within TOSCA service templates. Attribute values
an also be set by output mappings defined in interface operations.

The following is the list of recognized keynames for a TOSCA attribute definition:

Keyname Mandatory Type Description

type yes string The mandatory data type for the attribute.

description no string The optional description for the attribute.

metadata no map of
yaml
data

Defines a section used to declare additional
metadata information.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 133 of 282

default no <must
match
attribute
type>

An optional key that may provide a value to be
used as a default if not provided by another
means. This value SHALL be type compatible
with the type declared by the attribute
definition’s type keyname.

validation no validation
clause

The optional validation clause for the attribute.

key_schema conditional schema
definition

The schema definition for the keys used to
identify entries in attributes of type TOSCA map
(or types that derive from map). If not specified,
the key_schema defaults to string. For attributes
of type other than map, the key_schema is not
allowed.

entry_schema conditional schema
definition

The schema definition for the entries in
attributes of TOSCA collection types such as
list, map, or types that derive from list or map) If
the attribute type is a collection type, the entry
schema is mandatory. For other types, the
entry_schema is not allowed.

Keyname Mandatory Type Description

Attribute definitions have the following grammar:

attributes:
 <attribute_name>:
 type: <attribute_type>
 description: <attribute_description>
 metadata: <metadata_map>
 default: <default_value>
 validation: <attribute_validation_clause>
 key_schema: <key_schema_definition>
 entry_schema: <entry_schema_definition>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

attribute_name: represents the mandatory symbolic name of the attribute as a string.

attribute_type: represents the mandatory data type of the attribute.

default_value: contains a type-compatible value that may be used as a default if not
provided by another means. Values for the default keyname MUST be derived or

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 134 of 282

calculated from other attribute or operation output values (that reflect the actual state of
the instance of the corresponding resource) and not hard-coded or derived from a
property settings or inputs (i.e., desired state).

attribute_validation_clause: represents the optional validation clause that must evaluate
to True for values for the defined attribute to be valid.

key_schema_definition: if the attribute_type is map, represents the optional schema
definition for the keys used to identify entries in that map.

entry_schema_definition: if the attribute_type is map or list, represents the mandatory
schema definition for the entries in that map or list.

An attribute definition within data, capability, node, relationship, and group types (including
capability definitions in node types) uses the following refinement rules when the containing
entity type is derived:

type: must be derived from (or the same as) the type in the attribute definition in the
parent entity type definition.

description: a new definition is unrestricted and will overwrite the one inherited from the
attribute definition in the parent entity type definition.

default: a new definition is unrestricted and will overwrite the one inherited from the
attribute definition in the parent entity type definition.

validation: a new definition is unrestricted; this validation clause does not replace the
validation clause defined in the attribute definition in the parent entity type but is
considered in addition to it.

key_schema: if defined in the attribute definition in the parent entity type it may be
refined according to schema refinement rules.

entry_schema: if defined in the attribute definition in the parent entity type it may be
refined according to schema refinement rules.

The following represents a mandatory attribute definition:

actual_cpus:
 type: integer
 description: Actual number of CPUs allocated to the node instance.

9.6 Attribute Assignment
An attribute assignment is used to assign a value to an attribute within a TOSCA template. A
TOSCA attribute assignment has no keynames. Attribute assignments have the following
grammar:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 135 of 282

<attribute_name>: <attribute_value> | <attribute_value_expression>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

attribute_name: represents the name of an attribute that will be used to select an
attribute definition with the same name within on a TOSCA entity (e.g., node template,
relationship template, etc.) which is declared (or reflected from a Property definition) in
its declared type (e.g., a node type, node template, capability type, etc.).

attribute_value, attribute_value_expresssion: represent the type-compatible value to
assign to the attribute. Attribute values may be provided as the result from the evaluation
of an expression or a function.

Note that attributes that are the target of a parameter mapping assignment cannot also be
assigned a value using an attribute assignment.

9.7 Parameter Definition
A parameter definition defines a named, typed value and related data that may be used to
exchange values between the TOSCA orchestrator and the external world. Such values may
be

inputs and outputs of interface operations and notifications

inputs and outputs of workflows

inputs and outputs of service templates

From the perspective of the TOSCA orchestrator such parameters are either incoming (i.e.
transferring a value from the external world to the orchestrator) or outgoing (transferring a
value from the orchestrator to the external world). Thus:

outgoing parameters are:

template outputs

internal workflow outputs

external workflow inputs

operation inputs

incoming parameters are:

template inputs

internal workflow inputs

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 136 of 282

external workflow outputs

operation outputs

notification outputs

An outgoing parameter definition is essentially the same as a TOSCA property definition,
however it may optionally inherit the data type of the value assigned to it rather than have an
explicit data type defined.

An “incoming parameter definition may define an attribute mapping of the parameter value to
an attribute of a node. Optionally, it may inherit the data type of the attribute it is mapped to,
rather than have an explicit data type defined for it.

The TOSCA parameter definition has all the keynames of a TOSCA property definition with
the following additional or changed keynames:

Keyname Mandatory Type Description

type no string The data type of the parameter. While this
keyname is mandatory for a TOSCA Property
definition, it is not mandatory for a TOSCA
parameter definition.

value no <must
match
parameter
type>

The type-compatible value to assign to the
parameter. Parameter values may be provided as
the result from the evaluation of an expression or a
function. May only be defined for outgoing
parameters. Mutually exclusive with the mapping
keyname.

mapping no attribute
selection
format

A mapping that specifies the node or relationship
attribute into which the returned output value must
be stored. May only be defined for incoming
parameters. Mutually exclusive with the value
keyname.

Parameter definitions have the following grammar:

<parameter_name>:
 type: <parameter_type>
 description: <parameter_description>
 metadata: <metadata_map>
 value: <parameter_value> | <parameter_value_expression>
 mapping: <attribute_selection_form>
 required: <parameter_required>

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 137 of 282

 default: <parameter_default_value>
 validation: <parameter_validation_clause>
 key_schema: <key_schema_definition>
 entry_schema: <entry_schema_definition>

The following single-line grammar is supported for outgoing parameter definitions when only a
fixed value needs to be provided:

<parameter_name>: <parameter_value> | <parameter_value_expression>

This single-line grammar is equivalent to the following:

<parameter_name>:
 value: <parameter_value> | <parameter_value_expression>

The following single-line grammar is supported for incoming parameter definitions when only
a parameter to attribute mapping needs to be provided:

<parameter_name>: <attribute_selection_form>

This single-line grammar is equivalent to the following:

<parameter_name>:
 mapping: <attribute_selection_form>

Note that the context of the parameter definition unambiguously determines if the parameter is
an incoming or an outgoing parameter.

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

parameter_name: represents the mandatory symbolic name of the parameter as a
string.

parameter_type: represents the optional data type of the parameter. Note, this keyname
is mandatory for a TOSCA Property definition, but is not for a TOSCA Parameter
definition.

parameter_value, parameter_value_expresssion: represent the type-compatible value
to assign to the parameter. Parameter values may be provided as the result from the
evaluation of an expression or a function.

once the value keyname is defined, the parameter cannot be further refined or
assigned.

the value keyname is relevant only for outgoing parameter definitions and

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 138 of 282

SHOULD NOT be defined in incoming parameter definitions.

parameter_required: represents an optional boolean value (true or false) indicating
whether or not the parameter is required. If this keyname is not present on a parameter
definition, then the parameter SHALL be considered required (i.e., true) by default.

default_value: contains a type-compatible value that may be used as a default if not
provided by other means.

the default keyname SHALL NOT be defined for parameters that are not required
(i.e. parameter_required is “false”) as they will stay undefined.

parameter_validation_clause: represents the optional validation clause on the
parameter definition.

key_schema_definition: if the parameter_type is map, represents the optional schema
definition for the keys used to identify entries in that map. Note that if the key_schema is
not defined, the key_schema defaults to string.

entry_schema_definition: if the parameter_type is map or list, represents the mandatory
schema definition for the entries in that map or list.

attribute_selection_form: a list that corresponds to a valid attribute_selection_format;
the parameter is mapped onto an attribute of the containing entity

the mapping keyname is relevant only for incoming parameter definitions and
SHOULD NOT be defined in outgoing parameter definitions.

A parameter definition within interface types, interface definitions in node and relationship
types, uses the following refinement rules when the containing entity type is derived:

type: must be derived from (or the same as) the type in the parameter definition in the
parent entity type definition.

description: a new definition is unrestricted and will overwrite the one inherited from the
parameter definition in the parent entity type definition.

required: if defined to “false” in the parameter definition parent entity type it may be
redefined to “true”; note that if undefined it is automatically considered as being defined
to “true”.

default: a new definition is unrestricted and will overwrite the one inherited from the
parameter definition in the parent entity type definition (note that the definition of a
default value is only allowed if the required keyname is (re)defined as “true”).

value: if undefined in the parameter definition in the parent entity type, it may be defined
to any type-compatible value; once defined, the parameter cannot be further refined or
assigned

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 139 of 282

the value keyname should be defined only for “outgoing” parameters.

mapping: if undefined in the parameter definition in the parent entity type, it may be
defined to any type-compatible attribute mapping; once defined, the parameter cannot
be further refined or mapped

the mapping keyname should be defined only for “incoming” parameters.

status: a new definition is unrestricted and will overwrite the one inherited from the
parameter definition in the parent entity type definition.

validation: a new definition is unrestricted; this validation clause does not replace the
validation clause defined in the parameter definition in the parent entity type but is
considered in addition to it.

key_schema: if defined in the parameter definition in the parent entity type it may be
refined according to schema refinement rules.

entry_schema: if defined in the parameter definition in the parent entity type it may be
refined according to schema refinement rules.

metadata: a new definition is unrestricted and will overwrite the one inherited from the
parameter definition in the parent entity type definition.

The following represents an example of an input parameter definition with a validation clause:

inputs:
 cpus:
 type: integer
 description: Number of CPUs for the server.
 validation: { $valid_values: [$value, [1, 2, 4, 8]] }

The following represents an example of an (untyped) output parameter definition:

outputs:
 server_ip:
 description: The private IP address of the provisioned server.
 value: { $get_attribute: [my_server, private_address] }

9.8 Parameter Value Assignment

A parameter value assignment is used to assing a value to an outgoing parameter within a
TOSCA template. A TOSCA parameter value assignment has no keynames. Parameter value
assignments have the following grammar:

<parameter_name>: <parameter_value> | <parameter_value_expression>

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 140 of 282

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

parameter_name: represents the symbolic name of the parameter to assign; note that in
some cases, even parameters that do not have a corresponding definition in the entity
type of the entity containing them may be assigned (see e.g. inputs and outputs in
interfaces).

parameter_value, parameter_value_expression: represent the type-compatible value to
assign to the parameter. Parameter values may be provided as the result from the
evaluation of an expression or a function.

The following requirements apply:

Parameters that have a (fixed) value defined during their definition or during a
subsequent refinement may not be assigned (as their value is already set).

If a required parameter has no value defined or assigned, its default value is assigned.

A non-required parameter that has no value assigned it stays undefined, thus the default
keyname is irrelevant for a non-required parameter.

9.9 Parameter Mapping Assignment

A parameter mapping assignment is used to define the mapping of an incoming parameter
value (e.g. an output value that is expected to be returned by an operation implementation) to
an attribute into which the returned incoming parameter value must be stored. A TOSCA
parameter value assignment has no keynames. Parameter value assignments use the
following grammar:

<parameter_name>: <tosca_path, <attribute_name>,
<nested_attribute_name_or_index_or_key_1>, ...,
<nested_attribute_name_or_index_or_key_n>

In the above grammars, the pseudo values that appear in angle brackets have the following
meaning:

parameter_name: represents the symbolic name of the parameter to assign assign;
note that in some cases, even parameters that do not have a corresponding definition in
the entity type of the entity containing them may be assigned (see e.g. inputs and
outputs in interfaces).

tosca_path using the <tosca_path> a TOSCA processor can traverse the
representation graph to reach the attribute into which to store the output value. Note that
while the <tosca_path is very powerful, its usage should be restricted to only reach
attributes in the local node or local relationship or in a local capability.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 141 of 282

attribute_name: represents the name of the attribute in the local node or relationship
context (i.e.,SELF) into which to map the value of the incoming parameter referred to by
parameter_name.

nested_attribute_name_or_index_or_key_*: Some TOSCA attributes are complex (i.e.
composed as nested structures). These parameters are used to dereference into the
names of these nested structures when needed. Som attributes are lists or maps. In
these cases, an index or key may be provided to reference a specific entry in the list or
map (identified by the previous parameter).

Note that it is possible for multiple operations to define outputs that map onto the same
attribute value. For example, a create operation could include an output value that sets an
attribute to an initial value, and the subsequence configure operation could then update that
same attribute to a new value.

It is also possible that a node template assigns a value to an attribute that has an operation
output mapped to it (including a value that is the result of calling an intrinsic function).
Orchestrators could use the assigned value for the attribute as its initial value. After the
operation runs that maps an output value onto that attribute, the orchestrator must then use the
updated value, and the value specified in the node template will no longer be used.

Note that parameters that have a mapping defined during their definition or during a
subsequent refinement may not be assigned (as their mapping is already set).

9.10 Validation Clause
A validation clause is a Boolean expression that must evaluate to True if the value for the
entity it references is considered valid. Validation clauses have the following grammar:

validation: < validation_clause>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

validation_clause: represents a Boolean expression that must evaluate to True in order
for values to be valid. Any Boolean expression can be used with any function with any
degree of nesting.

The Boolean expression used as a validation clause must have a mechanism for referencing
the value to which the expression applies. A special-purpose function is introduced for this
purpose. This function is named $value and refers to the value used for the data type or the
parameter definition that contains the validation clause.

The following shows an example of validation clauses used in data type definitions. They also
illustrate the various alternatives for the $value function syntax:

data_types:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 142 of 282

 # Full function syntax for the $value function
 Count1:
 derived_from: integer
 validation: { $greater_or_equal: [{ $value: [] }, 0] }
 # Simple function syntax for the $value function
 Count2:
 derived_from: integer
 validation: { $greater_or_equal: [$value, 0] }
 # Full function syntax with arguments
 FrequencyRange:
 properties:
 low:
 type: scalar-unit.frequency
 high:
 type: scalar-unit.frequency
 validation:
 $greater_or_equal: [{ $value: [high] }, { $value: [low] }]

The following shows an example of validation clauses used in property definitions:

node_types:
 Scalable:
 properties:
 minimum_instances:
 type: integer
 validation: { $greater_or_equal: [$value, 0] }
 maximum_instances:
 type: integer
 validation:
 $greater_or_equal:
 - $value
 - $get_property: [SELF, minimum_instances]
 default_instances:
 type: integer
 validation:
 $and:
 - $greater_or_equal:
 - $value
 - $get_property: [SELF, minimum_instances]
 - $less_or_equal:
 - $value
 - $get_property: [SELF, maximum_instances]
 required: false

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 143 of 282

10 TOSCA Functions
The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

10.1 Function Syntax
TOSCA supports the use of functions for providing dynamic service data values at runtime.
The syntax of a function has two representations:

Any function can be represented by a YAML map with a single key, where the key is a
string starting with a $ (dollar sign) character and where the remainder of the string
represents the function name. If present, the value in the key-value pair represents the
function arguments.

A function without arguments can alternatively be represented by a YAML string value,
where the string starts with a $ (dollar sign) character and where the remainder of the
string represents the function name. This representation cannot be used in map keys.

Function names may not contain the $ character as it will conflict with the escape
mechanisms described below.

Therefore, any string starting with a $ (dollar sign) character will be interpreted as a function
call. To allow for strings starting with \$ character to be specified, the $ character at the start
of the string needs to be escaped by using $$(two dollar signs) characters instead. For
example:

$$name will represent the literal string $name

$$$item will represent the literal string $$item, as only the first $ character is escaped.

As we could have function calls that return values to be used as keys in a map, hypothetically it
is possible that we use the same function call as a YAML key more than once. Because YAML
does not allow for duplicate map keys, in such cases we must allow for key variation. This is
achieved by adding suffixes after the function name starting with a second $ character. For
example, the following is a valid map where the function “keygen” is called three times and the
returned values are used as keys in the hint map:

hint:
 { $keygen: [UUID] }: 34
 { $keygen$1: [UUID] }: 56
 { $keygen$2: [UUID] }: 78

TOSCA functions may be used wherever a value is expected, such as:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 144 of 282

a value for a TOSCA keyname

a value for a parameter or property or attribute, including a value within a complex
datatype

a value for the arguments of another function

other places such as in validation clauses, conditions, etc.

TOSCA parsers are expected to evaluate function values at runtime based on the provided
function arguments.

The following snippet shows an example of a node template that uses a function to retrieve a
security context at runtime:

properties:
 context: { $get_security_context: { env: staging, role: admin } }

Nested functions are supported, that is, functions can be used in the arguments of another
function. The result of the internal function will be passed as an argument to the outer function:

properties:
 nested: {$outer_func: [{$inner_func: [iarg1, iarg2]}, oarg2]}

The following snippet shows escaped strings in a map that do not represent function calls:

properties:
 prop1:
 $$myid1: myval1
 myid2: $$myval2
 $$myid3: $$myval3

The arguments to the functions can be arbitrary TOSCA data, although TOSCA defines a
number of built-in functions that define function-specific syntax for providing arguments. In
addition, service designers can optionally define custom function signatures definitions for
function arguments and function return values as specified in section 5.4.15.

When parsing TOSCA files, TOSCA parsers MUST identify functions wherever values are
specified using the following algorithm:

Does the YAML string start with $?

If yes, is the second character $?

If yes, discard the first $ and stop here (escape).

If no, is this a key in a YAML map?

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 145 of 282

If yes, is this the only key in a YAML map?

If yes, this is a function call.

If no, emit a parsing syntax error ("malformed function").

If no, this is a function call without arguments.

10.2 TOSCA Built-In Functions
10.2.1 Representation Graph Query Functions
10.2.1.1 get_input

The $get_input function is used to retrieve the values of parameters declared within the inputs
section of a TOSCA service template. It uses the following grammars

$get_input: <input_parameter_name>

or

$get_input: [<input_parameter_name>, <nested_input_parameter_name_or_index_1>,
..., <nested_input_parameter_name_or_index_n>]

Note that the signature shown in the first grammar does not conform to the custom function
definition, but it does not have to as it is a TOSCA built-in function.

The $get_input function takes the arguments shown in the following table:

Argument Mandatory Type Description

<input_parameter_name> yes string The name of the
parameter as defined
in the inputs section
of the service
template.

<nested_input_parameter_name_or_index_*> no string |
integer

Some TOSCA input
parameters are
complex (i.e.,
composed as nested
structures). These
parameters are used
to dereference into
the names of these
nested structures
when needed. Some

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 146 of 282

parameters represent
list types. In these
cases, an index may
be provided to
reference a specific
entry in the list (as
identified by the
previous parameter)
to return. The index is
a non-negative
integer. If
$get_inputis used
within a node
template definition the
function $node_index
can retrieve the index
of the current node
representation among
the nodes created
from the same
template, and/or if
$get_inputis used
within a requirement
definition the function
$relationship_index
can retrieve the index
of the actual
relationship among
the relationships
created from the
same requirement.
More information on
multiplicity and node
and relationship
indexes can be found
in Chapter 14.

Argument Mandatory Type Description

The following snippet shows an example of the simple get_input grammar:

inputs:
 cpus:
 type: integer
node_templates:
 my_server:
 type: tosca.nodes.Compute
 capabilities:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 147 of 282

 host:
 properties:
 num_cpus: { $get_input: cpus }

The following template shows an example of the nested get_input grammar. The template
expects two input values, each of which has a complex data type. The get_input function is
used to retrieve individual fields from the complex input data.

data_types:
 NetworkInfo:
 derived_from: tosca.Data.Root
 properties:
 name:
 type: string
 gateway:
 type: string
 RouterInfo:
 derived_from: tosca.Data.Root
 properties:
 ip:
 type: string
 external:
 type: string
service_template:
 inputs:
 management_network:
 type: NetworkInfo
 router:
 type: RouterInfo
 node_templates:
 Bono_Main:
 type: vRouter.Cisco
 directives: [substitutable]
 properties:
 mgmt_net_name: { $get_input: [management_network, name]}
 mgmt_cp_v4_fixed_ip: { $get_input: [router, ip]}
 mgmt_cp_gateway_ip: { $get_input: [management_network, gateway]}
 mgmt_cp_external_ip: { $get_input: [router, external]}
 requirements:
 - lan_port:
 node: host_with_net
 capability: virtualBind
 - mgmt_net: mgmt_net

10.2.1.2 get_property

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 148 of 282

The getproperty 
* functionisusedtoretrievepropertyvaluesofmodelableentitiesintherepresentationgraph.Notethattheg
function should be used to retrieve values for attribute definitions (or property definitions
reflected as attribute definitions) from the representation graph of the TOSCA application (as
realized by the TOSCA orchestrator).

The get_property function uses the following grammar:

$get_property: [<tosca_path>, <property_name>,
<nested_property_name_or_index_1>, ..., <nested_property_name_or_index_n>]

The $get_property function takes the arguments shown in the following table:

Argument Mandatory Description

<tosca_path> yes Using the <tosca_path> we can
traverse the representation graph to
extract information from a certain
node or relationship. We start from
a specific node or relationship
identified by its symbolic name (or
by the SELF keyword representing
the node or relationship containing
the definition) and then we may
further traverse the relationships
and nodes of the representation
graph (using a variable number of
steps) until reaching the desired
node or relationship. The syntax is
described in a later subsection.

<property_name> yes The name of the property definition
from which the function will return
the value.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 149 of 282

<nested_property_name_or_index_*> no Some TOSCA properties are
complex (i.e., composed as nested
structures). These parameters are
used to dereference into the names
of these nested structures when
needed. Some properties represent
list types. In these cases, an index
may be provided to reference a
specific entry in the list (as
identified by the previous
parameter) to return.

Argument Mandatory Description

The following example shows how to use the get_property function with an actual node
template name:

node_templates:
 mysql_database:
 type: Database
 properties:
 name: sql_database1
 wordpress:
 type: WordPress
 ...
 interfaces:
 Standard:
 configure:
 inputs:
 wp_db_name: { $get_property: [mysql_database, name] }

The following example shows how to use the get_property function traversing from the
relationship to its target node:

relationship_templates:
 my_connection:
 type: ConnectsTo
 interfaces:
 Configure:
 inputs:
 targets_value: { $get_property: [SELF, TARGET, value] }

The following example shows how to use the get_property function using the SELF keyword,
and traversing from a wordpress node (via the first relationship of the database_endpoint
requirement to the target capability in the target node) and accessing the port property of that

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 150 of 282

capability:

node_templates:
 mysql_database:
 type: Database
 ...
 capabilities:
 database_endpoint:
 properties:
 port: 3306
 wordpress:
 type: WordPress
 requirements:
 ...
 - database_endpoint: mysql_database
 interfaces:
 Standard:
 create: wordpress_install.sh
 configure:
 implementation: wordpress_configure.sh
 inputs:
 ...
 wp_db_port:
 $get_property:
 - SELF
 - RELATIONSHIP
 - database_endpoint
 - 0
 - CAPABILITY
 - port

The following example shows how to use the get_property function to traverse over two
requirement relationships, from the wordpress node to its database node and further to its
DBMS host to get its admin_credential property:

node_templates:
 mysql_database:
 type: Database
 ...
 capabilities:
 database_endpoint:
 properties:
 port: 3306
 wordpress:
 type: WordPress
 requirements:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 151 of 282

 ...
 - database_endpoint: mysql_database
 interfaces:
 Standard:
 create: wordpress_install.sh
 configure:
 implementation: wordpress_configure.sh
 inputs:
 ...
 host_dbms_admin_credential:
 $get_property:
 - SELF
 - RELATIONSHIP
 - database_endpoint
 - TARGET
 - RELATIONSHIP
 - host
 - TARGET
 - admin_credential

TODO: An example of second index (i.e. 1) and index ALL !!!

10.2.1.3 get_attribute

The get_attribute function is used within a representation graph to obtain attribute values
from nodes and relationships that have been created from an application model described in
a service template. The nodes or relationships can be referenced by their name as assigned
in the service template or relative to the context where they are being invoked.

The get_attribute function uses the following grammar:

$get_attribute: [<tosca_path, <attribute_name>,
<nested_attribute_name_or_index_1>, ..., <nested_attribute_name_or_index_n>]

The $get_attribute function takes the arguments shown in the following table:

Argument Mandatory Description

<tosca_path> yes Using the <tosca_path> we can
traverse the representation graph to
extract information from a certain
node or relationship. The syntax is
described in a later subsection.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 152 of 282

<attribute_name> yes The name of the attribute definition
the function will return the value
from.

<nested_attribute_name_or_index_*> no Some TOSCA attributes are
complex (i.e., composed as nested
structures). These parameters are
used to dereference into the names
of these nested structures when
needed. Some attributes represent
list types. In these cases, an index
may be provided to reference a
specific entry in the list (as identified
by the previous parameter) to return.

Argument Mandatory Description

The getattributefunctionisusedinthesamewayastheequivalentget_property functions
described above. Please see their examples and replace getproperty * withthe*get_attribute
function name.

10.2.1.4 get_artifact

The $get_artifact function is used to retrieve the location of artifacts defined by modelable
entities in a service template. It uses the following grammar:

$get_artifact: [<tosca_path, <artifact_name>]

The $get_artifact function takes the arguments shown in the following table:

Argument Mandatory Type Description

<tosca_path> yes string Using the <tosca_path a TOSCA processor can
traverse the representation graph to the node that
contains the artifact. The syntax is described in a
later subsection.

<artifact_name> yes string The name of the artifact definition for which the
function will return the location.

The following example uses a snippet of a WordPress [WordPress] web application to show
how to use the get_artifact function with an actual node template name:

node_templates:
 wordpress:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 153 of 282

 type: WordPress
 ...
 interfaces:
 Standard:
 configure:
 create:
 implementation: wordpress_install.sh
 inputs
 wp_zip: { $get_artifact: [SELF, zip] }
 artifacts:
 zip: /data/wordpress.zip

In such implementation the TOSCA orchestrator may provide the wordpress.zip archive as

a local URL (example: file://home/user/wordpress.zip) or

a remote one (example: http://cloudrepo:80/files/wordpress.zip) where some
orchestrator may indeed provide some global artifact repository management features.

10.2.1.5 value

This function is used as an argument inside validation functions. It returns the value of the
property, attribute, or parameter for which the validation clause is defined. The $value function
uses the following grammar:

$value: [<nested_value_name_or_index>, ...]

It takes the arguments shown in the following table:

Argument Mandatory Description

<nested_value_name_or_index> no Some TOSCA data are complex (i.e.,
composed as nested structures). These
parameters are used to dereference into
the names of these nested structures
when needed. Some data represent lists.
In these cases, an index may be
provided to reference a specific entry in
the list (as identified by the previous
parameter) to return.

10.2.1.6 node_index

This function is used to return the runtime index of the current node representation in the list of
node representations created from the same node template. The first index is 0, which is also
what  

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 154 of 282

file:///%5Chome%5Cuser%5Cwordpress.zip
http://cloudrepo:80/files/wordpress.zip

* willreturnwhenasinglenoderepresentationiscreatedfromanodetemplate(i.e.wherethedefaultcountis1).
function uses the following grammar:

$node_index

10.2.1.7 relationship_index

This function is used to return the runtime index of the current relationship in the list of
relationships created from the same requirement. The first index is 0. The function should not
be used outside a valid relationship context (i.e. a relationship type definitiom, or a
requirement definition or assignment). The $relationship_index function uses the following
grammar:

$relationship_index

10.2.1.8 available_allocation

The availableallocation 
* functionisusedtoretrievetheavailableallocationforcapablitypropertiesthatcanbetargettoanallocation
* nodefilter * ofanodewitha * select 
* directive; thisallowstoacceptonlynodesthathaveacertainavailablecapacitythatforexamplecanaccom
function uses the following grammar:

$available_allocation: [<tosca_path>, <property_name>]

The $available_allocation function takes the arguments shown in the following table:

Argument Mandatory Description

<tosca_path> yes Using the <tosca_path> we can traverse the
representation graph to extract information from a
certain node or relationship. In this case the
<tosca_path> must lead to a capability context.

<property_name> yes The name of the capability property definition from which
the function will return the value. In this case it must be a
allocatable property (i.e. of integer, float, or scalar
property types).

Usage example:

service_template:
 node_templates:
 my_node_template:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 155 of 282

 directive: [select]
 node_filter:
 $and:
 - $greater_or_equal:
 - $available_allocation: [SELF, CAPABILITY, host, num_cpus]
 - 3
 - $greater_or_equal:
 - $available_allocation: [SELF, CAPABILITY, host, mem_size]
 - 256 MB

10.2.2 Boolean Functions

TOSCA includes a number of functions that return Boolean values. These functions are used
in validation expressions and in condition clauses in workflow definitions and policy
definitions. They are also used as node filters in requirement definitions and requirement
templates and as substitution filters in substitution mappings.

10.2.2.1 Boolean Logic Functions
10.2.2.1.1 and

The $and function takes two or more Boolean arguments. It evaluates to true if all its
arguments evaluate to true. It evaluates to false in all other cases. The $and function uses the
following grammar:

$and: [<boolean_arg1>, <boolean_arg2>, ... <boolean_argn>]

Note that the evaluation of the arguments in the $and function may stop as soon as a false
argument is encountered, and the function may return immediately without evaluating the rest
of the arguments.

10.2.2.1.2 or

The $or function takes two or more Boolean arguments. It evaluates to false if all of its
arguments evaluate to false. It evaluates to true in all other cases. The $or function uses the
following grammar:

$or: [<boolean_arg1>, <boolean_arg2>, ... <boolean_argn>]

Note that the evaluation of the arguments in the $or function may stop as soon as a true
argument is encountered, and the function may return immediately without evaluating the rest
of the arguments.

10.2.2.1.3 not

The $not function takes one Boolean argument. It evaluates to true if its argument evaluates to
false and evaluates to false if its argument evaluates to true. The $not function uses the

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 156 of 282

following grammar:

$not: [<boolean_arg>]

10.2.2.1.4 xor

The $xor function takes two Boolean arguments. It evaluates to false if both arguments either
evaluate to true or both arguments evaluate to false, and evaluates to true otherwise. The $xor
function uses the following grammar:

$xor: [<boolean_arg1>, <boolean_arg2>]

10.2.2.2 Comparison Functions

This section documents the list of built-in comparison functions.

Note that some implementations may fail the evaluation if the arguments are not of the
same type.

Also note that Unicode string comparisons are implementation specific.

TODO explanation on how versions are compared

10.2.2.2.1 equal

The $equal function takes two arguments that have the same type. It evaluates to true if the
arguments are equal. An
equalfunctionthatusesargumentsofdifferenttypesSHOULDbeflaggedasanerror.Theequal
function uses the following grammar:

$equal: [<any_type_arg1>, <any_type_arg2>]

10.2.2.2.2 greater_than

The $greater_than function takes two arguments of integer, float, string, timestamp, version,
any scalar type, or their derivations. It evaluates to true if both arguments are of the same type,
and if the first argument is greater than the second argument and evaluates to false otherwise.
The $greater_than function uses the following grammar:

$greater_than: [<comparable_type_arg1>, <comparable_type_arg2>]

10.2.2.2.3 greater_or_equal

The $greater_or_equal function takes two arguments of integer, float, string, timestamp,
version, any scalar type, or their derivations. It evaluates to true if both arguments are of the
same type, and if the first argument is greater than or equal to the second argument and

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 157 of 282

evaluates to false otherwise. The $greater_or_equal function uses the following grammar:

$greater_or_equal: [<comparable_type_arg1>, <comparable_type_arg2>]

10.2.2.2.4 less_than

The $less_than function takes two arguments of integer, float, string, timestamp, version, any
scalar type, or their derivations. It evaluates to true if both arguments are of the same type,
and if the first argument is less than the second argument and evaluates to false otherwise.
The $less_than function uses the following grammar:

$less_than: [<comparable_type_arg1>, <comparable_type_arg2>]

10.2.2.2.5 less_or_equal

The $less_or_equal function takes two arguments of integer, float, string, timestamp, version,
any scalar type, or their derivations. It evaluates to true if both arguments are of the same type,
and if the first argument is less than or equal to the second argument and evaluates to false
otherwise. The $less_or_equal function uses the following grammar:

$less_or_equal: [<comparable_type_arg1>, <comparable_type_arg2>]

10.2.2.2.6 valid_values

The $valid_values function takes two arguments. The first argument is of any type and the
second argument is a list with any number of values of the same type as the first argument. It
evaluates to true if the first argument is equal to a value in the second argument list and false
otherwise. The $valid_values function uses the following grammar:

$valid_values: [<any_type_arg1>, <any_type_list_arg2>]

Note that the $valid_values function is equivalent to the $has_entry function, except with
reversed arguments.

10.2.2.2.7 matches

The $matches function takes two arguments. The first argument is a general string, and the
second argument is a string that encodes a regular expression pattern. It evaluates to true if
the first argument matches the regular expression pattern represented by the second
argument and false otherwise. The $matches function uses the following grammar:

$matches: [<string_type_arg1>, <regex_pattern_arg2>]

Future drafts of this specification will detail the use of regular expressions and reference an
appropriate standardized grammar.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 158 of 282

Note also that if ones means that the whole string is to be matched, the regular expression
must start with a caret ^ and end with a $.

Check for new lines and maybe add a third argument – e.g. as in
https://www.pcre.org/ !!!

10.2.2.3 Boolean List, Map and String Functions
10.2.2.3.1 has_suffix

The $has_suffix function takes two arguments. Both arguments are either of type string or of
type list. It evaluates to true if the second argument is a suffix of the first argument. For lists this
means that the values of the second list are the last values of the first list in the same order.
The $has_suffix function uses the following grammar:

$has_suffix: [<string_or_list_type_arg1>, <string_or_list_type_arg2>]

10.2.2.3.2 has_prefix

The $has_prefix function takes two arguments. Both arguments are either of type string or of
tpe list. It evaluates to true if the second argument is a prefix of the first argument. For lists this
means that the values of the second list are the first values of the first list in the same order.
The $has_prefix function uses the following grammar:

$has_prefix: [<string_or_list_type_arg1>, <string_or_list_type_arg2>]

10.2.2.3.3 contains

The $contains function takes two arguments. Both arguments are either of type string or of
type list. It evaluates to true if the second argument is contained in the first argument. For
strings that means that the second argument is a substring of the first argument. For lists this
means that the values of the second list are contained in the first list in an uninterrupted
sequence and in the same order. The $contains function uses the following grammar:

$contains: [<string_or_list_type_arg1>, <string_or_list_type_arg2>]

10.2.2.3.4 has_entry

The $has_entry function takes two arguments. The first argument is a list or a map. The
second argument is of the type matching the entry_schema of the first argument. It evaluates
to true if the second argument is an entry in the first argument. For lists this means that the
second argument is a value in the first argument list. For maps this means that the second
argument is a value in any of the key-value pairs in the first argument map. The $has_entry
function uses the following grammar:

$has_entry: [<list_or_map_type_arg1>, <any_type_arg2>]

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 159 of 282

https://www.pcre.org/

10.2.2.3.5 has_key

The $has_key function takes two arguments. The first argument is a map. The second
argument is of the type matching the key_schema of the first argument. It evaluates to true if
the second argument is a key in any of the key-value pairs in the first argument map. The
$has_key function uses the following grammar:

$has_key: [<map_type_arg1>, <any_type_arg2>]

10.2.2.3.6 has_all_entries

The $has_all_entries function takes two arguments. The first argument is a list or a map. The
second argument is a list with the entry_schema matching the entry_schema of the first
argument. It evaluates to true if for all entries in the second argument there is an equal value
entry in the first argument. The $has_all_entries function uses the following grammar:

$has_all_entries: [<list_or_map_type_arg1>, <list_type_arg2>]

10.2.2.3.7 has_all_keys

The $has_all_keys function takes two arguments. The first argument is a map. The second
argument is a list with the entry_schema matching the key_schema of the first argument. It
evaluates to true if for all entries in the second argument there is an equal value key in the first
argument. The $has_all_keys function uses the following grammar:

$has_all_keys: [<map_type_arg1>, <list_type_arg2>]

10.2.2.3.8 has_any_entry

The $has_any_entry function takes two arguments. The first argument is a list or a map. The
second argument is a list with the entry_schema matching the entry_schema of the first
argument. It evaluates to true if there is an entry in the second argument that is equal to an
entry in the first argument. The $has_any_entry function uses the following grammar:

$has_any_entry: [<list_or_map_type_arg1>, <list_type_arg2>]

10.2.2.3.9 has_any_key

The $has_any_key function takes two arguments. The first argument is a map. The second
argument is a list with the entry_schema matching the key_schema of the first argument. It
evaluates to true if there is an entry in the second argument which is equal to a key in the first
argument. The $has_any_key function uses the following grammar:

$has_any_key: [<map_type_arg1>, <list_type_arg2>]

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 160 of 282

10.2.3 String, List, and Map Functions
10.2.3.1 length

The $length function takes an argument of type string, list, or map. It returns the number of
nicode characters in the string, or the numbers of values in the list, or the number of key-values
pairs in the map. The $length function uses the following grammar:

$length: [<string_list_or_map_type_arg>]

10.2.3.2 concat

The $concat function takes one or more arguments of either the type string or the type list with
the same type of their entry_schema. In the case of strings, it returns a string which is the
concatenation of the argument strings. In the case of lists, it returns a list that contains all the
entries of all the argument lists. Order is preserved both for strings and lists. This function
does not recurse into the entries of the lists. The $concat function uses the following grammar:

$concat: [<string_or_list_type_arg1>, …]

The following code snippet shows an example of a $concat function:

outputs:
 description: Concatenate the URL for a server from other template values
 server_url:
 value: { $concat: ['http://',
 $get_attribute: [server, public_address],
 ':',
 $get_attribute: [server, port]] }

10.2.3.3 join

The $join function takes either one or two arguments where the first one is of type list of
strings and the second (optional) argument is of type string. It returns a string that is the joining
of the entries in the first argument while adding an optional delimiter between the strings. The
$join function uses the following grammar:

$join: [<list_of_strings>]
$join: [<list of strings>, <delimiter>]

It takes the arguments shown in the following table:

Argument Mandatory Type Description

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 161 of 282

<list of
strings>

yes list of string
or string
value
expressions

A list of one or more strings (or expressions
that result in a list of string values) which can be
joined together into a single string.

<delimiter> no string An optional delimiter used to join the string in
the provided list.

Argument Mandatory Type Description

The following code snippet shows example $join functions:

outputs:
 example1:
 # Result: prefix_1111_suffix
 value: { $join: [["prefix", 1111, "suffix"], "_"] }
 example2:
 # Result: 9.12.1.10,9.12.1.20
 value: { $join: [{ $get_input: my_IPs }, “,”] }

10.2.3.4 token

The $token function is used within a TOSCA service template on a string to parse out
(tokenize) substrings separated by one or more token characters within a larger string. The
$token function uses the following grammar:

$token: [<string_with_tokens>, <string_of_token_chars>, <substring_index>]

It takes the arguments shown in the following table:

Argument Mandatory Type Description

string_with_tokens yes string The composite string that contains one or
more substrings separated by token
characters.

string_of_token_chars yes string The string that contains one or more token
characters that separate substrings within
the composite string.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 162 of 282

substring_index yes integer The integer indicates the index of the
substring to return from the composite
string. Note that the first substring is
denoted by using the ‘0’ (zero) integer
value.

Argument Mandatory Type Description

The following code snippet shows an example use of the $token function:

outputs:
 webserver_port:
 description: the port provided at the end of my server’s endpoint’s IP
address
 value: { token: [$get_attribute: [my_server, data_endpoint, ip_address
],
 ‘:’,
 1] }

10.2.4 Set Functions

Note: We should discuss order

10.2.4.1 union

The $union function takes one or more list arguments, all having the entry schema of the same
type. The result is a list that contains all non-duplicate entries from all the argument lists. By
non-duplicate is meant that no two entries in the result list are equal. The $union function uses
the following grammar:

$union: [<list_arg1>, …]

The $union function applied to only one list will return a result where all the duplicate entries of
the argument list are eliminated. Note also that the order of the elements in the result list is not
specified.

10.2.4.2 intersection

The $intersection function takes one or more list arguments, all having the entry schema of the
same type. The result is a list that contains all entries that can be found in each of the
argument lists. The $intersection function uses the following grammar:

$intersection: [<list_arg1>, …]

The $intersection function applied to only one list will return a result where all the duplicate

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 163 of 282

entries of the argument list are eliminated. Note also that the order of the elements in the result
list is not specified.

10.2.5 Arithmetic Functions
10.2.5.1 sum

The $sum function takes one or more arguments of either integer, float, or scalar type. The
result is of the same type as the arguments and its value is the arithmetic sum of the
arguments’ values. The $sum function uses the following grammar:

$sum: [<int_float_or_scalar_type_arg1>, < int_float_or_scalar_type_arg2>, …]

10.2.5.2 difference

The $difference function takes two arguments of either integer, float, or scalar type. The result
is of the same type as the arguments and its value is the arithmetic subtraction of the second
argument value from the first argument value. The $difference function uses the following
grammar:

$difference: [<int_float_scalar_type_arg1>, < int_float_scalar_type_arg2>]

10.2.5.3 product

The $product function takes either:

Two arguments where the first argument is of a scalar type and the second argument is
of an integer or float type. The result is of the same type as the first argument and its
value is the arithmetic product of the first argument value and the second argument
value.

Any number of arguments of type integer or float. If all inputs are of type integer, then the
result is of type integer, otherwise it is of type float. The result value is the arithmetic
product of all the arguments values.

The $product function uses the following grammars:

$product: [<scalar_type_arg1>, < int_or_float_type_arg2>]
$product: [<int_or_float_type_arg1>, < int_or_float_type_arg2>, …]

10.2.5.4 quotient

The $quotient function takes two arguments where the first argument is of an integer, float, or
scalar type and the second argument is of an integer or float type. The result is of

A scalar type if the first argument is a scalar, and its value is the arithmetic division of
the first argument value by the second argument value. If necessary, the result might be

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 164 of 282

truncated, as decided by the implementation.

A float if the first argument is an integer or a float. Note that to transform the float to an
integer a round or ceil or floor function must be used.

The $quotient function uses the following grammar:

$quotient: [<int_float_or_scalar_type_arg1>, < int_or_float_type_arg2>]

10.2.5.5 remainder

The *remainder 
* functiontakestwoargumentswherethefirstargumentisofaninteger, orscalartypeandthesecondargume
function uses the following grammar:

$remainder: [<int_or_scalar_type_arg1>, < int_type_arg2>]

10.2.5.6 round

The $round function takes a float argument. The result is an integer with the closest value to
the float argument. Equal value distance is rounded down (e.g. 3.5 is rounded down to 3, while
3.53 is rounded up to 4). The $round function uses the following grammar:

$round: [<float_type_arg>]

10.2.5.7 floor

The $floor function takes a float argument. The result is an integer with the closest value that is
less or equal to the value of the float argument. The $floor function uses the following
grammar:

$floor: [<float_type_arg>]

10.2.5.8 ceil

The $ceil function takes a float argument. The result is an integer with the closest value that is
greater or equal to the value of the float argument. The $ceil function uses the following
grammar:

$ceil: [<float_type_arg>]

10.3 TOSCA Path
The following shows the TOSCA Path syntax in BNF format:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 165 of 282

<tosca_path> ::= <node_symbolic_name>, <idx>, <node_context> |
 SELF, <node_context> |
 <relationship_symbolic_name>, <rel_context> |
 SELF, <rel_context>
<node_context> ::= RELATIONSHIP, <requirement_name>, <idx>, <rel_context>
|
 CAPABILITY, <capability_name>, RELATIONSHIP, <idx>,
<rel_context> |
 CAPABILITY, <capability_name> |
 <empty>
<rel_context> ::= SOURCE, <node_context> |
 TARGET, <node_context> |
 CAPABILITY, RELATIONSHIP <idx>, <rel_context> |
 CAPABILITY |
 <empty>
<idx> ::= <integer_index> |
 ALL |
 <empty>

The initial context can refer to either a node or a relationship context:

Since several node representations can be created from the same node template, the
<idx> after the initial <node_symbolic_name> selects one (or all) of them.
If SELF is used, and if the tosca_path is used within a requirement definition, SELF
refers to the current relationship context, otherwise it refers to the current node context.
A <node_context> can further resolve to a <rel_context> and so on, adding more
traversal steps. In the end we reach a final node, relationship, or capability context.

A <node_context> can further:

lead to the outgoing relationship with index <idx> out of the relationship defined by the
requirement with symbolic name <requirement_name> of the current node
lead to the relationship with index <idx> out of the incoming relationships that target the
capability with symbolic name <capability_name> of the current node
end within the capability with symbolic name <capability_name> in the current node
end within the current node via the <empty> resolution

A <rel_context> can further:

lead to the SOURCE node of the current relationship
lead to the TARGET node of the current relationship
lead to a relationship with index <idx> out of the relationships defined by the same
requirement as the current relationship
end within the target capability of the current relationship

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 166 of 282

end within the current relationship via the <empty> resolution

Note that the <idx> can either be a non-negative integer, thekeyword ALL, or missing:

If it is a non-negative integer, 0 represents the first index and so on incrementally.
If the index is missing, the semantic meaning is that the first index (index with value 0) is
used.
If it is the keyword ALL, then we return the result for all possible indices (further resolved
separately) as a list. If the there are multiple ALL keywords in the definition, then all the
results shall be merged into a single list.

We further list the changes from the get_property and get_attribute expression from v1.3 to
v2.0:

Added multi-step traversal of the representation graph
Added the backward traversal from capabilities to incoming relationships
Added the target capability of a relationship as a possible traversal
Added the specification of indexes and allowing traversal of multi-count requirements
Changed the following syntax to work better in multi-step traversal:

The initial SOURCE, … becomes SELF, SOURCE, …
The initial TARGET, … becomes SELF, TARGET, …

10.4 Function Definitions

TOSCA allows for the use of custom functions that extend the set of built-in functions
documented in the previous section. TOSCA Processors use standard function parsing rules
to detect the presence of a custom function.

In addition, TOSCA also includes grammar for defining function signatures and associated
implementation artifacts in TOSCA profiles or in TOSCA service templates. This allows for
validation of function return values and function arguments at design time, and the possibility
to provide function implementation artifacts within CSARs. Note that the use of custom
function definitions is entirely optional. Service designers can use custom functions without
defining associated function signatures and instead rely on support for those functions directly
in the TOSCA orchestrator that will be used to process the TOSCA files. Of course, TOSCA
processors may support custom functions that are not user-defined.

The following is the list of recognized keynames for a TOSCA function definition:

Keyname Mandatory Type Description

signatures yes map of signature
definitions

The map of signature definitions.

description no string The description of the function.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 167 of 282

metadata no map of metadata Defines additional metadata
information.

Keyname Mandatory Type Description

The following is the list of recognized keynames for a TOSCA function signature definition:

Keyname Mandatory Type Description

arguments no list of schema
definitions

All defined arguments must be used
in the function invocation (and in the
order defined here). If no arguments
are defined, the signature either
accepts no argumats or any
arguments of any form (depending
on if the variadic keyname is false or
true).

optional_arguments no list of schema
definitions

Optional arguments may be used in
the function invocation after the
regular arguments. Still the order
defined here must be respected.

variadic no boolean Specifies if the last defined
argument (or optional_argument if
defined) may be repeated any
number of times in the function
invocation. If this keyword is not
specified, a default of False is
assumed.

result no schema
definition

Defines the type of the function
result. If no result keyname is
defined, then the function may return
any result

implementation no implementation
definition

Defines the implementation (e.g.,
artifact) for the function. The same
definition as for
operation/notification
implementation is used.

Function signatures can be defined in TOSCA profiles or TOSCA service templates using a
YAML map under the functions keyname using the grammar specified below. Note that this
grammar allows the definition of functions that have arguments expressed within a YAML seq,

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 168 of 282

however intrinsic functions may accept other argument definition syntaxes.

functions:
 <function_def>
 <function_def>
 ...
 <function_def>

Each <function_def> defines the name of a function with an associated list of signature
definitions as follows:

 <function_name>:
 signatures:
 - <signature_def>
 - <signature_def>
 - <signature_def>
 ...
 - <signature_def>
 description: <string>
 metadata: <map_of_metadata>

Only the signatures keyname is mandatory and must provide at least one signature definition.
Note that the signatures are tested in the order of their definition. The first matching
implementation is used.

Each <signature_def> uses the following grammar:

arguments:
 - <schema_def>
 - <schema_def>
 ...
 - <schema_def>
optional_arguments:
 - <schema_def>
 - <schema_def>
 ...
 - <schema_def>
variadic: <boolean>
result: <schema_def>
implementation: <implementation_def>

None of the keynames in the signature definition are mandatory.

The keynames have the following meaning:

The arguments keyname defines the type and the position of the function arguments. All

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 169 of 282

defined arguments must be used in the function invocation (and in the order defined
here).

The full flexibility of the schema definition for types can be used.

The optional_arguments keyname defines the type and the position of the function
arguments. Optional arguments may be used in the function invocation after the regular
arguments. Still the order defined here must be respected (that is, if m out of n of the
optional arguments are used, they will correspond to the first m <schema_def>).

The full flexibility of the schema definition for types can be used.

The result keyname defines the type of the function result.

Again, the full flexibility of the schema definition for types can be used.

If no result keyname is defined, then the function may return any result.

The variadic keyname defines if the last defined argument may be repeated any number
of times in the function invocation.

If variadic is true, the last defined argument may be repeated any number of times
in the function invocation (on the last positions).

If optional_arguments is defined, then the last defined argument is the last
defined optional_argument. Note that in this case we have a 0+ usage of the
last argument.

If optional_arguments is not defined, then the last defined argument is the
last defined regular argument. Note that in this case we have a 1+ usage of
the last argument.

If variadic is false, the last argument definition has no special semantics.

If the arguments list is empty or not defined:

If variadic is false, the function is not accepting any arguments.

If variadic is true, the function is considered to accept any numbers of
arguments of any type or form.

Default value of variadic is false.

The implementation keyname defines the implementation (e.g., artifact) for the function.

The same definition as for operation/notification implementation is used.

If no implementation is specified, then it's assumed that the TOSCA processor is
preconfigured to handle the function call.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 170 of 282

Note that several signatures of a function (or even of several functions) may refer
to the same implementation in the implementation definition.

The functions section can be defined both outside and/or inside a service_template section:

Function definitions outside a service_template can be within a profile TOSCA file or
imported TOSCA file

Namespacing works as for types. Overlapping definitions under the same
<function_name> are not allowed.

Note that in that case the $ (dollar sign) character will be put in front of the
namespace name. For example:

properties:
 rnd_nr: { $namespace1:random_generator: [seed] }

Function definitions inside a service_template that have the same <function_name> are
considered a refinement of the homonymous definition outside the service_template,
see refinement rules below.

For example, this would allow for two separated design moments in function design:

At profile design time (outside the service_template), when e.g. the arguments
and the result is defined and thus the function can be correctly used in the node
type definitions.

At service template design time (inside the service_template), when function
implementation references within a current CSAR can be decided, and thus the
implementation or the description may be added or changed.

Note also that we could have the whole definition in the service template or
outside the service template, in the latter case defining a global implementation.

Function definitions inside a service_template that have the same <function_name> are
considered a refinement of the homonymous definition outside the service_template. They
use the following refinement rules:

signatures: as a general function refinement rule, for an already defined signature only
the implementation may be changed.

New function signatures may be added to the signatures list, but only after the
refinements of the existing signatures.

If an existing signature is not refined, an empty element must be used at the
relevant location in the list.

description: a new definition is unrestricted and will overwrite the one inherited from the

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 171 of 282

function definition outside the service_template.

metadata: a new definition is unrestricted and will overwrite the one inherited from the
function definition outside the service_template.

The following example shows the definition of a square root function:

functions:
 sqrt:
 signatures:
 - arguments:
 - type: integer
 validation: { $greater_or_equal: [$value, 0] }
 result:
 type: float
 implementation: scripts/sqrt.py
 - arguments:
 - type: float
 validation: { $greater_or_equal: [$value, 0.0] }
 result:
 type: float
 implementation: scripts/sqrt.py
 description: >
 This is a square root function that defines two signatures:
 the argument is either integer or float and the function
 returns the square root as a float.

The next sqrt is similar to above, but uses a simplified type notation (in this short form no
validation clause can be expressed):

functions:
 sqrt:
 signatures:
 - arguments: [integer]
 result: float
 implementation: scripts/sqrt.py
 - arguments: [float]
 result: float
 implementation: scripts/sqrt.py
 description: >
 This is a square root function that defines two signatures:
 the argument is either integer or float and the function
 returns the suare root as a float

The following example shows a function that takes a list of arguments with different types:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 172 of 282

 my_func_with_different_argument_types:
 signatures:
 - arguments:
 - type: MyType1
 description: "this is the first argument ..."
 - type: string
 description: "this is the second argument ..."
 - type: string
 description: "this is the third argument ..."
 - type: MyType2
 description: "this is the argument that can be repeated ..."
 variadic: true
 result:
 type: MyTypeRez
 implementation: scripts/my.py

The following snippet defines the same function as the example above, but in compact
notation:

functions:
 my_func_with_different_argument_types:
 signatures:
 - arguments: [MyType1, string, string, MyType2]
 variadic: true
 result: MyTypeRez
 implementation: scripts/my.py

The arguments list can be empty or completely missing. In such a case, when using the
function the arguments will be an empty list:

 get_random_nr:
 signatures:
 - result: float
 implementation: scripts/myrnd.py

The following shows function signatures with polymorphic arguments and result lists:

functions:
 union:
 signatures:
 - arguments:
 - type: list
 entry_schema: integer
 variadic: true
 result:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 173 of 282

 type: list
 entry_schema: integer
 implementation: scripts/libpi.py
 - arguments:
 - type: list
 entry_schema: float
 variadic: true
 result:
 type: list
 entry_schema: float
 implementation: scripts/libpi.py

The following shows the use of an argument that is a map of lists of MyType:

functions:
 complex_arg_function:
 signatures:
 - arguments:
 - type: map
 key_schema: string
 entry_schema:
 type: list
 entry_schema: MyType
 result: string
 implementation: scripts/complex.py

The following shows more examples of function usage. Note that in the usage of the
polymorphic union function, the TOSCA parser knows to identify the right signature via the
types of the function arguments. Also note the usage of a user-defined function with no
parameters; an empty list is used for the arguments.

properties:
 integer_union: {$union: [[1, 7], [3, 4, 9], [15, 16]]}
 float_union: {$union: [[3.5, 8.8], [1.3]]}
 rnd: {$get_random_nr: []}

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 174 of 282

11 Interfaces, Operations, and Notifications
The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

11.1 Interface Type

An interface type is a reusable entity that describes a set of operations and notifications that
can be used to interact with or to manage a node or relationship in a TOSCA topology as well
as the input and output parameters used by those operations and notifications.

An interface type definition is a type of TOSCA type definition and as a result supports the
common keynames listed in Section 6.4.1. In addition, the interface type definition has the
following recognized keynames:

Keyname Mandatory Type Description

inputs no map of
parameter
definitions

The optional map of input parameter
definitions available to all operations defined
for this interface.

operations no map of
operation
definitions

The optional map of operations defined for this
interface.

notifications no map of
notification
definitions

The optional map of notifications defined for
this interface.

These keynames can be used according to the following grammar:

<interface_type_name>:
 derived_from: <parent_interface_type_name>
 version: <version_number>
 metadata: <map of yaml values>
 description: <interface_description>
 inputs: <parameter_definitions>
 operations: <operation_definitions>
 notifications: <notification definition>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 175 of 282

interface_type_name: represents the mandatory name of the interface as a string.

parent_interface_type_name: represents the name of the interface type from which this
interface type definition derives (i.e. its “parent” type).

parameter_definitions: represents the optional map of parameter definitions which the
TOSCA orchestrator will make available (i.e., or pass) to all implementation artifacts for
operations declared on the interface during their execution.

operation_definitions: represents the optional map of one or more operation definitions.

notification_definitions: represents the optional map of one or more notification
definitions.

During interface type derivation the keyname definitions follow these rules:

inputs: existing parameter definitions may be refined; new parameter definitions may be
added.

operations: existing operation definitions may be refined; new operation definitions may
be added.

notifications: existing notification definitions may be refined; new notification definitions
may be added.

Note that interface types definitions MUST NOT include any implementations for defined
operations or notifications; that is, the implementation keyname is invalid in this context.

The following example shows a custom interface used to define multiple configure operations.

MyConfigure:
 description: My custom configure interface type
 inputs:
 mode:
 type: string
 operations:
 pre_configure_service:
 description: pre-configure operation for my service
 post_configure_service:
 description: post-configure operation for my service

11.2 Interface Definition
An interface definition defines an interface (containing operations and notifications
definitions) that can be associated with (i.e. defined within) a node or relationship type
definition. An interface definition may be refined in subsequent node or relationship type
derivations.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 176 of 282

The following is the list of recognized keynames for a TOSCA interface definition:

Keyname Mandatory Type Description

type yes string The mandatory name of the interface type on
which this interface definition is based.

description no string The optional description for this interface
definition.

metadata no map of
metadata

Defines additional metadata information.

inputs no map of
parameter
definitions
and
refinements

The optional map of input parameter
refinements and new input parameter
definitions available to all operations defined for
this interface (the input parameters to be refined
have been defined in the interface type
definition).

operations no map of
operation
refinements

The optional map of operations refinements for
this interface. The referred operations must
have been defined in the interface type
definition.

notifications no map of
notification
refinements

The optional map of notifications refinements
for this interface. The referred operations must
have been defined in the interface type
definition.

Interface definitions in node or relationship type definitions have the following grammar:

<interface_definition_name>:
 type: <interface_type_name>
 description: <interface_description>
 metadata: <map of yaml values>
 inputs: <parameter_definitions_and_refinements>
 operations: <operation_refinements>
 notifications: <notification definition>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

interface_definition_name: represents the mandatory symbolic name of the interface as
a string.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 177 of 282

interface_type_name: represents the mandatory name of the interface type for the
interface definition.

parameter_definitions_and_refinements: represents the optional map of input
parameters which the TOSCA orchestrator will make available (i.e. pass) to all defined
operations. This means these parameters and their values will be accessible to the
implementation artifacts (e.g., scripts) associated to each operation during their
execution

the map represents a mix of parameter refinements (for parameters already
defined in the interface type) and new parameter definitions.

with the new parameter definitions, we can flexibly add new parameters when
changing the implementation of operations and notifications during refinements or
assignments.

operation_refinements: represents the optional map of operation definition refinements
for this interface; the referred operations must have been previously defined in the
interface type.

notification_refinements: represents the optional map of notification definition
refinements for this interface; the referred notifications must have been previously
defined in the interface type.

An interface definition within a node or relationship type (including interface definitions in
requirements definitions) uses the following definition refinement rules when the containing
entity type is derived:

type: must be derived from (or the same as) the type in the interface definition in the
parent entity type definition.

description: a new definition is unrestricted and will overwrite the one inherited from the
interface definition in the parent entity type definition.

inputs: not applicable to the definitions in the parent entity type but to the definitions in
the interface type referred by the type keyname (see grammar above for the rules).

operations: not applicable to the definitions in the parent entity type but to the definitions
in the interface type referred by the type keyname (see grammar above for the rules).

notifications: not applicable to the definitions in the parent entity type but to the
definitions in the interface type referred by the type keyname (see grammar above for
the rules).

11.3 Interface Assignment
An interface assignment is used to specify assignments for the inputs, operations and
notifications defined in the interface. Interface assignments may be used within a node or

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 178 of 282

relationship template definition (including when interface assignments are referenced as part
of a requirement assignment in a node template).

The following is the list of recognized keynames for a TOSCA interface assignment:

Keyname Mandatory Type Description

inputs no map of
parameter
value
assignments

The optional map of input parameter
assignments. Template authors MAY provide
parameter assignments for interface inputs
that are not defined in their corresponding
interface type.

operations no map of
operation
assignments

The optional map of operations assignments
specified for this interface.

notifications no map of
notification
assignments

The optional map of notifications assignments
specified for this interface.

Interface assignments have the following grammar:

<interface_definition_name>:
 inputs: <parameter_value_assignments>
 operations: <operation_assignments>
 notifications: <notification_assignments>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

interface_definition_name: represents the mandatory symbolic name of the interface as
a string.

parameter_value_assignments: represents the optional map of parameter value
assignments for passing input parameter values to all interface operations

template authors MAY provide new parameter assignments for interface inputs
that are not defined in the interface definition.

operation_assignments: represents the optional map of operation assignments for
operations defined in the interface definition.

notification_assignments: represents the optional map of notification assignments for
notifications defined in the interface definition.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 179 of 282

11.4 Operation Definition
An operation definition defines a function or procedure to which an operation implementation
can be bound.

A new operation definition may be declared only inside interface type definitions (this is the
only place where new operations can be defined). In interface type, node type, or relationship
type definitions (including operation definitions as part of a requirement definition) we may
further refine operations already defined in an interface type.

An operation definition or refinement inside an interface type definition may not contain an
operation implementation definition and it may not contain an attribute mapping as part of its
output definition (as both these keynames are node/relationship specific).

The following is the list of recognized keynames for a TOSCA operation definition (including
definition refinement)

Keyname Mandatory Type Description

description no string The optional description string for the
associated operation.

implementation no operation
implementation
definition

The optional definition of the operation
implementation. May not be used in an
interface type definition (i.e. where an
operation is initially defined), but only
during refinements.

inputs no map of
parameter
definitions

The optional map of parameter
definitions for operation input values.

outputs no map of
parameter
definitions

The optional map of parameter
definitions for operation output values.
Only as part of node and relationship
type definitions, the output definitions
may include mappings onto attributes of
the node or relationship type that
contains the definition.

Operation definitions have the following grammar:

<operation_name>:
 description: <operation_description>
 implementation: <operation_implementation_definition>
 inputs: <parameter_definitions>

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 180 of 282

 outputs: <parameter_definitions>

The following single-line grammar may be used when the operation’s implementation
definition is the only keyname that is needed, and when the operation implementation
definition itself can be specified using a single line grammar:

<operation_name>: <operation_implementation_definition>

In the above grammars, the pseudo values that appear in angle brackets have the following
meaning:

operation_name: represents the mandatory symbolic name of the operation as a string.

operation_description: represents the optional description string for the operation.

operation_implementation_definition: represents the optional specification of the
operation’s implementation).

parameter_definitions: represents the optional map of parameter definitions which the
TOSCA orchestrator will make available as inputs to or receive as outputs from the
corresponding implementation artifact during its execution.

An operation definition within an interface, node, or relationship type (including interface
definitions in requirements definitions) uses the following refinement rules when the containing
entity type is derived:

description: a new definition is unrestricted and will overwrite the one inherited from the
operation definition in the parent entity type definition.

implementation: a new definition is unrestricted and will overwrite the one inherited from
the operation definition in the parent entity type definition.

inputs: parameter definitions inherited from the parent entity type may be refined; new
parameter definitions may be added.

outputs: parameter definitions inherited from the parent entity type may be refined; new
parameter definitions may be added.

The following additional requirements apply:

The definition of implementation is not allowed in interface type definitions (as a node or
node type context is missing at that point). Thus, it can be part only of an operation
refinement and not of the original operation definition.

The default refinement behavior for implementations SHALL be overwrite. That is,
implementation definitions in a derived type overwrite any defined in its parent type.

Defining a fixed value for an input parameter (as part of its definition) may only use a

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 181 of 282

parameter_value_expression that is meaningful in the scope of the context. For
example, within the context of an interface type definition functions such as get_propery
or get_attribute cannot be used. Within the context of Node or relationship type
definitions, these functions may only reference properties and attributes accessible
starting from SELF (i.e. accessing a node by symbolic name is not meaningful).

Defining attribute mapping as part of the output parameter definition is not allowed in
interface type definitions (i.e. as part of operation definitions). It is allowed only in node
and relationship type definitions (as part of operation refinements) and has to be
meaningful in the scope of the context (e.g. SELF).

Implementation artifact file names (e.g., script filenames) may include file directory path
names that are relative to the TOSCA file file itself when packaged within a TOSCA
Cloud Service Archive (CSAR) file.

The following code snippet shows an example operation definition:

interfaces:
 Configure:
 pre_configure_source:
 implementation:
 primary:
 file: scripts/pre_configure_source.sh
 type: Bash
 repository: my_service_catalog
 dependencies:
 - file : scripts/setup.sh
 type : Bash
 repository : my_service_catalog

The next example shows single-line grammar for the operation implementation:

interfaces:
 Configure:
 pre_configure_source:
 implementation:
 primary: scripts/pre_configure_source.sh
 dependencies:
 - scripts/setup.sh
 - binaries/library.rpm
 - scripts/register.py

The following code snippet shows an example of the single-line grammar for the entire
operation definitions:

interfaces:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 182 of 282

 Standard:
 start: scripts/start_server.sh

11.5 Operation Assignment
An operation assignment may be used to assign values for input parameters, specify attribute
mappings for output parameters, and define/redefine the implementation definition of an
already defined operation in the interface definition. An operation assignment may be used
inside interface assignments inside node template or relationship template definitions (this
includes when operation assignments are part of a requirement assignment in a node
template).

An operation assignment may add or change the implementation and description definition of
the operation. Assigning a value to an input parameter that had a fixed value specified during
operation definition or refinement is not allowed. Providing an attribute mapping for an output
parameter that was mapped during an operation refinement is also not allowed.

Note also that in the operation assignment we can use inputs and outputs that have not been
previously defined in the operation definition. This is equivalent to an ad-hoc definition of a
parameter, where the type is inferred from the assigned value (for input parameters) or from
the attribute to map to (for output parameters).

The following is the list of recognized keynames for an operation assignment:

Keyname Mandatory Type Description

implementation no operation
implementation
definition

The optional definition of the operation
implementation. Overrides
implementation provided at operation
definition.

inputs no map of
parameter
value
assignments

The optional map of parameter value
assignments for assigning values to
operation inputs.

outputs no map of
parameter
mapping
assignments

The optional map of parameter mapping
assignments that specify how operation
outputs are mapped onto attributes of
the node or relationship that contains the
operation definition.

Operation assignments have the following grammar:

<operation_name>:
 implementation: <operation_implementation_definition>

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 183 of 282

 inputs: <parameter_value_assignments>
 outputs: <parameter_mapping_assignments>

The following single-line grammar may be used when the operation’s implementation
definition is the only keyname that is needed, and when the operation implementation
definition itself can be specified using a single line grammar:

<operation_name>: <operation_implementation_definition>

In the above grammars, the pseudo values that appear in angle brackets have the following
meaning:

operation_name: represents the mandatory symbolic name of the operation as a string.

operation_implementation_definition: represents the optional specification of the
operation’s implementation

the implementation declared here overrides the implementation provided at
operation definition.

parameter_value_assignments: represents the optional map of parameter value
assignments for passing input parameter values to operations.

assignments for operation inputs that are not defined in the operation definition
may be provided

parameter_mapping_assignments: represents the optional map of parameter mapping
assignments that consists of named output values returned by operation
implementations (i.e. artifacts) and associated attributes into which this output value
must be stored

assignments for operation outputs that are not defined in the operation definition
may be provided.

The following additional requirements apply:

The behavior for implementation of operations SHALL be override. That is,
implementation definitions assigned in an operation assignment override any defined in
the operation definition.

Template authors MAY provide parameter assignments for operation inputs that are not
defined in the operation definition.

Template authors MAY provide attribute mappings for operation outputs that are not
defined in the operation definition.

Implementation artifact file names (e.g., script filenames) may include file directory path
names that are relative to the TOSCA file file itself when packaged within a TOSCA

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 184 of 282

Cloud Service Archive (CSAR) file.

11.6 Notification Definition
A notification definition defines an asynchronous notification or incoming message that can
be associated with an interface. The notification is a way for events generated by external
implementations to be transmitted to the TOSCA orchestrator. Values can be sent with a
notification as notification outputs and can be mapped to node/relationship attributes similarly
to the way operation outputs are mapped to attributes. The artifact that the orchestrator is
registering with in order to receive the notification is specified using the implementation
keyname in a similar way to operations. Artifacts registered to recieve events may be
configured by means of parameters provided under the inputs keyword of the notification
definition.

When the notification is received an event is generated within the orchestrator that can be
associated to triggers in policies to call other internal operations and workflows. The
notification name (using the <interface_name>.<notification_name> notation) itself identifies
the event type that is generated and can be textually used when defining the associated
triggers.

A notification definition may be used only inside interface type definitions (this is the only
place where new notifications can be defined). Inside interface type, node type, or relationship
type definitions (including notifications definitions as part of a requirement definition) we may
further refine a notification already defined in the interface type.

A notification definition or refinement inside an interface type definition may not contain a
notification implementation definition and it may not contain an attribute mapping as part of its
output definition (as both these keynames are node/relationship specific).

The following is the list of recognized keynames for a TOSCA notification definition:

Keyname Mandatory Type Description

description no string The optional description string for the
associated notification.

implementation no notification
implementation
definition

The optional definition of the notification
implementation.

inputs no map of
parameter
definitions

The optional map of parameter
definitions for notification input values.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 185 of 282

outputs no map of
parameter
definitions

The optional map of parameter
definitions that specify notification output
values. Only as part of node and
relationship type definitions, the output
definitions may include their mappings
onto attributes of the node type or
relationship type that contains the
definition.

Keyname Mandatory Type Description

Notification definitions have the following grammar:

<notification_name>:
 description: <notification_description>
 implementation: <notification_implementation_definition>
 inputs: <parameter_definitions>
 outputs: <parameter_definitions>

The following single-line grammar may be used when the notification’s implementation
definition is the only keyname that is needed and when the notification implementation
definition itself can be specified using a single line grammar:

<notification_name>: <notification_implementation_definition>

In the above grammars, the pseudo values that appear in angle brackets have the following
meaning:

notification_name: represents the mandatory symbolic name of the notification as a
string.

notification_description: represents the optional description string for the notification.

notification_implementation_definition: represents the optional specification of the
notification implementation (i.e. the external artifact that may send notifications)

parameter_definitions: represents the optional map of parameter definitions for
parameters that the orchestrator will make available as inputs or receive as outputs from
the corresponding implementation artifact during its execution.

A notification definition within an interface, node, or relationship type (including interface
definitions in requirements definitions) uses the following refinement rules when the containing
entity type is derived:

description: a new definition is unrestricted and will overwrite the one inherited from the
notification definition in the parent entity type definition.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 186 of 282

implementation: a new definition is unrestricted and will overwrite the one inherited from
the notification definition in the parent entity type definition.

inputs: parameter definitions inherited from the parent entity type may be refined; new
parameter definitions may be added.

outputs: parameter definitions inherited from the parent entity type may be refined; new
parameter definitions may be added.

The following additional requirements apply:

The definition of implementation is not allowed in interface type definitions (as a node or
node type context is missing at that point). Thus, it can be part only of a notification
refinement and not of the original notification definition.

The default sub-classing (i.e. refinement) behavior for implementations of notifications
SHALL be overwrite. That is, implementation artifacts definitions in a derived type
overwrite any defined in its parent type.

Defining attribute mapping as part of the output parameter definition is not allowed in
interface type definitions (i.e. as part of operation definitions). It is allowed only in node
and relationship type definitions (as part of operation refinements).

Defining a mapping in an output parameter definition may use an attribute target that is
meaningful in the scope of the context. Within the context of Node or relationship type
definitions these functions may only reference attributes starting from the same node
(i.e. SELF).

Implementation artifact file names (e.g., script filenames) may include file directory path
names that are relative to the TOSCA file file itself when packaged within a TOSCA
Cloud Service Archive (CSAR) file.

11.7 Notification Assignment
A notification assignment may be used to specify attribute mappings for output parameters
and to define/redefine the implementation definition and description definition of an already
defined notification in the interface definition. A notification assignment may be used inside
interface assignments which are themselves inside node or relationship template definitions
(this includes when notification assignments are part of a requirement assignment in a node
template).

Providing an attribute mapping for an output parameter that was mapped during a previous
refinement is not allowed. Note also that in the notification assignment we can use outputs that
have not been previously defined in the operation definition. This is equivalent to an ad-hoc
definition of an output parameter, where the type is inferred from the attribute to map to.

The following is the list of recognized keynames for a TOSCA notification assignment:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 187 of 282

Keyname Mandatory Type Description

implementation no notification
implementation
definition

The optional definition of the notification
implementation. Overrides
implementation provided at notification
definition.

inputs no map of
parameter
value
assignments

The optional map of parameter value
assignments for assigning values to
notification inputs.

outputs no map of
parameter
mapping
assignments

The optional map of parameter mapping
assignments that specify how notification
outputs values are mapped onto
attributes of the node or relationship type
that contains the notification definition.

Notification assignments have the following grammar:

<notification_name>:
 implementation: <notification_implementation_definition>
 inputs: <parameter_value_assignments>
 outputs: <parameter_mapping_assignments>

The following single-line grammar may be used when the notification’s implementation
definition is the only keyname that is needed, and when the notification implementation
definition itself can be specified using a single line grammar:

<notification_name>: <notification_implementation_definition>

In the above grammars, the pseudo values that appear in angle brackets have the following
meaning:

notification_name: represents the mandatory symbolic name of the notification as a
string.

notification_implementation_definition: represents the optional specification of the
notification implementation (i.e. the external artifact that is may send notifications)

the implementation declared here overrides the implementation provided at
notification definition.

parameter_value_assignments: represents the optional map of parameter value
assignments for passing input parameter values to notifications.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 188 of 282

assignments for notification inputs that are not defined in the notification definition
may be provided

parameter_mapping_assignments: represents the optional map of
parameter_mapping_assignments that consists of named output values returned by
notification implementations (i.e. artifacts) and associated attributes into which this
output value must be stored

assignments for notification outputs that are not defined in the notification
definition may be provided.

The following additional requirements apply:

The behavior for implementation of notifications SHALL be override. That is,
implementation definitions assigned in a notification assignment override any defined in
the notification definition.

Template authors MAY provide attribute mappings for notification outputs that are not
defined in the corresponding notification definition.

Implementation artifact file names (e.g., script filenames) may include file directory path
names that are relative to the TOSCA file file itself when packaged within a TOSCA
Cloud Service Archive (CSAR) file.

11.8 Operation and Notification Implementations
An operation implementation definition specifies one or more artifacts (e.g. scripts) to be
used as the implementation for an operation in an interface.

A notification implementation definition specifies one or more artifacts to be used by the
orchestrator to subscribe and receive a particular notification (i.e. the artifact implements the
notification).

The operation implementation definition and the notification implementation definition share
the same keynames and grammar, with the exception of the timeout keyname that has no
meaning in the context of a notification implementation definition and should not be used in
such.

The following is the list of recognized keynames for an operation implementation definition or
a notification implementation definition:

Keyname Mandatory Type Description

primary no artifact
definition

The optional implementation artifact (i.e., the
primary script file within a TOSCA CSAR file).

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 189 of 282

dependencies no list of
artifact
definitions

The optional list of one or more dependent or
secondary implementation artifacts which are
referenced by the primary implementation
artifact (e.g., a library the script installs or a
secondary script).

Keyname Mandatory Type Description

Operation implementation definitions and notification implementation definitions have the
following grammar:

implementation:
 primary: <primary_artifact_definition> | <primary_artifact_name>
 dependencies: <list_of_dependent_artifacts>

The following single-line grammar may be used when only a primary implementation artifact
name is needed:

implementation: <primary_artifact_name>

This notation can be used when the primary artifact name uniquely identifies the artifact
because it refers to an artifact specified in the artifacts section of a type or template.

In the above grammars, the pseudo values that appear in angle brackets have the following
meaning:

primary_artifact_definition: represents a full inline definition of an artifact that can be
used as an implementation of an operation or notification.

primary_artifact_name: represents the symbolic name of an artifact defined in the node
type or node template that contains the interface operation or notification for which the
implementation is defined.

list_of_dependent_artifacts: represents the optional ordered list of one or more
dependent or secondary implementation artifacts. Each of these artifacts can be
defined using an inline artifact definition or using a symbolic name of an artifact that is
defined in the node type or node template that contains the interface operation or
notification for which the implementation is defined.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 190 of 282

12 Artifacts
The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

12.1 Artifact Type

An artifact type is a reusable entity that defines the type of one or more files that are used to
define implementation or deployment artifacts that are referenced by nodes or relationships.

An artifact type definition is a type of TOSCA type definition and as a result supports the
common keynames listed in Section 6.4.1. In addition, the artifact type definition has the
following recognized keynames:

Keyname Mandatory Type Description

mime_type no string The optional mime type property for the
artifact type.

file_ext no list of string The optional file extension property for the
artifact type.

properties no map of property
definitions

An optional map of property definitions for
the artifact type.

<artifact_type_name>:
 derived_from: <parent_artifact_type_name>
 version: <version_number>
 metadata: <map of string>
 description: <artifact_description>
 mime_type: <mime_type_string>
 file_ext: [<file_extensions>]
 properties: <property_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

artifact_type_name: represents the name of the artifact type being declared as a string.

parent_artifact_type_name: represents the name of the artifact type this artifact type
definition derives from (i.e., its “parent” type).

mime_type_string: represents the optional Multipurpose Internet Mail Extensions (MIME)

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 191 of 282

standard string value that describes the file contents for this type of artifact type as a
string. The mime_type keyname is meant to have values that are Apache mime types
such as those defined here:
http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

file_extensions: represents the optional list of one or more recognized file extensions for
this type of artifact type as strings.

property_definitions: represents the optional map of property definitions for the artifact
type.

During artifact type derivation the keyname definitions follow these rules:

mime_type: a new definition is unrestricted and will overwrite the one inherited from the
parent type.

file_ext: a new definition is unrestricted and will overwrite the one inherited from the
parent type.

properties: existing property definitions may be refined; new property definitions may be
added.

The following shows an example artifact type definition:

my_artifact_type:
 description: Java Archive artifact type
 derived_from: Root
 mime_type: application/java-archive
 file_ext: [jar]
 properties:
 id:
 description: Identifier of the jar
 type: string
 required: true
 creator:
 description: Vendor of the java implementation on which the jar is based
 type: string
 required: false

Information about artifacts can be broadly classified in two categories that serve different
purposes:

Selection of artifact processor. This category includes informational elements such as
artifact version, checksum, checksum algorithm etc. and is used by TOSCA
Orchestrator to select the correct artifact processor for the artifact. These informational
elements are captured in TOSCA as keywords for the artifact.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 192 of 282

http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

Properties processed by artifact processor. Some properties are not processed by the
Orchestrator but passed on to the artifact processor to assist with proper processing of
the artifact. These informational elements are described through artifact properties.

12.2 Artifact definition
An artifact definition defines a named, typed file that can be associated with a node type or
node template and used by a TOSCA Orchestrator to facilitate deployment and
implementation of interface operations.

The following is the list of recognized keynames for a TOSCA artifact definition:

Keyname Mandatory Type Description

type yes string The mandatory artifact type for the
artifact definition.

file yes string The mandatory URI string (relative or
absolute) that can be used to locate
the artifact’s file.

repository no string The optional name of the repository
definition that contains the location of
the external repository that contains
the artifact. The artifact is expected to
be referenceable by its file URI within
the repository.

description no string The optional description for the
artifact definition.

metadata no map of
metadata

Defines additional metadata
information.

artifact_version no string The version of this artifact. One use of
this artifact_version is to declare the
particular version of this artifact type,
in addition to its mime_type (that is
declared in the artifact type definition).
Together with the mime_type it may
be used to select a particular artifact
processor for this artifact. For
example, a python interpreter that can
interpret python version 2.7.0.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 193 of 282

checksum no string The checksum used to validate the
integrity of the artifact.

checksum_algorithm no string Algorithm used to calculate the artifact
checksum (e.g. MD5, SHA [Ref]).
Shall be specified if checksum is
specified for an artifact.

properties no map of
property
assignments

The optional map of property
assignments associated with the
artifact.

Keyname Mandatory Type Description

Artifact definitions have the following grammar:

<artifact_name>:
 description: <artifact_description>
 metadata: <map_of_metadata>
 type: <artifact_type_name>
 file: <artifact_file_uri>
 repository: <artifact_repository_name>
 version: <artifact _version>
 checksum: <artifact_checksum>
 checksum_algorithm: <artifact_checksum_algorithm>
 properties: <property assignments>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

artifact_name: represents the mandatory symbolic name of the artifact as a string.

artifact_type_name: represents the mandatory artifact type the artifact definition is
based upon.

artifact_file_uri: represents the mandatory URI string (relative or absolute) which can be
used to locate the artifact’s file.

artifact_repository_name: represents the optional name of the repository definition to
use to retrieve the associated artifact (file) from.

artifact_version: represents the version of artifact

artifact_checksum: represents the checksum of the Artifact

artifact_checksum_algorithm:represents the algorithm for verifying the checksum. Shall
be specified if checksum is specified

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 194 of 282

properties: represents an optional map of property assignments associated with the
artifact

Artifact definitions represent specific external entities. If a certain artifact definition cannot be
reused as is, then it may be completely redefined.

If an artifact is redefined, the symbolic name from the definition in the parent node type
is reused, but no keyname definitions are inherited from the definition in the parent node
type, and the new definition completely overwrites the definition in the parent.

If the artifact is not redefined the complete definition is inherited from the parent node
type.

The following example represents an artifact definition with property assignments:

artifacts:
 sw_image:
 description: Image for virtual machine
 type: tosca.artifacts.Deployment.Image.VM
 file:
http://10.10.86.141/images/Juniper_vSRX_15.1x49_D80_preconfigured.qcow2
 checksum: ba411cafee2f0f702572369da0b765e2
 version: 3.2
 checksum_algorithm: MD5
 properties:
 name: vSRX
 container_format: BARE
 disk_format: QCOW2
 min_disk: 1 GB
 size: 649 MB

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 195 of 282

13 Workflows
The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

13.1 Declarative Workflows
State that declarative workflows are automatically generated. Specific steps for
how to do this is profile specific. Orchestrators that support certain profiles are
expected to know how to create declarative workflows for those profiles.

13.2 Imperative Workflows
A workflow definition defines an imperative workflow that is associated with a TOSCA
service. A workflow definition can either include the steps that make up the workflow, or it can
refer to an artifact that expresses the workflow using an external workflow language.

The following is the list of recognized keynames for a TOSCA workflow definition:

Keyname Mandatory Type Description

description no string The optional description for the workflow
definition.

metadata no map of string Defines a section used to declare
additional metadata information.

inputs no map of
parameter
definitions

The optional map of input parameter
definitions.

precondition no condition
clause

Condition clause that must evaluate to
true before the workflow can be
processed.

steps no map of step
definitions

An optional map of valid imperative
workflow step definitions.

implementation no operation
implementation
definition

The optional definition of an external
workflow definition. This keyname is
mutually exclusive with the steps
keyname above.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 196 of 282

outputs no map of
attribute
mappings

The optional map of attribute mappings
that specify workflow output values and
their mappings onto attributes of a node
or relationship defined in the service.

Keyname Mandatory Type Description

Imperative workflow definitions have the following grammar:

<workflow_name>:
 description: <workflow_description>
 metadata: <map of YAML values>
 inputs: <parameter_definitions>
 precondition: <condition_clause>
 steps: <workflow_steps>
 implementation: <operation_implementation_definitions>
 outputs: <attribute_mappings>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

workflow_name:

workflow_description:

parameter_definitions:

condition_clause:

workflow_steps:

operation_implementation_definition: represents a full inline definition of an
implementation artifact

attribute_mappings: represents the optional map of attribute_mappings that consists of
named output values returned by operation implementations (i.e. artifacts) and
associated mappings that specify the attribute into which this output value must be
stored.

13.2.1 Workflow Precondition Definition

A workflow precondition defines a condition clause that checks if a workflow can be
processed or not based on the state of the instances of a TOSCA service deployment. If the
condition is not met, the workflow will not be triggered.

Examples TO BE PROVIDED

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 197 of 282

13.2.2 Workflow Step Definition

A workflow step allows to define one or multiple sequenced activities in a workflow and how
they are connected to other steps in the workflow. They are the building blocks of a declarative
workflow.

The following is the list of recognized keynames for a TOSCA workflow step definition:

Keyname Mandatory Type Description

target yes string The target of the step (this can be a node
template name, a group name)

target_relationship no string The optional name of a requirement of the
target in case the step refers to a
relationship rather than a node or group.
Note that this is applicable only if the target
is a node.

filter no list of
validation
clauses

Filter is a list of validation clauses that
allows to provide a filtering logic.

activities yes list of
activity
definition

The list of sequential activities to be
performed in this step.

on_success no list of
string

The optional list of step names to be
performed after this one has been
completed with success (all activities has
been correctly processed).

on_failure no list of
string

The optional list of step names to be called
after this one in case one of the step
activity failed.

Workflow step definitions have the following grammars:

steps:
 <step_name>
 target: <target_name>
 target_relationship: <target_requirement_name>
 filter: <list_of_condition_clause_definition>
 activities: <list_of_activity_definition>
 on_success: <target_step_name>
 on_failure: <target_step_name>

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 198 of 282

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

target_name: represents the name of a node template or group in the service.

target_requirement_name: represents the name of a requirement of the node template
(in case target_name refers to a node template.

list_of_condition_clause_definition: represents a list of condition clause definitions.

list_of_activity_definition: represents a list of activity definitions.

target_step_name: represents the name of another step of the workflow.

13.2.3 Activity Definition

An activity defines an operation to be performed in a TOSCA workflow step or in an action
body of a policy trigger. Activity definitions can be of the following types:

Delegate workflow activity definition:

Defines the name of the delegate workflow and optional input assignments. This
activity requires the target to be provided by the orchestrator (no-op node or
relationship).

Set state activity definition:

Sets the state of a node.

Call operation activity definition:

Calls an operation defined on a TOSCA interface of a node, relationship or group.
The operation name uses the <interface_name>.<operation_name> notation.
Optionally, assignments for the operation inputs can also be provided. If provided,
they will override for this operation call the operation inputs assignment in the
node template.

Inline workflow activity definition:

Inlines another workflow defined in the service (allowing reusability). The definition
includes the name of a workflow to be inlined and optional workflow input
assignments.

13.2.3.1 Delegate Workflow Activity Definition

The following is a list of recognized keynames for a delegate activity definition.

Keyname Mandatory Type Description

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 199 of 282

delegate yes string or
empty (see
grammar
below)

Defines the name of the delegate workflow and
optional input assignments. This activity requires
the target to be provided by the orchestrator (no-
op node or relationship).

workflow no string The name of the delegate workflow. Mandatory
in the extended notation.

inputs no map of
parameter
assignments

The optional map of input parameter
assignments for the delegate workflow.

Keyname Mandatory Type Description

A delegate activity definition has the following grammar.

- delegate:
 workflow: <delegate_workflow_name>
 inputs: <parameter_assignments>

As an optimizaton, the following short notation can be used if no input assignments are
provided.

- delegate: <delegate_workflow_name>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

delegate_workflow_name: represents the name of the workflow of the node provided by
the TOSCA orchestrator.

parameter_assignments: represents the optional map of parameter assignments for
passing parameters as inputs to this workflow delegation.

13.2.3.2 Set State Activity Definition

This activity sets the state of the target node.

The following is a list of recognized keynames for a set state activity definition.

Keyname Mandatory Type Description

set_state yes string Value of the node state.

A set state activity definition has the following grammar.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 200 of 282

- set_state: <new_node_state>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

new_node_state: represents the state that will be affected to the node once the activity
is performed.

13.2.3.3 Call Operation Activity Definition

This activity is used to call an operation on the target node. Operation input assignments can
be optionally provided.

The following is a list of recognized keynames for a call operation activity definition.

Keyname Mandatory Type Description

call_operation yes string or
empty (see
grammar
below)

Defines the opration call. The operation
name uses the <interface_name>.
<operation_name> notation. Optionally,
assignments for the operation inputs can
also be provided. If provided, they will
override for this operation call the operation
inputs assignment in the node template.

operation no string The name of the operation to call, using the
<interface_name>.<operation_name>
notation. Mandatory in the extended notation.

inputs no map of
parameter
assignments

The optional map of input parameter
assignments for the called operation. Any
provided input assignments will override the
operation input assignment in the target
node template for this operation call.

A call operation activity definition has the following grammar.

- call_operation:
 operation: <operation_name>
 inputs: <parameter_assignments>

As an optimization, the following short notation can be used if no input assignments are
provided:

- call_operation: <operation_name>

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 201 of 282

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

operation_name: represents the name of the operation that will be called during the
workflow execution. The notation used is <interface_sub_name>.
<operation_sub_name>, where interface_sub_name is the interface name and the
operation_sub_name is the name of the operation within this interface.

parameter_assignments: represents the optional map of parameter assignments for
passing parameters as inputs to this workflow delegation.

13.2.3.4 Inline Workflow Activity Definition

This activity is used to inline a workflow in the activities sequence. The definition includes the
name of the inlined workflow and optional input assignments.

The following is a list of recognized keynames for an inline workflow activity definition.

Keyname Mandatory Type Description

inline yes string or empty
(see grammar
below)

The definition includes the name of a
workflow to be inlined and optional workflow
input assignments.

workflow no string The name of the inlined workflow. Mandatory
in the extended notation.

inputs no map of
parameter
assignments

The optional map of input parameter
assignments for the inlined workflow.

An inline workflow activity definition has the following grammar.

- inline:
 workflow: <inlined_workflow_name>
 inputs:
 <parameter_assignments>

As an optimization, the following short notation can be used if no input assignments are
provided.

- inline: <inlined_workflow_name>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 202 of 282

inlined_workflow_name: represents the name of the workflow to inline.

parameter_assignments: represents the optional map of parameter assignments for
passing parameters as inputs to this workflow delegation.

The following represents a list of activity definitions (using the short notation):

 - delegate: deploy
 - set_state: started
 - call_operation: Standard.start
 - inline: my_workflow

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 203 of 282

14 Creating Multiple Representations from Templates
The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

TOSCA service templates specify a set of nodes that need to be instantiated at service
deployment time. As discussed in Chapter 4 this occurs in two separate steps:

1. A TOSCA Processor first creates a service representation based on a service
template. This representation is a graph that contains node representations and
relationship representations.

2. An Orchestrator then creates external implementations based on the information
stored in the representation graph (e.g., by running workflows that call interface
operations on each of the nodes and relationships in the graph).

Chapter 4 discusses how node and relationship representations are created by matching a
service template with deployment-specific input values. This chapter discusses issues of
cardinality that determine how many node representations are created from each node
template and how relationships are established between these multiple node represenations.

14.1 Specifying Number of Node Representations
Some service templates may include multiple nodes that perform the same role. For example,
a template that models an SD-WAN service might contain multiple VPN Site nodes, one for
each location that connects to the SD-WAN. Rather than having to create a separate service
template for each possible number of VPN sites, it is preferable to create a single service
template that allows the number of VPN sites to be specified at deployment time as an input
to the template. This section documents TOSCA language support for this functionality.

The discussion in this section uses an example SD-WAN with three sites as shown in the
following figure:

flowchart
 SiteA(Austin)
 SiteB(Boston)
 SiteC(Chicago)
 VPN(VPN)
 subgraph W [SD-WAN Deployment]
 SiteA --> VPN
 SiteB --> VPN
 SiteC --> VPN
 end

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 204 of 282

The following code snippet shows a possible TOSCA service template from which this
service could be deployed:

tosca_definitions_version: tosca_2_0
description: Template for deploying SD-WAN with three sites.
service_template:
 inputs:
 location1:
 type: Location
 location2:
 type: Location
 location3:
 type: Location
 node_templates:
 sdwan:
 type: VPN
 site1:
 type: VPNSite
 properties:
 location: { $get_input: location1 }
 requirements:
 - vpn: sdwan
 site2:
 type: VPNSite
 properties:
 location: { $get_input: location2 }
 requirements:
 - vpn: sdwan
 site3:
 type: VPNSite
 properties:
 location: { $get_input: location3 }
 requirements:
 - vpn: sdwan

As defined here, this template can only be used to deploy an SD-WAN with three sites. To
deploy a different number of sites, additional service templates must be created, one for each
possible number of SD-WAN sites. This leads to undesirable template proliferation. The next
section presents an alternative.

To avoid the need for multiple service templates, TOSCA allows all VPN Site nodes to be
created from the same Site node template in the service template. The TOSCA node
template definition grammar uses a count keyword that specifies the requested number of
runtime representations for this node template. This count keyword is similar to the count
keyword in requirement definitions.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 205 of 282

The grammar for the count keyword is as follows:

Keyname Mandatory Type Description

count no integer The optional number of nodes in the representation
graph that will be created from this node template. If
not specified, one single node is created.

It is expected that the value of the count is provided as an input to the service template. This
enables the creation of a simplified SD-WAN service template that contains only one single
VPN Site node as shown in the following figure:

title: Example SD-WAN Service Deployment

flowchart
 Site(Site)
 VPN(VPN)
 subgraph W [SD-WAN Deployment]
 Site --> VPN
 end

An implementation of such a service template is shown in the following code snippet:

tosca_definitions_version: tosca_2_0
description: Template for deploying SD-WAN with a variable number of sites.
service_template:
 inputs:
 number_of_sites:
 type: integer
 node_templates:
 sdwan:
 type: VPN
 site:
 type: VPNSite
 count: { $get_input: number_of_sites }
 requirements:
 - vpn: sdwan

14.2 Node-Specific Input Values
The service template in the previous section conveniently ignores the location property of the
Site node. As shown earlier, the location property is expected to be provided as an input
value. If Site node templates can be instantiated multiple times, then it follows that multiple
input values are required to initialize the location property for each of the Site node

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 206 of 282

representations.

To allow specific input values to be matched with specific node representations, each node
representation is assigned a unique index to differentiate it from other nodes representations
created from the same node template. This index is accessed using the $node_index function
that retrieves the index of the node in the context of which $node_index is used. This can then
be used to index the list of input values.

The node index for a node representation is immutable: it never changes during the lifetime of
that node representation, even if node representations are added or deleted after the service
has been deployed.

The following service template shows how the $node_index function is used to retrieve
specific values from a list of input values in a service template:

tosca_definitions_version: tosca_2_0
description: Template for deploying SD-WAN with a variable number of sites.
service_template:
 inputs:
 number_of_sites:
 type: integer
 location:
 type: list
 entry_schema: Location
 node_templates:
 sdwan:
 type: VPN
 site:
 type: VPNSite
 count: { $get_input: number_of_sites }
 properties:
 location: { $get_input: [location, $node_index] }
 requirements:
 - vpn: sdwan

This approach requires that inputs are provided as lists, even if only one
representation will be created. Should we allow a single value as well as a list of
values?

[Calin] This is as we see fit, not a problem. If a node is supposed to have one
“occurrence” in a topology template (which for the majority will do), then we use
the single value input. If the occurrences are more, then we use lists.

14.3 Cardinality of Relationships
We may also need to accommodate scenarios where a node template with multiple
representations defines a requirement to another node template that also has multiple

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 207 of 282

representations. This section introduces grammar for specifying the cardinality of such
requirements. Specific mechanisms depend on the type of the relationships to be
established.

14.3.1 Many-to-One Relationships

In the SD-WAN service template above, each of the site node representations has a
relationship to a VPN node that can only be instantiated once. This is an example of a many-
to-one relationship which is shown in the following figure:

flowchart LR
 subgraph Left
 A1((1))
 A2((2))
 A3((3))
 A4((4))
 end
 subgraph Right
 B1((1))
 end
 A1 --> B1
 A2 --> B1
 A3 --> B1
 A4 --> B1

This scenario is supported using existing relationship syntax as shown in the following code
snippet:

service_template:
 inputs:
 number_of_left:
 type: integer
 node_templates:
 right:
 type: Right
 left:
 type: Left
 count: {$get_input: number_of_left}
 requirements:
 - uses: right

This template specifies that all four node representations created from the left node
template must use the one node representation created from theright node template as their
target node.

14.3.2 One-to-Many Relationships

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 208 of 282

An example of a one-to-many relationship is shown in the following figure:

flowchart LR
 subgraph Left
 A1((1))
 end
 subgraph Right
 B1((1))
 B2((2))
 B3((3))
 B4((4))
 end
 A1 --> B1
 A1 --> B2
 A1 --> B3
 A1 --> B4

One-to-many relationships are less common, but they can just as easily be accommodated
using existing TOSCA grammar, as long as the requirement in the single node specifies the
appropriate count value. This is shown in the following code snippet:

service_template:
 inputs:
 number_of_right:
 type: integer
 node_templates:
 right:
 type: Right
 count: {$get_input: number_of_right}
 left:
 type: Left
 requirements:
 - uses:
 node: right
 count: {$get_input: number_of_right}

In this example, a total number of count relationships will be created from the single left
node to the group of right nodes. The orchestrator must select a different right node for
each relationship. If the count value is not specified in the uses requirement, it defaults to 1
and the orchestrator will only establish one single relationship to one of the right nodes. The
choice of which one of the several right nodes is selected is implementation-specific.

14.3.3 Full mesh

In a full mesh scenario, all nodes on the left establish relationships to all of the nodes on the
right as shown in the following figure:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 209 of 282

flowchart LR
 subgraph Left
 A1((1))
 A2((2))
 end
 subgraph Right
 B1((1))
 B2((2))
 B3((3))
 end
 A1 --> B1
 A1 --> B2
 A1 --> B3
 A2 --> B1
 A2 --> B2
 A2 --> B3

Note that the many-to-one and one to-many pattern are just special cases of a full-mesh when
either the number of nodes on the left or the number of nodes on the right side is 1.

As before, the full mesh scenario can easily be defined using existing requirement syntax as
shown in the following code snippet:

service_template:
 inputs:
 number_of_left:
 type: integer
 number_of_right:
 type: integer
 node_templates:
 right:
 type: Right
 count: {$get_input: number_of_right}
 left:
 type: Left
 count: {$get_input: number_of_left}
 requirements:
 - uses:
 node: right
 count: {$get_input: number_of_right}

14.3.4 Matched Pairs

For some services, representations created from different node templates must remain
matched up in pairs. For example, let’s extend the SD-WAN service above with a third node
template that represents a virtual PE router that must be used at each site. Let’s assume that

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 210 of 282

Site nodes establish a HostedOn relationship to the vPE nodes. The extended service
topology is shown in the following figure:

flowchart LR
 A((Site)) --> B((VPN))
 A((Site)) --> c((vPE))

In this example, the intent is for each site node to remain paired with its own vPE node for that
site. A generic illustration of the matched pairs scenario is shown in the following figure:

flowchart LR
 subgraph Left
 A1((1))
 A2((2))
 A3((3))
 A4((4))
 end
 subgraph Right
 B1((1))
 B2((2))
 B3((3))
 B4((4))
 end
 A1 --> B1
 A2 --> B2
 A3 --> B3
 A4 --> B4

To create matched pairs, the service template designer must first make sure that the number
of nodes on the left matches the number of nodes on the right by using the same input value
for the count keynames in both the left and right node templates. In addition, each
requirement must correctly match source nodes and target nodes are matched correctly,
which can be accomplished by making sure that a target node of each relationship has the
same node index value as its source node. This following code snippet shows requirement
definition grammar that uses the $node_index function to uniquely identify target nodes:

service_template:
 inputs:
 number_of_nodes:
 type: integer
 node_templates:
 right:
 type: Right
 count: {$get_input: number_of_nodes}
 left:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 211 of 282

 type: Left
 count: {$get_input: number_of_nodes}
 requirements:
 - uses: [right, $node_index]

14.3.5 Random Pairs

Some scenarios require nodes to be organized in pairs, but the ordering of the nodes is not
important. The following figure shows and such a random pairs example:

flowchart LR
 subgraph Left
 A2((2))
 A3((3))
 A1((1))
 A4((4))
 end
 subgraph Right
 B1((1))
 B2((2))
 B3((3))
 B4((4))
 end
 A1 --> B3
 A2 --> B1
 A3 --> B2
 A4 --> B4

In this scenario, it is not important how target nodes are paired with source nodes, as long as
each target node is only used once. To make sure each target node is only used once, the
allocations keyword in the requirement can be used as shown in the following code snippet:

service_template:
 inputs:
 number_of_nodes:
 type: integer
 node_templates:
 right:
 type: Right
 count: {$get_input: number_of_nodes}
 capabilities:
 feature:
 properties:
 target_count: 1
 left:
 type: Left

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 212 of 282

 count: {$get_input: number_of_nodes}
 requirements:
 - uses:
 node: right
 allocations:
 target_count: 1

This scenario works as follows:

The target capability in each target node defines a property that is intended to restrict
how many times that capability can be targeted. In the example above, the right nodes
are the target nodes. These nodes define a feature capability that in turn defines a
target_count property. The value of this property is set to 1 to only allow one single
incoming relationship.
The requirement in each source node includes an allocations section that allocates a
single unit from the target capability. In the example above, the left nodes define a
uses requirement that allocates a single unit from the target_count property in the
target capability.
When a relationship is established to a target node, that target node's target_count
property is exhausted and no additional incoming relationships will be established. This
ensures that each target node is only allocated once.

14.3.6 Many-to-Many Relationships

The mechanisms introduced above can also be used to define more complex many-to-many
scenarios. For example, a 1:2 pattern is shown in the following figure:

flowchart LR
 subgraph Left
 A1((1))
 A2((2))
 A3((3))
 end
 subgraph Right
 B1((1))
 B2((2))
 B3((3))
 B4((4))
 B5((5))
 B6((6))
 end
 A1 --> B1
 A1 --> B2
 A2 --> B3
 A2 --> B4
 A3 --> B5

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 213 of 282

 A3 --> B6

This pattern can be accomplished using the following code snippet:

service_template:
 node_templates:
 right:
 type: Right
 count: 6
 capabilities:
 feature:
 properties:
 target_count: 1
 left:
 type: Left
 count: 6
 requirements:
 - uses:
 node: right
 count: 2
 allocations:
 target_count: 1

The following figure shows a 3:2 pattern:

flowchart LR
 subgraph Left
 A1((1))
 A2((2))
 A3((3))
 A4((4))
 A5((5))
 A6((6))
 end
 subgraph Right
 B1((1))
 B2((2))
 B3((3))
 B4((4))
 end
 A1 --> B1
 A1 --> B2
 A2 --> B1
 A2 --> B2
 A3 --> B1
 A3 --> B2

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 214 of 282

 A4 --> B3
 A4 --> B4
 A5 --> B3
 A5 --> B4
 A6 --> B3
 A6 --> B4

This pattern can be implemented using the following code snippet:

service_template:
 node_templates:
 right:
 type: Right
 count: 6
 capabilities:
 feature:
 properties:
 target_count: 3
 left:
 type: Left
 count: 6
 requirements:
 - uses:
 node: right
 count: 2
 allocations:
 target_count: 1

Finally, there may be scenarios where the multiplicity of the left nodes and the multiplicity of
the right nodes do not allow clean pairing scenarios. In that case, more complicated
expressions might be needed to specify target node indices or to restrict capacity. For
example, if nodes are expected to be paired but there are more nodes on the left than on the
right. The following code snippet shows a mismatched pairs example where the orchestrator
may have to cycle through the target nodes multiple times:

service_template:
 inputs:
 number_of_right:
 type: integer
 number_of_left:
 type: integer
 node_templates:
 right:
 type: Right
 count: {$get_input: number_of_right}
 left:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 215 of 282

 type: Left
 count: {$get_input: number_of_left}
 requirements:
 - uses: [right, {$remainder: [$node_index, {$get_input:
number_of_right}]}]

14.4 Relationship-Specific Input Values
To allow specific input values to be matched with specific relationship representations, each
relationship representation is assigned a unique index to differentiate it from other
relationship representations created from the same requirement definition. This index is
accessed using the $relationship_index function that references the index of the
relationship in the context of its requirement. This can then can be used to index the list of
input values.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 216 of 282

15 Substitution
The TOSCA substitution feature allows nodes in a service topology to be decomposed using
substituting services that describe the internals of those nodes. Substitution provides a
declarative mechanism for implementing TOSCA nodes that can be used as an alternative to
implementation artifacts. Substitution allows for simplified representations of complex
systems that abstract away technology or vendor-specific implementation details. Abstract
nodes that expect to be substituted are based on node templates that are annotated with the
substitute directive. Service templates advertize their ability to provide substituting
implementations using the substitution_mapping section in the service template definition.

The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

15.1 Substitution Mapping
The substitution_mapping section in a service template serves four purposes:

1. It identifies the nodes for which the service template is a substitution candidate by
specifying a node type and an associated substitution filter.

2. It defines how configuration and state values flow between the substituted node and the
substituting template: property mappings specify how configuration values are
propagated from the substituted node to the substituting service, and attribute mappings
specify how runtime values are propagated back from the substituting service to the
substituted node.

3. It dictates how the topology graph of the substituting service is stitched in to the top-level
topology graph that contains the substituted node (using requirement and capability
mappings).

4. It specifies how interface operations called on the substituted node are implemented
using workflows on the substituting service, and how events generated in the substituting
service are escalated to notifications on the substituted node.

Note that while capabilities and relationships may define properties and attributes, capability
mappings and requirement mappings do not propagate these values. Capability and
requirement mappings are used exclusively to control service topology. If capability or
relationship values must be passed between an abstract node and its substituting service,
property and attribute mappings must be used to define how these values are mapped.

This event escalation mechanism needs to be better defined.

Keyname Mandatory Type Description

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 217 of 282

node_type yes string The name of the node type of the nodes for
which the service template can provide an
implementation.

substitution_filter no condition
clause

The filter that further constrains the abstract
nodes for which this service template can
provide an implementation. For an
abstract node that needs to be substituted,
the condition clause specified by the
substitution filter must evaluate to True for
this template to be a valid substitution
candidate.

properties no map of
property
mappings

The map of property mappings that map
properties of the substituted node to inputs
of the service template.

attributes no map of
attribute
mappings

The map of attribute mappings that map
outputs from the service template to
attributes of the substituted node.

capabilities no map of
capability
mappings

The map of capability mappings.

requirements no list of
requirement
mappings

The list of requirement mappings.

interfaces no map of
interfaces
mappings

The map of interface mappings that map
interface operations called on the
substituted node to implementations
workflows on the substituting service.

Keyname Mandatory Type Description

The grammar of the substitution_mapping section is as follows:

node_type: <node_type_name>
substitution_filter : <substitution_filter>
properties: <property_mappings>
attributes: <attribute_mappings>
capabilities: <capability_mappings>
requirements: <requirement_mappings>
interfaces: <interface_mappings>

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 218 of 282

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

node_type_name: represents the node type name for which the service template can
offer an implementation.
substitution_filter: represents a filter that reduces the set of abstract nodes for which this
service template is an implementation by only substituting for those nodes whose
properties and capabilities satisfy the condition clause specified in the filter.
property_mappings: represents the map of property to input mappings.
attribute_mappings: represents the map of output to attribute mappings.
capability_mappings: represents the map of capability mappings.
requirement_mappings: represents the list of requirement mappings.
interface_mappings: represents the map of interface mappings.

Examples to be provided

Please note:

A substituting service template MUST be a valid TOSCA template in its own right (i.e.,
when not used as a substituting implementation). Specifically, all the required properties
of all its node templates must have valid property assignments.

15.2 Property mapping
A property mapping allows a property value of a substituted node to be mapped to an input
value of the substituting service template.

The grammar of a property_mapping is as follows:

<property_name>: <input_name>
[CAPABILITY, <capability_name>, <property_name>]: <input_name>
[RELATIONSHIP, <requirement_name>, <idx>, <property_name>]: <input_name>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

input_name: represents the name of an input defined for the substituting service
template.
property_name: represents the name of a property of the substituted node (defined
using a corresponding property definition in the specified node type), or a property of a
capability, or a property of a relationship created by a requirement of the substituted
node.
capability_name: represents the name of the capability as it appears in the node type
definition for the substituted node
requirement_name: represents the name of the requirement as it appears in the node

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 219 of 282

type definition for the substituted node
idx: index of the relationship defined from that requirement (0 is the first index); if the
index is missing, index 0 is assumed; if the keyword ALL is used by as index, the
corresponding input will be assigned a list of all values of properties with
<property_name> from all relationships created from the requirement with
<requirement_name>.

The following additional requirements apply:

Mappings must be type-compatible (i.e., properties mapped to input must have the type
specified in the corresponding input definition).
Property mappings must be defined for all mandatory service template inputs that do
not define a default value.

15.3 Attribute Mapping
An attribute mapping allows an output value of the substituting service template to be mapped
to an attribute of the substituted node.

The grammar of an attribute_mapping is as follows:

<attribute_name>: <output_name>
[CAPABILITY, <capability_name>, <attribute_name>]: <output_name>
[RELATIONSHIP, <requirement_name>, <idx>, <attribute_name>]: <output_name>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

output_name: represents the name of an output defined in the substituting service
template.
attribute_name: represents the name of an attribute of the substituted node (defined
using a corresponding attribute definition in the specified node type) or an attribute of a
capability, or an attribute of a relationship created by a requirement of the substituted
node.
capability_name: represents the name of the capability as it appears in the node type
definition for the substituted node
requirement_name: represents the name of the requirement as it appears in the node
type definition for the substituted node
idx: index of the relationship defined from that requirement (0 is the first index); if the
index is missing, index 0 is assumed; if the keyword ALL is used by as index, all
attributes with <attribute_name> from all relationships created from the requirement with
<requirement_name> will be assigned a coresponding value from the output which is of
a list type.

The following additional requirements apply:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 220 of 282

Mappings must be type-compatible (i.e., outputs mapped to attributes must have the
type specified in the corresponding attribute definition).

15.4 Capability Mapping
A capability mapping allows a capability of one of the nodes in the substituting service
template to be mapped to a capability of the substituted node.

The grammar of a capability_mapping is as follows:

<capability_name>: [<node_template_name>, <node_template_capability_name>]

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

capability_name: represents the name of the capability as it appears in the node type
definition for the substituted node.
node_template_name: represents a valid name of a node template definition within the
substituting service template.
node_template_capability_name: represents a valid name of a capability definition
within the <node_template_name> declared in this mapping.

15.5 Requirement Mapping
A requirement mapping defines how requirements of the substituted node are mapped to one
or more requirements of nodes in the substituting service. The term requirement mapping is
somewhat of a misnomer, since mapping a requirement results in the target node of that
requirement also being used as the target node for the mapped requirement. As a result,
requirement mappings are a mechanism for passing nodes between templates.

The grammar for requirement mapping differs slightly from other substitution mapping
grammars for the following two reasons:

1. It is possible for a substituted node to have multiple requirement assignments (up to the
upper bound of the count_range), each of which may need to be mapped separately.

2. It is possible for the same requirement in a substituted node to be mapped multiple
times.

To accommodate these use cases, requirement mappings are defined using YAML lists
rather than maps. In addition, each of the mappings in the list may in turn identify a list of
requirements.

The grammar for requirement mappings is as follows:

<requirement_name>:
 - [<node_template_name_1>, <node_template_requirement_name_1>]

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 221 of 282

 - ...
 - [<node_template_name_n>, <node_template_requirement_name_n>]

If the substituting template uses selectable nodes to define requirements, then the following
alternative syntax can be used:

<requirement_name>:
 - <selectable_node_template_name_1>
 - ...
 - <selectable_node_template_name_n>

The TOSCA grammar allows mixing and matching these two alternative syntaxes within the
same requirement mappings list.

As an optimization, if the requirement mapping defines a one-to-one mapping (i.e., a
mapping of a requirement onto a single requirement of a single node in the substituting
template or a mapping to a single selectable node), the following single-line grammar may be
used:

<requirement_name>: [<node_template_name>, <node_template_requirement_name>]

or

<requirement_name>: <selectable_node_template_name>

If we have several requirement mappings with the same requirement name (i.e. as the key of
the requirement mapping) that means that each requirement assignment is mapped
separately (in the order they appear in the list). If there is only one requirement mapping with a
certain requirement name (i.e. as the key of the requirement mapping) then it means that all
requirements assignments of that requirement are mapped to the same target requirement(s).

If we have several requirement mappings with the same requirement name, and a consecutive
subset of them have the same target reqirement(s), instead of repeating the mapping we can
use the following grammar:

[<requirement_name>, <count>]: [<node_template_name>,
<node_template_requirement_name>]

In the above grammars, the pseudo values that appear in angle brackets have the following
meaning:

requirement_name: represents the name of the requirement as it appears in the type
definition for the node type name that is declared as the value for on the
substitution_mappings’ node_type key.
node_template_name: represents a valid name of a node template definition within the

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 222 of 282

same substituting service template
selectable_node_template_name: represents a valid name of a selectable node
template definition within the same substituting service template
node_template_requirement_name: represents a valid name of a requirement definition
within the <node_template_name> declared in this mapping.
count: is the number of assignments of a requirement mapped to the same target
requirement(s). It can be either a non-negetive integer or the keyword UNBOUNDED, which
represents all the remaining assignments. Note that mappings with count can
interspread mappings without count for the same requirement_name, however no other
assignment for the same requirement_name should not be used after one containing an
UNBOUNDED count.

The following subsections illustrate this grammar in the context of various use cases.

15.5.1 Mapping Multiple Requirements with the Same Name

The following example shows a Client node type that defines a service requirement with a
count_range of [2, 2], which means that nodes of type Client need exactly two service
relationships to nodes of type Server.

tosca_definitions_version: tosca_2_0
capability_types:
 Service:
 description: >-
 Ability to provide service.
relationship_types:
 ServedBy:
 description: >-
 Connection to a service.
node_types:
 Client:
 requirements:
 - service:
 capability: Service
 relationship: ServedBy
 node: Server
 count_range: [2, 2]
 Server:
 capabilities:
 service:
 type: Service

This following figure shows a service that consists of one such client node connected to two
server nodes.

graph BT;

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 223 of 282

dummy((.)) ~~~ client
 subgraph T [Simple Service]
 client --> |service| server1
 client --> |service| server2
 end

This service can be implemented using the following TOSCA service template:

tosca_definitions_version: tosca_2_0
imports:
 - types.yaml
service_template:
 node_templates:
 server1:
 type: Server
 server2:
 type: Server
 client:
 type: Client
 directives: [substitute]
 requirements:
 - service: server1
 - service: server2

In this template, the client node is annotated with the substitute directive, which means that
a substituting template must be found to instantiate this node. The following figure shows one
possible substitution.

graph BT
 S --> |substitutes| client

 subgraph T [Top-Level Topology]
 client --> |service| server1
 client --> |service| server2
 end

 subgraph S [Substituting Topology]
 direction BT
 software1 --> |host| compute
 software2 --> |host| compute
 software1 -.-> |mapped
service
requirement| server1
 software2 -.-> |mapped
service
requirement| server2
 end

This substitution decomposes the client node into two different software nodes, each with

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 224 of 282

exactly one service requirement. The requirement mapping syntax must distribute the two
service requirements from the substituted client node between the service requirements of
the two software nodes in the substituting template. The substitution mapping code in the
following substituting service template shows how this is accomplished:

tosca_definitions_version: tosca_2_0
imports:
 - types.yaml
capability_types:
 Host:
 description: >-
 Ability to host software.
relationship_types:
 HostedOn:
 description: >-
 Relationship to a host.
node_types:
 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 - service:
 capability: Service
 relationship: ServedBy
 count_range: [1, 1]
 Compute:
 capabilities:
 host:
 type: Host
service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - service: [software1, service]
 - service: [software2, service]
 node_templates:
 software1:
 type: ClientSoftware
 requirements:
 - host: compute1
 software2:
 type: ClientSoftware
 requirements:
 - host: compute2
 compute1:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 225 of 282

 type: Compute
 compute2:
 type: Compute

The following figure shows an alternative substitution where both service requirements of the
substituted client node are mapped to corresponding requirements of a single software
node in the substituting topology:

flowchart RL
 S --> |substitutes| client

 subgraph T [Top-Level Topology]
 direction RL
 client --> |service| server1
 client --> |service| server2
 end

 subgraph S [Substituting Topology]
 direction LR
 software --> |host| compute
 software -.-> |mapped
service
requirement| server1
 software -.-> |mapped
service
requirement| server2
 end

The requirement mapping syntax for this template distributes the two service requirements
from the substituted client node to the same software node in the substituting template using
two identical mappings for the two service requirements as follows:

tosca_definitions_version: tosca_2_0
imports:
 - types.yaml
capability_types:
 Host:
 description: >-
 Ability to host software.
relationship_types:
 HostedOn:
 description: >-
 Relationship to a host.
node_types:
 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 - service:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 226 of 282

 capability: Service
 relationship: ServedBy
 count_range: [2, 2]
 Compute:
 capabilities:
 host:
 type: Host
service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - service: [software, service]
 - service: [software, service]
 node_templates:
 software:
 type: ClientSoftware
 requirements:
 - host: compute
 compute:
 type: Compute

As a convenience feature, it is possible to group identical mapping statements using the
syntax in the following example. This syntax states that two service requirements of the
substituted node are mapped to two corresponding service requirements of the software
node in the substituting template.

tosca_definitions_version: tosca_2_0
imports:
 - types.yaml
capability_types:
 Host:
 description: >-
 Ability to host software.
relationship_types:
 HostedOn:
 description: >-
 Relationship to a host.
node_types:
 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 - service:
 capability: Service
 relationship: ServedBy

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 227 of 282

 count_range: [2, 2]
 Compute:
 capabilities:
 host:
 type: Host
service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - [service, 2]: [software, service]
 node_templates:
 software:
 type: ClientSoftware
 requirements:
 - host: compute
 compute:
 type: Compute

As a further convenience feature, if all of the requirement assignments are mapped to the
same target requirement(s) is possible to drop the grammar using the count. This syntax
states that all service requirements of the substituted node are mapped to the corresponding
service requirements of the software node in the substituting template.

tosca_definitions_version: tosca_2_0
imports:
 - types.yaml
capability_types:
 Host:
 description: >-
 Ability to host software.
relationship_types:
 HostedOn:
 description: >-
 Relationship to a host.
node_types:
 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 - service:
 capability: Service
 relationship: ServedBy
 count_range: [2, 2]
 Compute:
 capabilities:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 228 of 282

 host:
 type: Host
service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - service: [software, service]
 node_templates:
 software:
 type: ClientSoftware
 requirements:
 - host: compute
 compute:
 type: Compute

15.5.2 Mapping a Requirement Multiple Times

Imagine a scenario where nodes of type Client need to be hosted on nodes of type Compute
as shown by the following type definitions:

tosca_definitions_version: tosca_2_0
capability_types:
 Host:
 description: >-
 Ability to host software.
relationship_types:
 HostedOn:
 description: >-
 Relationship to a host.
node_types:
 Client:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 node: Compute
 count_range: [1, 1]
 Compute:
 capabilities:
 host:
 type: Host

The following figure shows a service that contains one node of type Client, one node of type
Compute, and the host relationship between them:

flowchart RL

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 229 of 282

 subgraph T [Top-Level Topology]
 client --> |host| compute
 end

This example can be implemented using the following service template:

tosca_definitions_version: tosca_2_0
imports:
 - types.yaml
service_template:
 node_templates:
 compute:
 type: Compute
 client:
 type: Client
 directives: [substitute]
 requirements:
 - host: compute

The following figure shows a substituting topology that decomposes the node of type Client
into two software components, each of which needs to be hosted on the same compute node
defined in the top-level template that defines the client node.

flowchart RL
 S --> |substitutes| client

 subgraph T [Top-Level Topology]
 client --> |host| compute
 end

 subgraph S [Substituting Topology]
 software1 -.-> |mapped
host
requirement| compute
 software2 -.-> |mapped
host
requirement| compute
 end

The requirement mapping syntax must replicate the single host requirements from the
substituted client node to the two software nodes in the subsituting template. The
substitution mapping code in the following substituting service template shows how this is
accomplished by mapping the host requirement of the client node twice, once to the host
requirement of the software1 node and once to the host requirement of the software2 node.

tosca_definitions_version: tosca_2_0
imports:
 - types.yaml
node_types:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 230 of 282

 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 count_range: [1, 1]
service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - host:
 - [software1, host]
 - [software2, host]
 node_templates:
 software1:
 type: ClientSoftware
 software2:
 type: ClientSoftware

Using this syntax, the target of the requirement mapping is a list of target requirements rather
than a single requirement.

15.5.3 Requirement Mapping and Selectable Nodes

The previous section shows a use case where the target node of a requirement of the
substituted node is to be used multiple times as the target node of multiple different
requirements in a subsituting template. The need for multiple requirements to be fulfilled by
the same target node is quite common and usually exists independently of whether the service
template is used as a substitution or as a stand-alone service. In fact, the TOSCA selectable
node feature was introduced specifically for scenarios where requirements of different nodes
need to be fulfilled by the same target node.

The requirement mapping examples presented so far only show how to map requirements of
a substituted node onto dangling requirements of nodes in the substituting template. This
section shows how requirement mappings can also be used in conjunction with selectable
nodes in substituting templates.

Let's again consider the scenario from the previous section where a node of type Client is
hosted on a node of type `Compute:

flowchart RL
 subgraph T [Top-Level Topology]
 client --> |host| compute
 end

The following service template shows an implementation of this example:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 231 of 282

tosca_definitions_version: tosca_2_0
imports:
 - types.yaml
service_template:
 node_templates:
 compute:
 type: Compute
 client:
 type: Client
 directives: [substitute]
 requirements:
 - host: compute

The following figure shows a substituting topology that decomposes the node of type Client
into two software components, each of which needs to be hosted on the same compute node.
Unlike in the example in the previous section, a selectable node is used to express the need
for both software components to be hosted on the same compute node:

flowchart RL
 subgraph S [Substituting Topology]
 host("compute
[select]")
 software1 --> |host| host
 software2 --> |host| host
 end

The requirement mappings defined in the corresponding service template must express that
the target node of the host requirement of the substituted node is to be selected as the node
represented by the selectable compute node in the subsituting template, as shown in the
following Figure:

flowchart RL
 S --> |substitutes| client
 subgraph T [Top-Level Topology]
 client --> |host| compute
 end
 subgraph S [Substituting Topology]
 host("compute
[select]")
 software1 --> |host| host
 software2 --> |host| host
 host -.-> |mapped
host
requirement| compute
 end

This can trivially be done using the syntax shown in the following code snippet:

tosca_definitions_version: tosca_2_0

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 232 of 282

imports:
 - types.yaml
node_types:
 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 count_range: [1, 1]
service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - host: compute
 node_templates:
 software1:
 type: ClientSoftware
 software2:
 type: ClientSoftware
 compute:
 type: Compute
 directives: [select]

The substitution mapping code in this service template provides an elegant mechanism for
expressing that the target node of the host requirement of the client node is to be mapped
directly to the selectable compute node in the substituting template.

15.5.4 Requirement Mapping Rules

This section documents the rules for requirement mapping.

1. Requirements from a substituted node can only be mapped onto dangling requirements
in the substituting template.

2. The total number of requirements mapped onto mandatory requirements in the
substituting template must not exceed the lower bound of the count_range in the
corresponding requirement definition in the substituted node's type.

3. The total number of requirement mappings must not exceed the upper bound of the
count_range in the corresponding requirement definition in the substituted node's type.
Note that this is a convenience rule only, since according to rule 2, any excess
mappings would have to map onto optional requirements, and as a result can safely be
ignored.

Note that there are no constraints on the minimum number of requirement mappings. More
specifically, the total number of requirement mappings is allowed to be smaller than the lower
bound of the count_range in the corresponding requirement definition.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 233 of 282

The types defined in the following code snippet are used to illustrate these rules:

tosca_definitions_version: tosca_2_0
capability_types:
 Service:
 description: >-
 Ability to provide service.
relationship_types:
 ServedBy:
 description: >-
 Connection to a service.
node_types:
 Client:
 requirements:
 - service:
 capability: Service
 relationship: ServedBy
 node: Server
 count_range: [1, 4]
 Server:
 capabilities:
 service:
 type: Service

In this example, the Client node type defines a service requirement with a count_range of
[1, 4]. This means that a client can have up to four service connections to a Server node,
but only one of those is mandatory.

The following code snippet shows a valid substituting template for the client node in the
template shown above:

tosca_definitions_version: tosca_2_0
imports:
 - types.yaml
capability_types:
 Host:
 description: >-
 Ability to host software.
relationship_types:
 HostedOn:
 description: >-
 Relationship to a host.
node_types:
 ClientSoftware:
 requirements:
 - host:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 234 of 282

 capability: Host
 relationship: HostedOn
 - service:
 capability: Service
 relationship: ServedBy
 count_range: [1, 1]
 Compute:
 capabilities:
 host:
 type: Host
service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - service: [software, service]
 node_templates:
 software:
 type: ClientSoftware
 requirements:
 - host: compute
 compute:
 type: Compute

While the substituted client node in the template above has three requirement assigments
with target nodes, only one of those requirements is mapped to a requirement in the
substituting template.

The next code snippet shows a slightly different substituting template for the client node in
the template shown above. This template decomposes the client node into three different
software nodes, each with a single service requirement to its own server. The substitution
mapping defines three requirement mappings for the service requirement of the client
node, one to each of the service requirements of the software nodes in the substituting
template.

tosca_definitions_version: tosca_2_0
imports:
 - types.yaml
capability_types:
 Host:
 description: >-
 Ability to host software.
relationship_types:
 HostedOn:
 description: >-
 Relationship to a host.
node_types:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 235 of 282

 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 - service:
 capability: Service
 relationship: ServedBy
 count_range: [1, 1]
 Compute:
 capabilities:
 host:
 type: Host
service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - service: [software1, service]
 - service: [software2, service]
 - service: [software3, service]
 node_templates:
 software1:
 type: ClientSoftware
 requirements:
 - host: compute1
 software2:
 type: ClientSoftware
 requirements:
 - host: compute2
 software3:
 type: ClientSoftware
 requirements:
 - host: compute3
 compute1:
 type: Compute
 compute2:
 type: Compute
 compute3:
 type: Compute

Unfortunately, this substituting template is invalid. Since the service requirement of each
software node is mandatory, this template needs three different service requirements in any
node of type Client for which it is a substitution. This cannot be guaranteed, since the
service requirement definition in the Client node type specifies a count_range with a lower
bound of one, which means that only such requirement is guaranteed to exist.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 236 of 282

The following shows a corrected version of this substituting template:

tosca_definitions_version: tosca_2_0
imports:
 - types.yaml
capability_types:
 Host:
 description: >-
 Ability to host software.
relationship_types:
 HostedOn:
 description: >-
 Relationship to a host.
node_types:
 ClientSoftware:
 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 - service:
 capability: Service
 relationship: ServedBy
 count_range: [0, 1]
 Compute:
 capabilities:
 host:
 type: Host
service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - service: [software1, service]
 - service: [software2, service]
 - service: [software3, service]
 node_templates:
 software1:
 type: ClientSoftware
 requirements:
 - host: compute1
 - service:
 optional: False
 software2:
 type: ClientSoftware
 requirements:
 - host: compute2
 software3:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 237 of 282

 type: ClientSoftware
 requirements:
 - host: compute3
 compute1:
 type: Compute
 compute2:
 type: Compute
 compute3:
 type: Compute

In this template, the service requirement of the ClientSoftware node type is defined with a
count_range of [0, 1], which means the requirement is no longer mandatory. Only the
software1 node template annotates its service requirement as mandatory (using the
optional: False statement). The other two software nodes leave their service requirement
optional. As a result, this is now a valid substituting template for nodes of type Client that
define a service requirement with count_range equal to [1, 4].

Requirement mapping must take one more rule into account: if the number of requirement
mappings is greater than the lower bound of the count_range, the orchestrator must first
perform those mappings that map requirements onto mandatory requirements in the
substituting template, and then it will perform the remaining mappings (which presumably will
map onto optional requirements in the substituting template). This is done independent of the
order in which the requirement mappings are specified.

15.5.5 Handling UNBOUNDED Requirement Count Ranges

In the case of UNBOUNDED count ranges, we must use unbounded grammar forms.

In the following case all service requirements of the substituted node are mapped to the
corresponding service requirements of the software1 node in the substituting template. This
allows for the follwing compact syntax:

tosca_definitions_version: tosca_2_0
imports:
 - types.yaml
node_types:
 Client:
 requirements:
 - service:
 capability: Service
 relationship: ServedBy
 node: Server
 count_range: [3, UNBOUNDED]
 ClientSoftware:
 requirements:
 - host:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 238 of 282

 capability: Host
 relationship: HostedOn
 - service:
 capability: Service
 relationship: ServedBy
 count_range: [0, UNBOUNDED]
 Compute:
 capabilities:
 host:
 type: Host
service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - service: [software1, service]
 node_templates:
 software1:
 type: ClientSoftware
 requirements:
 - host: compute
 software2:
 type: ClientSoftware
 requirements:
 - host: compute
 compute:
 type: Compute

In the next case the service requirements of the substituted node are mapped to the
corresponding service requirements of both the software1 and software2 nodes in the
substituting template as follows: the first requirement assignment is mapped to the service
requirement of the software1 node, the second requirement assignment is mapped to the
service requirement of the software2 node, then the rest of the service requirements of the
substituted node are mapped again to the service requirement of the software1 node:

tosca_definitions_version: tosca_2_0
imports:
 - types.yaml
node_types:
 Client:
 requirements:
 - service:
 capability: Service
 relationship: ServedBy
 node: Server
 count_range: [3, UNBOUNDED]
 ClientSoftware:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 239 of 282

 requirements:
 - host:
 capability: Host
 relationship: HostedOn
 - service:
 capability: Service
 relationship: ServedBy
 count_range: [0, UNBOUNDED]
 Compute:
 capabilities:
 host:
 type: Host
service_template:
 substitution_mappings:
 node_type: Client
 requirements:
 - service: [software1, service]
 - service: [software2, service]
 - [service, UNBOUNDED]: [software1, service]
 node_templates:
 software1:
 type: ClientSoftware
 requirements:
 - host: compute
 software2:
 type: ClientSoftware
 requirements:
 - host: compute
 compute:
 type: Compute

15.6 Interface Mapping
An interface mapping allows an interface operation on the substituted node to be mapped to
workflow in the substituting service template.

The grammar of an interface_mapping is as follows:

<interface_name>:
 <operation_name>: <workflow_name>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

interface_name: represents the name of the interface as it appears in the node type
definition for the node type (name) that is declared as the value for on the

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 240 of 282

substitution_mappings’ node_type key.
operation_name: represents the name of the operation as it appears in the interface
type definition for <interface_name>.
workflow_name: represents the name of a workflow defined in the substituting service
template to which to map the specified interface operation.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 241 of 282

16 Groups and Policies
A TOSCA group is a logical grouping of nodes for purposes of uniform application of policies
to collections of nodes. Conceptually, group definitions allow the creation of logical
membership relationships to nodes in a service template that are not a part of the
application's explicit requirement dependencies in the topology template (i.e. those required
to actually get the application deployed and running).

The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

16.1 Group Type
As with most TOSCA entities, groups are typed. A group type definition is a type of TOSCA
type definition and as a result supports the common keynames listed in Section 6.4.1. In
addition, the group type definition has the following recognized keynames:

Keyname Mandatory Type Description

properties no map of
property
definitions

An optional map of property definitions for the
group type.

attributes no map of
attribute
definitions

An optional map of attribute definitions for the
group type.

members no list of string An optional list of one or more names of node
types that are valid (allowed) as members of the
group type.

What are group properties used for? How can group attributes possibly be set,
and what would they be used for?

Group types have the following grammar:

<group_type_name>:
 derived_from: <parent_group_type_name>
 version: <version_number>
 metadata: <map of YAML data>
 description: <group_description>
 properties: <property_definitions>
 attributes: <attribute_definitions>

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 242 of 282

 members: <list_of_valid_member_types>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

group_type_name: represents the mandatory symbolic name of the Group Type being
declared as a string.

parent_group_type_name: represents the name (string) of the group type this group
type definition derives from (i.e. its “parent” type).

attribute_definitions: represents the optional map of attribute definitions for the group
type.

property_definitions: represents the optional map of property definitions for the group
type.

list_of_valid_member_types: represents the optional list of TOSCA Node Types that are
valid member types for being added to (i.e. members of) the group type; if the members
keyname is not defined then there are no restrictions to the member types;

note that the members of a group ultimately resolve to nodes, the types here just
restrict which nodes can be defined as members in a group definition.

A node type is matched if it is the specified type or is derived from the node type

During group type derivation the keyname definitions follow these rules:

properties: existing property definitions may be refined; new property definitions may be
added.

attributes: existing attribute definitions may be refined; new attribute definitions may be
added.

members: if the members keyname is defined in the parent type, each element in this
list must either be in the parent type list or derived from an element in the parent type list;
if the members keyname is not defined in the parent type then no restrictions are
applied to the definition.

The following represents an example group type definition:

group_types:
 mycompany.placement:
 description: My company’s group type for placing nodes of type Software
 members: [Software]

16.2 Group Definition

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 243 of 282

Collections of nodes in a service template may be grouped together using a group definition
in that same service template. A group definition defines a logical grouping of node templates
for purposes of uniform application of policies.

The following is the list of recognized keynames for a TOSCA group definition:

Keyname Mandatory Type Description

type yes string The mandatory name of the group type the
group definition is based upon.

description no string The optional description for the group
definition.

metadata no map of
YAML data

Defines a section used to declare additional
metadata information.

properties no map of
property
assignments

An optional map of property value assignments
for the group definition.

attributes no map of
attribute
assignments

An optional map of attribute value assignments
for the group definition.

members no list of string The optional list of one or more node template
names that are members of this group
definition.

Group definitions have one the following grammars:

<group_name>:
 type: <group_type_name>
 description: <group_description>
 metadata: <map of YAML data>
 properties: <property_assignments>
 attributes: <attribute_assignments>
 members: <list_of_node_templates>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

group_name: represents the mandatory symbolic name of the group as a string.

group_type_name: represents the name of the group type the definition is based upon.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 244 of 282

property_assignments: represents the optional map of property assignments for the
group definition that provide values for properties defined in its declared group type.

attribute_assigments: represents the optional map of attribute assignments for the
group definition that provide values for attributes defined in its declared group type.

list_of_node_templates: contains the mandatory list of one or more node template
names or group symbolic names (within the same service template) that are members
of this logical group

if the members keyname was defined (by specifying a
list_of_valid_member_types) in the group type of this group then the nodes listed
here must be compatible (i.e. be of that type or of type that is derived from) with
the node types in the list_of_valid_member_types

The following represents a group definition:

groups:
 my_app_placement_group:
 type: Root
 description: My application’s logical component grouping for placement
 members: [my_web_server, my_sql_database]

16.3 Policy Type

A policy type defines a type of a policy that affects or governs an application or service’s
topology at some stage of its lifecycle but is not explicitly part of the topology itself (i.e., it does
not prevent the application or service from being deployed or run if it did not exist).

A policy type definition is a type of TOSCA type definition and as a result supports the
common keynames listed in Section 6.4.1. In addition, the policy type definition has the
following recognized keynames:

Keyname Mandatory Type Description

properties no map of
property
definitions

An optional map of property definitions for the
policy type.

targets no list of string An optional list of valid node types or group
types the policy type can be applied to.

triggers no map of trigger
definitions

An optional map of policy triggers for the policy
type.

Policy types have the following grammar:

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 245 of 282

<policy_type_name>:
 derived_from: <parent_policy_type_name>
 version: <version_number>
 metadata: <map of YAML data>
 description: <policy_description>
 properties: <property_definitions>
 targets: <list_of_valid_target_types>
 triggers: <trigger_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

policy_type_name: represents the mandatory symbolic name of the policy type being
declared as a string.

parent_policy_type_name: represents the name (string) of the policy type this policy
type definition derives from (i.e., its “parent” type).

property_definitions: represents the optional map of property definitions for the policy
type.

list_of_valid_target_types: represents the optional list of TOSCA types (i.e. group or
node types) that are valid targets for this policy type; if the targets keyname is not
defined then there are no restrictions to the targets’ types.

trigger_definitions: represents the optional map of trigger definitions for the policy.

During policy type derivation the keyname definitions follow these rules:

properties: existing property definitions may be refined; new property definitions may be
added.

targets: if the targets keyname is defined in the parent type, each element in this list
must either be in the parent type list or derived from an element in the parent type list; if
the targets keyname is not defined in the parent type then no restrictions are applied to
this definition.

triggers: existing trigger definitions may not be changed; new trigger definitions may be
added.

The following represents a policy type definition:

policy_types:
 placement.Container.Linux:
 description: My company’s placement policy for linux
 derived_from: Root

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 246 of 282

16.4 Policy Definition
A policy definition defines a policy that can be associated with a TOSCA service or top-level
entity definition (e.g., group definition, node template, etc.).

The following is the list of recognized keynames for a TOSCA policy definition:

Keyname Mandatory Type Description

type yes string The mandatory name of the policy type the
policy definition is based upon.

description no string The optional description for the policy definition.

metadata no map of
string

Defines a section used to declare additional
metadata information.

properties no map of
property
assignments

An optional map of property value assignments
for the policy definition.

targets no list of string An optional list of valid node templates or
Groups the Policy can be applied to.

triggers no map of
trigger
definitions

An optional map of trigger definitions to invoke
when the policy is applied by an orchestrator
against the associated TOSCA entity. These
triggers apply in addition to the triggers defined
in the policy type.

Policy definitions have the following grammar:

<policy_name>:
 type: <policy_type_name>
 description: <policy_description>
 metadata: <map of YAML data>
 properties: <property_assignments>
 targets: <list_of_policy_targets>
 triggers: <trigger_definitions>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

policy_name: represents the mandatory symbolic name of the policy as a string.

policy_type_name: represents the name of the policy the definition is based upon.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 247 of 282

property_assignments: represents the optional map of property assignments for the
policy definition that provide values for properties defined in its declared policy type.

list_of_policy_targets: represents the optional list of names of node templates or groups
that the policy is to applied to.

if the targets keyname was defined (by specifying a list_of_valid_target_types) in
the policy type of this policy then the targets listed here must be compatible (i.e.
be of that type or of type that is derived from) with the types (of nodes or groups) in
the list_of_valid_target_types.

trigger_definitions: represents the optional map of trigger definitions) for the policy;
these triggers apply in addition to the triggers defined in the policy type.

The following represents a policy definition:

 - my_compute_placement_policy:
 type: placement
 description: Apply my placement policy to my application’s servers
 targets: [my_server_1, my_server_2]
 # remainder of policy definition omitted for brevity

16.5 Trigger Definition

A trigger definition defines an event, condition, action tuple associated with a policy.

The following is the list of recognized keynames for a TOSCA trigger definition:

Keyname Mandatory Type Description

description
no

string The
optional
description
string for
the trigger.

event yes string The mandatory name of the event that activates
the trigger’s action.

condition no condition
clause

The optional condition that must evaluate to true
in order for the trigger’s action to be performed.
Note: this is optional since sometimes the event
occurrence itself is enough to trigger the action.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 248 of 282

action yes list of
activity
definition

The list of sequential activities to be performed
when the event is triggered, and the condition is
met (i.e., evaluates to true).

Keyname Mandatory Type Description

Trigger definitions have the following grammars:

<trigger_name>:
 description: <trigger_description>
 event: <event_name>
 condition: <condition_clause>
 action: <list_of_activity_definition>

In the above grammar, the pseudo values that appear in angle brackets have the following
meaning:

trigger_name: represents the mandatory symbolic name of the trigger as a string.

event_name: represents the mandatory name of an event associated with an interface
notification on the identified resource (node).

condition_clause: an optional Boolean expression that can be evaluated within the
context of the service with which the policy is associated and that must evaluate to true
in order for the trigger’s action to be performed. Note that the arguments to the condition
clause function can in turn be other TOSCA functions. If no condition clause is specified,
the trigger event will always result in the trigger’s action being taken.

list_of_activity_definition: represents the list of activities that are performed in response
to the event if the (optional) condition is met.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 249 of 282

17 Cloud Service Archive (CSAR) Format
This section defines the metadata of a cloud service archive as well as its overall structure.

The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

17.1 Overall Structure of a CSAR
A CSAR is a package of files containing at least TOSCA definitions as well as accompanying
artifacts (e.g. scripts, binaries, configuration files) that can be delivered together as a single
unit.

CSARs can be used to package service templates and/or profiles.

The service template or profile root TOSCA YAML file can be specified in one of two ways:

If a TOSCA.meta file is present (see below) it may specify the root TOSCA YAML file. The
TOSCA.meta file may be located either at the root of the archive or inside a TOSCA-
Metadata directory. The CSAR may contain only one TOSCA.meta file.

Otherwise, if a single valid TOSCA YAML file (named with a .yaml or .yml extension) is
located at the root of the archive, it will be used as the root TOSCA YAML file.

The CSAR file may contain other directories and files with arbitrary names and content.

17.1.1 CSAR Archiving Formats

While any archiving method that maintains a file and directory structure can be used, two
formats are specifically supported, tarballs and Zip files.

17.1.1.1 Tarballs

These are optionally compressed streams generated by the tar (tape archive) command
available on most operating systems. TOSCA at minimum supports uncompressed tarballs
(named with a .tar extension) as well tarballs compressed with Gzip (named with a .tar.gz
or .tgz extension). Other compression algorithms may also be optional supported.

Because tarballs are organized sequentially, their contents can be efficiently streamed from a
filesystem or a network server with minimal buffering and no need to store data local storage.
For example, if only a single file in the tarball is needed, a client can skip other entries and
read only that file.

The supported tar format is UStar, as specified in POSIX IEEE P1003.1. Gzip 4.3 is
specified in IETF RFC-1952.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 250 of 282

https://archive.org/details/mac_Internet_File_Formats_1995/page/n201/mode/2up
https://datatracker.ietf.org/doc/html/rfc1952

17.1.1.2 Zip Files

These are optionally compressed files relying on random access to entries. Files should be
named with a .zip or a .csar extension.

Note that the .csar extension has been used in previous versions of TOSCA to refer
exclusively to Zip files. It is recommended to use the .zip extension instead in order to clarify
and differentiate the archiving formats.

Because Zip files require random access, the archive must be accessible in its entirety by
clients, usually in a local file system. If it necessary to support clients with no access to local
storage, tarballs may be preferred instead.

The Zip format supported by TOSCA is specified in ISO/IEC 21320-1 "Document Container
File — Part 1: Core".

17.2 TOSCA Meta File
A TOSCA meta file consists of name/value pairs. The name-part of a name/value pair is
followed by a colon, followed by a blank, followed by the value-part of the name/value pair. The
name MUST NOT contain a colon. Values that represent binary data MUST be base64
encoded. Values that extend beyond one line can be spread over multiple lines if each
subsequent line starts with at least one space. Such spaces are then collapsed when the
value string is read.

<name>: <value>

Each name/value pair is in a separate line. A list of related name/value pairs, i.e. a list of
consecutive name/value pairs is called a block. Blocks are separated by an empty line. The
first block, called block_0, contains metadata about the CSAR itself and is further defined
below. Other blocks may be used to represent custom generic metadata or metadata
pertaining to files in the CSAR. A TOSCA.meta file is only required to include block_0.

17.2.1 Block 0 Keynames in the TOSCA.meta File

The structure of block_0 in the TOSCA.meta file is as follows:

CSAR-Version: digit.digit
Created-By: string
Entry-Definitions: string
Other-Definitions: string

The name/value pairs are as follows:

CSAR-Version: This is the version number of the CSAR specification. It defines the
structure of the CSAR and the format of the TOSCA.meta file. The value MUST be "2.0"
for this version of the CSAR specification.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 251 of 282

https://www.iso.org/standard/60101.html

Created-By: The person or organization that created the CSAR.

Entry-Definitions: This references the TOSCA definitions file that SHOULD be used
as entry point for processing the contents of the CSAR (e.g. the main TOSCA service
template).

Other-Definitions: This references an unambiguous set of files containing substitution
templates that can be used to implement nodes defined in the main template (i.e. the file
declared in Entry-Definitions). Thus, all the service templates defined in files listed
under the Other-Definitions key are to be used only as substitution templates, and not
as standalone services. If such a service template cannot act as a substitution template,
it will be ignored by the orchestrator. The value of the Other-Definitions key is a string
containing a list of filenames (relative to the root of the CSAR archive) delimited by a
blank space. If the filenames contain blank spaces, the filename should be enclosed by
double quotation marks (").

Note that any further TOSCA definitions files required by the definitions specified by Entry-
Definitions or Other-Definitions can be found by a TOSCA orchestrator by processing
respective imports statements. Note also that artifact files (e.g. scripts, binaries,
configuration files) used by the TOSCA definitions and included in the CSAR are fully
described and referred via relative path names in artifact definitions in the respective TOSCA
definitions files contained in the CSAR.

The following listing represents a valid TOSCA.meta file according to this TOSCA specification.

CSAR-Version: 2.0
Created-By: OASIS TOSCA TC
Entry-Definitions: tosca_elk.yaml
Other-Definitions: definitions/tosca_moose.yaml definitions/tosca_deer.yaml

This TOSCA.meta file indicates its structure (as well as the overall CSAR structure) by means of
the CSAR-Version keyname with value 2.0. The Entry-Definitions keyname points to a
TOSCA definitions YAML file with the name tosca_elk.yaml which is contained in the root of
the CSAR file. Additionally, it specifies that substitution templates can be found in the files
tosca_moose.yaml and tosca_deer.yaml found in the directory called definitions in the root
of the CSAR file.

17.2.2 Custom Keynames in the TOSCA.meta File

Users can populate other blocks than block_0 in the TOSCA.meta file with custom
name/value pairs that follow the entry syntax defined above and have names that are different
from the normative keynames (e.g. CSAR-Version, Created-By, Entry-Definitions, Other-
Definitions). These custom name/value pairs are outside the scope of the TOSCA
specification.Nevertheless, future versions of the TOSCA specification may add definitions of
new keynames to be used in the TOSCA.meta file. In case of a keyname collision (with a
custom keyname) the TOSCA specification definitions take precedence.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 252 of 282

To minimize such keyname collisions the specification reserves the use of keynames starting
with TOSCA and tosca. It is recommended as a good practice to use a specific prefix (e.g.
identifying the organization, scope, etc.) when using custom keynames.

17.3 CSAR Without TOSCA.meta
In case the archive doesn't contains a TOSCA.meta file the archive is required to contains a
single YAML file at the root of the archive (other templates may exist in sub-directories).

TOSCA processors should recognize this file as being the CSAR Entry-Definitions file. The
CSAR-Version is inferred from the tosca_definitions_version keyname in the Entry-Definitions
file. For tosca_definitions_version: tosca_2_0 and onwards, the corresponding CSAR-
version is 2.0 unless further defined.

Note that in a CSAR without TOSCA-metadata it is not possible to unambiguously include
definitions for substitution templates as we can have only one service template defined in a
YAML file.

The following represents a valid TOSCA template file acting as the CSAR Entry-Definitions
file in an archive without TOSCA-Metadata directory.

tosca_definitions_version: tosca_2_0

metadata:
 template_name: my_template
 template_author: OASIS TOSCA TC
 template_version: 1.0

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 253 of 282

18 Conformance
The content in this section is normative unless otherwise labeled except:

the examples
references unless labelled as normative.

(Note: The OASIS TC Process requires that a specification approved by the TC
at the Committee Specification Public Review Draft, Committee Specification
or OASIS Standard level must include a separate section, listing a set of
numbered conformance clauses, to which any implementation of the
specification must adhere in order to claim conformance to the specification (or
any optional portion thereof). This is done by listing the conformance clauses
here. For the definition of "conformance clause," see OASIS Defined Terms.

See "Guidelines to Writing Conformance Clauses": https://docs.oasis-
open.org/templates/TCHandbook/ConformanceGuidelines.html.

Remove this note before submitting for publication.)

18.1 Conformance Targets
The implementations subject to conformance are those introduced in Section 11.3
“Implementations”. They are listed here for convenience:

TOSCA YAML service template

TOSCA processor

TOSCA orchestrator (also called orchestration engine)

TOSCA generator

TOSCA archive

18.2 Conformance Clause 1: TOSCA YAML Service Template
A document conforms to this specification as TOSCA YAML service template if it satisfies all
the statements below:

1. It is valid according to the grammar, rules and requirements defined in section 3
“TOSCA definitions in YAML”.

2. When using functions defined in section 4 “TOSCA functions”, it is valid according to the
grammar specified for these functions.

3. When using or referring to data types, artifact types, capability types, interface types,

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 254 of 282

https://www.oasis-open.org/policies-guidelines/tc-process-2017-05-26/#wpComponentsConfClause
https://www.oasis-open.org/policies-guidelines/oasis-defined-terms-2018-05-22/#dConformanceClause
https://docs.oasis-open.org/templates/TCHandbook/ConformanceGuidelines.html

node types, relationship types, group types, policy types defined in section 5 “TOSCA
normative type definitions”, it is valid according to the definitions given in section 5.

18.3 Conformance Clause 2: TOSCA Processor
A processor or program conforms to this specification as TOSCA processor if it satisfies all
the statements below:

1. It can parse and recognize the elements of any conforming TOSCA YAML service
template, and generates errors for those documents that fail to conform as TOSCA
YAML service template while clearly intending to.

2. It implements the requirements and semantics associated with the definitions and
grammar in section 3 “TOSCA definitions in YAML”, including those listed in the
“additional requirements” subsections.

3. It resolves the imports, either explicit or implicit, as described in section 3 “TOSCA
definitions in YAML”.

4. It generates errors as required in error cases described in sections 3.1 (TOSCA
Namespace URI and alias), 3.2 (Parameter and property type) and 3.6 (Type-specific
definitions).

5. It normalizes string values as described in section 5.4.9.3 (Additional Requirements)

18.4 Conformance Clause 3: TOSCA Orchestrator
A processor or program conforms to this specification as TOSCA orchestrator if it satisfies all
the statements below:

1. It is conforming as a TOSCA Processor as defined in conformance clause 2: TOSCA
Processor.

2. It can process all types of artifact described in section 5.3 “Artifact types” according to
the rules and grammars in this section.

3. It can process TOSCA archives as intended in section 6 “TOSCA Cloud Service
Archive (CSAR) format” and other related normative sections.

4. It can understand and process the functions defined in section 4 “TOSCA functions”
according to their rules and semantics.

5. It can understand and process the normative type definitions according to their
semantics and requirements as described in section 5 “TOSCA normative type
definitions”.

6. It can understand and process the networking types and semantics defined in section 7
“TOSCA Networking”.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 255 of 282

7. It generates errors as required in error cases described in sections 2.10 (Using node
template substitution for chaining subsystems), 5.4 (Capabilities Types) and 5.7
(Interface Types).).

18.5 Conformance Clause 4: TOSCA Generator
A processor or program conforms to this specification as TOSCA generator if it satisfies at
least one of the statements below:

1. When requested to generate a TOSCA service template, it always produces a
conforming TOSCA service template, as defined in Clause 1: TOSCA YAML service
template,

2. When requested to generate a TOSCA archive, it always produces a conforming
TOSCA archive, as defined in Clause 5: TOSCA archive.

18.6 Conformance Clause 5: TOSCA Archive
A package artifact conforms to this specification as TOSCA archive if it satisfies all the
statements below:

1. It is valid according to the structure and rules defined in section 6 “TOSCA Cloud
Service Archive (CSAR) format”.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 256 of 282

Appendix A. References
This appendix contains the normative and informative references that are used in this
document.

While any hyperlinks included in this appendix were valid at the time of publication, OASIS
cannot guarantee their long-term validity.

A.1 Normative References
The following documents are referenced in such a way that some or all of their content
constitutes requirements of this document.

(Reference sources: For references to IETF RFCs, use the approved citation
formats at: https://docs.oasis-open.org/templates/ietf-rfc-list/ietf-rfc-list.html. For
references to W3C Recommendations, use the approved citation formats at:
https://docs.oasis-open.org/templates/w3c-recommendations-list/w3c-
recommendations-list.html. Remove this note before submitting for publication.)

[RFC2119]

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, DOI 10.17487/RFC2119, March 1997, http://www.rfc-editor.org/info/rfc2119.

[RFC8174]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC
8174, DOI 10.17487/RFC8174, May 2017, http://www.rfc-editor.org/info/rfc8174.

[YAML-1.2]

YAML, Version 1.2, 3rd Edition, Patched at 2009-10-01, Oren Ben-Kiki, Clark Evans, Ingy döt
Net

A.2 Informative References
[Maven-Version]

Apache Maven version policy draft:
https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy

[RFC3552]

Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on Security Considerations",
BCP 72, RFC 3552, DOI 10.17487/RFC3552, July 2003, https://www.rfc-
editor.org/info/rfc3552.

[File extensions for media types]

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 257 of 282

https://docs.oasis-open.org/templates/ietf-rfc-list/ietf-rfc-list.html
https://docs.oasis-open.org/templates/w3c-recommendations-list/w3c-recommendations-list.html
http://www.rfc-editor.org/info/rfc2119
http://www.rfc-editor.org/info/rfc8174
https://cwiki.apache.org/confluence/display/MAVEN/Version+number+policy
https://www.rfc-editor.org/info/rfc3552

File extensions for media types some registered as described in RFC 4288
http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

[TOSCA discussion]

tosca-community-contributions github repository. https://github.com/oasis-open/tosca-
community-contributions

[RFC3339]

G. Klyne and C, Newman "Date and Time on the Internet: Timestamps" July 2002,
https://tools.ietf.org/html/rfc3339

[SI Units]

“SI Brochure: The International System of Units (SI) [8th edition, 2006; updated in 2014]”,
http://www.bipm.org/en/publications/si-brochure/

Appendix B. Safety, Security and Privacy
Considerations
(Note: OASIS strongly recommends that Technical Committees consider issues that might
affect safety, security, privacy, and/or data protection in implementations of their specification
and document them for implementers and adopters. For some purposes, you may find it
required, e.g. if you apply for IANA registration.

While it may not be immediately obvious how your specification might make systems
vulnerable to attack, most specifications, because they involve communications between
systems, message formats, or system settings, open potential channels for exploit. For
example, IETF [RFC3552] lists “eavesdropping, replay, message insertion, deletion,
modification, and man-in-the-middle” as well as potential denial of service attacks as threats
that must be considered and, if appropriate, addressed in IETF RFCs.

In addition to considering and describing foreseeable risks, this section should include
guidance on how implementers and adopters can protect against these risks.

We encourage editors and TC members concerned with this subject to read Guidelines for
Writing RFC Text on Security Considerations, IETF [RFC3552], for more information.

Remove this note before submitting for publication.)

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 258 of 282

http://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types
https://github.com/oasis-open/tosca-community-contributions
https://tools.ietf.org/html/rfc3339
http://www.bipm.org/en/publications/si-brochure/

Appendix C. Acknowledgments
Note: A Work Product approved by the TC must include a list of people who participated in
the development of the Work Product. This is generally done by collecting the list of names in
this appendix. This list shall be initially compiled by the Chair, and any Member of the TC may
add or remove their names from the list by request. Remove this note before submitting for
publication.

C.1 Special Thanks
Substantial contributions to this document from the following individuals are gratefully
acknowledged:

Participant Name, Affiliation or "Individual Member"

C.2 Participants
The following individuals have participated in the creation of this specification and are
gratefully acknowledged:

TOSCA TC Members:

First Name Last Name Company

Calin Curescu Ericsson

Chris Lauwers Individual Member

Paul Jordan Individual Member

Peter Bruun Hewlett Packard Enterprise

Tal Liron Google

The following list needs to be cleaned up in accordance with OASIS guidelines:

Adam Souzis (adam@souzis.com)

Alex Vul (alex.vul@intel.com), Intel

Anatoly Katzman (anatoly.katzman@att.com), AT&T

Arturo Martin De Nicolas (arturo.martin-de-nicolas@ericsson.com), Ericsson

Avi Vachnis (avi.vachnis@alcatel-lucent.com), Alcatel-Lucent

Calin Curescu (calin.curescu@ericsson.com), Ericsson

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 259 of 282

mailto:adam@souzis.com
mailto:alex.vul@intel.com
mailto:anatoly.katzman@att.com
mailto:arturo.martin-de-nicolas@ericsson.com
mailto:avi.vachnis@alcatel-lucent.com
mailto:calin.curescu@ericsson.com

Chris Lauwers (<lauwers@ubicity.com)>

Claude Noshpitz (claude.noshpitz@att.com), AT&T

Derek Palma (dpalma@vnomic.com), Vnomic

Dmytro Gassanov (dmytro.gassanov@netcracker.com), NetCracker

Frank Leymann (Frank.Leymann@informatik.uni-stuttgart.de), Univ. of Stuttgart

Gábor Marton (gabor.marton@nokia.com), Nokia

Gerd Breiter (gbreiter@de.ibm.com), IBM

Hemal Surti (hsurti@cisco.com), Cisco

Ifat Afek (ifat.afek@alcatel-lucent.com), Alcatel-Lucent

Idan Moyal, (idan@gigaspaces.com), Gigaspaces

Jacques Durand (jdurand@us.fujitsu.com), Fujitsu

Jin Qin, (chin.qinjin@huawei.com), Huawei

Jeremy Hess, (jeremy@gigaspaces.com), Gigaspaces

John Crandall, (mailto:jcrandal@brocade.com), Brocade

Juergen Meynert (juergen.meynert@ts.fujitsu.com), Fujitsu

Kapil Thangavelu (kapil.thangavelu@canonical.com), Canonical

Karsten Beins (karsten.beins@ts.fujitsu.com), Fujitsu

Kevin Wilson (kevin.l.wilson@hp.com), HP

Krishna Raman (kraman@redhat.com), Red Hat

Luc Boutier (luc.boutier@fastconnect.fr), FastConnect

Luca Gioppo, (luca.gioppo@csi.it), CSI-Piemonte

Matej Artač, (matej.artac@xlab.si), XLAB

Matt Rutkowski (mrutkows@us.ibm.com), IBM

Moshe Elisha (moshe.elisha@alcatel-lucent.com), Alcatel-Lucent

Nate Finch (nate.finch@canonical.com), Canonical

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 260 of 282

mailto:lauwers@ubicity.com
mailto:claude.noshpitz@att.com
mailto:dpalma@vnomic.com
mailto:dmytro.gassanov@netcracker.com
mailto:Frank.Leymann@informatik.uni-stuttgart.de
mailto:gabor.marton@nokia.com
mailto:gbreiter@de.ibm.com
mailto:hsurti@cisco.com
mailto:ifat.afek@alcatel-lucent.com
mailto:idan@gigaspaces.com
mailto:jdurand@us.fujitsu.com
mailto:chin.qinjin@huawei.com
mailto:jeremy@gigaspaces.com
mailto:jcrandal@brocade.com
mailto:juergen.meynert@ts.fujitsu.com
mailto:kapil.thangavelu@canonical.com
mailto:karsten.beins@ts.fujitsu.com
mailto:kevin.l.wilson@hp.com
mailto:kraman@redhat.com
mailto:luc.boutier@fastconnect.fr
mailto:luca.gioppo@csi.it
mailto:matej.artac@xlab.si
mailto:mrutkows@us.ibm.com
mailto:moshe.elisha@alcatel-lucent.com
mailto:nate.finch@canonical.com

Nikunj Nemani (nnemani@vmware.com), Wmware

Paul Jordan (paul.m.jordan@outlook.com), Individual Member

Peter Bruun (peter-michael.bruun@hpe.com), Hewlett Packard Enterprise

Philippe Merle (philippe.merle@inria.fr), Inria

Priya TG (<priya.g@netcracker.com)> NetCracker

Richard Probst (richard.probst@sap.com), SAP AG

Sahdev Zala (spzala@us.ibm.com), IBM

Shitao li (lishitao@huawei.com), Huawei

Simeon Monov (sdmonov@us.ibm.com), IBM

Sivan Barzily (sivan@gigaspaces.com), Gigaspaces

Sridhar Ramaswamy (sramasw@brocade.com), Brocade

Stephane Maes (stephane.maes@hp.com), HP

Steve Baillargeon (steve.baillargeon@ericsson.com), Ericsson

Tal Liron (tliron@redhat.com)

Thinh Nguyenphu (thinh.nguyenphu@nokia.com), Nokia

Thomas Spatzier (thomas.spatzier@de.ibm.com), IBM

Ton Ngo (ton@us.ibm.com), IBM

Travis Tripp (travis.tripp@hp.com), HP

Vahid Hashemian (vahidhashemian@us.ibm.com), IBM

Wayne Witzel (wayne.witzel@canonical.com), Canonical

Yaron Parasol (yaronpa@gigaspaces.com), Gigaspaces

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 261 of 282

mailto:nnemani@vmware.com
mailto:paul.m.jordan@outlook.com
mailto:peter-michael.bruun@hpe.com
mailto:philippe.merle@inria.fr
mailto:priya.g@netcracker.com
mailto:richard.probst@sap.com
mailto:spzala@us.ibm.com
mailto:lishitao@huawei.com
mailto:sdmonov@us.ibm.com
mailto:sivan@gigaspaces.com
mailto:sramasw@brocade.com
mailto:stephane.maes@hp.com
mailto:steve.baillargeon@ericsson.com
mailto:tliron@redhat.com
mailto:thinh.nguyenphu@nokia.com
mailto:thomas.spatzier@de.ibm.com
mailto:ton@us.ibm.com
mailto:travis.tripp@hp.com
mailto:vahidhashemian@us.ibm.com
mailto:wayne.witzel@canonical.com
mailto:yaronpa@gigaspaces.com

Appendix D. Revision History
Revision Date Editor Changes Made

specname-v1.0-wd01 yyyy-mm-dd Editor Name Initial working draft

The following table needs to be formatted according to the above guidelines.

Revision Date Editor Changes Made

WD01,
Rev01

2019-04-
01

Chris
Lauwers

Initial WD01, Revision 01 baseline for TOSCA v2.0

WD01,
Rev02

2019-04-
22

Chris
Lauwers

Split of introductory chapters into the Introduction
to TOSCA Version 2.0 document.

WD01,
Rev03

2019-05-
08

Calin
Curescu

Incorporate fixes from latest v1.3 specification

WD01,
Rev04

2019-05-
10

Chris
Lauwers

Fix syntax of schema constraint examples
(Sections 5.3.2 and 5.3.4)

WD01,
Rev05

2019-08-
30

Chris
Lauwers

Cleanup formatting. No content changes.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 262 of 282

WD01,
Rev06

2019-08-
30

Chris
Lauwers Remove 3.6.20.3 since it is no longer

relevant.

Separate out new Operation Assignment
section 3.8.3 from the original Operation
Definition section 3.6.17

Separate out new Notification Assignment
section 3.8.4 from the original Notification
Definition section 3.6.19

Separate out new Interface Assignment
section 3.8.5 from the original Interface
Definition section 3.6.20

Update the Interface Type definitions in
section 5.8 to show the (now mandatory)
‘operations’ keyname.

Remove erroneous interface definition in
tosca.groups.Root type (section 5.10.1)

Added ‘description’ keyname to Requirement
definition (section 3.7.3)

WD01,
Rev07

2019-09-
08

Calin
Curescu Added the “value” keyname to property

definition (Section 3.6.10 Property
Definition),

Made the difference between outgoing and
incoming parameters in the parameter
definition (Section 3.6.14 Parameter
definition)

Added the “mapping” keyname to the
parameter definition, for mapping the
incoming parameter to an attribute (Section
3.6.14 Parameter definition)

Changed the wrong usage of “property
definitions” and “property assignments”
instead of “parameter definitions” and
“parameter assignments” throughout the

Revision Date Editor Changes Made

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 263 of 282

document. For example, a larger impact can
be seen in the definition of the get_input
function (Section 4.4.1 get_input).

Changed Section “3.6.16 Operation
implementation definition” to include
notification implementation definition
(Section 3.6.16 Operation implementation
definition and notification implementation
definition).

Deleted Section “3.6.18 Notification
implementation definition” since it was
redundant and all relevant information has
been transferred to Section “3.6.16
Operation implementation definition and
notification implementation definition”. The
“Notification definition” section becomes the
new Section 3.6.18.

Added operation assignment rules to the
operation assignment section (Section 3.8.3
Operation Assignment).

Added notification assignment rules to the
notification assignment section (Section
3.8.4 Notification assignment).

Added interface assignment rules to the
interface assignment section (Section 3.8.5
Interface assignment).

Changed “interface definitions” with “interface
assignments” in the node template
specification, given that we have split
interface assignments from interface
definitions (Section 3.8.6 Node Template)

Changed “interface definitions” with “interface
assignments” in the relationship template
specification, given that we have split
interface assignments from interface
definitions (Section 3.8.7 relationship
template)

Revision Date Editor Changes Made

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 264 of 282

WD01,
Rev08

2019-09-
30

Chris
Lauwers Fix error in TimeInterval example (Section

5.3.7.3.1)

WD01,
Rev09

2020-02-
20

Chris
Lauwers Move normative type definitions to the “Intro

to TOSCA” document

Move non-normative type definitions to the
“Intro to TOSCA” document

Move “CSAR” specification from the “intro to
TOSCA” document into this document

WD01,
Rev10

2020-04-
15

Calin
Curescu Reorganized sections into a new layout

(starting with the main concepts):

3.5 -> 3.1; 3.10 -> 3.2.1; 3.1 -> 3.2.2.1; 3.2 ->
3.2.2.2; 3.6.8 -> 3.2.3.1; 3.6.6 -> 3.2.3.2;
3.6.1 -> 3.2.4.1; 3.6.2 -> 3.2.4.2; 3.7.1 ->
3.2.5.2; 3.9 -> 3.2.6; 3.7.9 -> 3.3.1; 3.8.6 ->
3.3.2; 3.7.10 -> 3.3.3; 3.8.7 -> 3.3.4; 3.7.7 ->
3.3.5.1; 3.7.2 -> 3.3.5.2; 3.8.1 -> 3.3.5.3;
3.7.8 -> 3.3.5.4; 3.7.3 -> 3.3.5.5; 3.8.2 ->
3.3.5.6; 3.6.5 -> 3.3.5.7; 3.6.4 -> 3.3.5.8;
3.7.5 -> 3.3.6.1; 3.6.19 -> 3.3.6.2; 3.8.5 ->
3.3.6.3; 3.6.17 -> 3.3.6.4; 3.8.3 -> 3.3.6.5;
3.6.18 -> 3.3.6.6; 3.8.4 -> 3.3.6.7; 3.6.16 ->
3.3.6.8; 3.7.4 -> 3.3.7.1; 3.6.7 -> 3.3.7.2; 3.3 -
> 3.4.1; 3.7.6 -> 3.4.2; 3.6.9 -> 3.4.3; 3.6.3 ->
3.4.4; 3.6.10 -> 3.4.5; 3.6.11 -> 3.4.6; 3.6.12
-> 3.4.7; 3.6.13 -> 3.4.8; 3.6.14 -> 3.4.9;
3.8.16 -> 3.5.1; 3.8.11 -> 3.5.2; 3.8.12 ->
3.5.3; 3.8.13 -> 3.5.4; 3.8.14 -> 3.5.5; 3.8.15
-> 3.5.6; 3.7.11 -> 3.6.1; 3.8.8 -> 3.6.2;
3.7.12 -> 3.6.3; 3.8.9 -> 3.6.4; 3.6.21 ->
3.6.5; 3.6.20 -> 3.6.6; 3.6.24 -> 3.6.7; 3.6.23
-> 3.6.8; 3.6.22 -> 3.6.9; 3.8.10 -> 3.7.1;
3.6.25 -> 3.7.2; 3.6.26 -> 3.7.3

WD02,
Rev01

2020-04-
23

Calin
Curescu Added Section 3.1.2 Modeling definitions

Revision Date Editor Changes Made

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 265 of 282

and reuse

Added Section 3.1.3 Goal of the derivation
and refinement rules

Added Section 3.2.5 Type definitions

Added Section 3.2.5.1 General derivation
and refinement rules

Reworked and simplified Section 3.2.5.2 as
describing common keynames that apply to
all TOSCA entity types. Added derivation
rules for the common keynames in TOSCA
entity types (Section 3.2.5.2.3 Derivation
rules).

Added derivation rules for the following
TOSCA entity types: node, relationship,
capability, interface, and data types in their
specific sections. The new sub-sections are
named “Derivation rules”.

Added refinement rules for entitiy definitions
contained in types undergoing derivations.
Refinement rules for the following entity
definitions: capability, requirement, interface,
operation, notification, schema, property,
attribute, and parameter definitions have
been added in their specific sections. The
new sub-sections are named “Refinement
rules”.

Explained that definitions for the properties,
attributes and valid_source_types in a
capability definition are refinements of the
definitions in the capability type (Section
3.3.5.2. Capability definition).

Changed the occurrences keyname in a
capability assignment from a range of integer
to an integer, to correct the wrong
specification in TOSCA v1.3 (Section
3.3.5.3. Capability assignment).

Added the possibility to have provide a
symbolic name of a Capability definition
within a target node type that can fulfill the

Revision Date Editor Changes Made

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 266 of 282

requirement in the Requirement definition (in
addition to the Capability Type) (Section
3.3.5.5. Requirement definition).

Added the possibility to provide a node_filter
also in the Requirement definition (this node
filter is applied in addition to the node filter
defined in the Requirement assignment)
(Section 3.3.5.5. Requirement definition).

Explained that the specification supports
providing several requirement assignments
with the same symbolic name that represent
subsets of the occurrences specified in the
Requirement definition (Section 3.3.5.6.
Requirement assignment).

Changed the occurrences keyname in a
requirement assignment from a range of
integer to an integer, to correct the wrong
specification in TOSCA v1.3 (Section
3.3.5.6. Requirement assignment).

Explained that property definitions may not
be added to data types derived_from
TOSCA primitive types (Section 3.4.2 Data
Type).

Added the rule for a map key definition that
its type must be originally derived from string.
This is due to fact that in many YAML/TOSCA
parsers it is hard to process keys that are not
strings, and the added benefit of non-string
keys is minimal (Section 3.4.3 Schema
definition).

Explained that the default value is irrelevant
for properties and parameters that are not
required (i.e. where the keyname required is
“false”) as they will stay undefined (Section
3.4.5 Property definition and Section 3.4.9
Parameter definition).

A value definition “fixes” the property, that is it
cannot be further refined (in a type) or even
assigned in (in a template) (Section 3.4.5
Property definition and Section 3.4.6

Revision Date Editor Changes Made

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 267 of 282

Property assignment).

Added metadata keyname to attribute
definitions (Section 3.4.7 Attribute definition).

Explained that parameter can be of two
different kinds: outgoing parameters and
incoming parameters, and this depends on
the context they are defined in, and steers if
these parameters will have a value assigned
or will have a mapping to an attribute
assigned (Section 3.4.9 Parameter
definition).

A value or mapping definition “fixes” the
parameter, that is it cannot be further refined
(in a type) or even assigned in (in a template)
(Section 3.4.9 Parameter definition and
3.4.10 Parameter assignment).

Revision Date Editor Changes Made

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 268 of 282

WD02,
Rev02

2020-05-
07 Added derivation rules for the following

TOSCA entity types: artifact, group, and
policy types) in their specific sections; the
new sub-sections are named “Derivation
rules”.

Added refinement rules for Artifact definitions
(contained in node types undergoing
derivations). The new sub-section is named
“Refinement rules”.

Added a single-line grammar for defining a
value for a property to simplify the value
definition for a property (Section 3.4.5
Property definition).

Added the constraints keyname to attribute
definitions (Section 3.4.7 Attribute definition).

Added a single-line grammar for parameter
definitions when only a parameter to attribute
mapping needs to be provided to an
incoming parameter (Section 3.4.9
Parameter definition).

Added explanation that triggers defined in the
policy definition are applied in addition to the
triggers defined in the policy type (Section
3.6.4 Policy definition).

Revision Date Editor Changes Made

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 269 of 282

WD02,
Rev03

Chris
Lauwers Incorporate introductory content from the

TOSCA v1.0 document with the goal of
removing references to the XML version of
the standard and making this a stand-alone
document.

Explicitly stated that the default keyname
SHALL NOT be defined for properties and
parameters that are not required (i.e. where
the keyname required is “false”) as they will
stay undefined (Section 4.4.5 Property
definition and Section 4.4.9 Parameter
definition).

WD02,
Rev04

2020-06-
09

Calin
Curescu Eliminated some comments that were

addressed already.

Eliminated the namespace_uri that was
already deprecated in TOSCA v1.3

Eliminated the credential keyname from the
repository definition (Section 4.2.3.2
Repository definition) since it was not very
useful in the context and also to eliminate the
dependency on an external type simple
(Credential – in the simple profile)

Revision Date Editor Changes Made

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 270 of 282

WD02,
Rev05

2020-06-
18

Calin
Curescu Eliminated the schedule keyname in trigger

definitions, it was not relevant and used a
complex type from the simple profile (Section
4.6.5 Trigger definition).

Deleted the operation_host keyword from the
operation implementation definition since it
was connected to a hostedOn relationship
type, and this is a type feature and not a
grammar feature (Section 4.3.6.8 Operation
and notification implementation definition).

Eliminated the HOST from the reserved
function keywords since it was connected to
a hostedOn relationship type, and this is a
type feature and not a grammar feature
(Section 5 TOSCA functions).

Eliminated some comments that were
addressed already.

Changed the type of description to string in
the keyname tables throughout the
specification.

WD02,
Rev06

2020-06-
20

Chris
Lauwers Update the TOSCA overview diagram to

include workflows and policies (Section 3.1)

Update the diagram that explains
requirements and capabilities (Section 3.4)

Update the diagram that explains substitution
(Section 3.5)

WD02,
Rev07

2020-06-
22

Chris
Lauwers Edit the “TOSCA core concepts” section to

reflect current status of TOSCA (Section 3)

Revision Date Editor Changes Made

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 271 of 282

WD02,
Rev08

2020-06-
24

Thinh
Nguyenphu Provide additional detail about the required

ZIP format and standards in the CSAR
definition (Section 6.1)

WD03,
Rev01

2020-07-
22

Calin
Curescu
Chris
Lauwers

Remove numerous comments that have been
resolved since they were first introduced.

WD03,
Rev02

2020-07-
26

Chris
Lauwers Mark keywords as “mandatory” rather than

“required” (to avoid confusion with the
“required” keyword in property definitions

Introduce “conditional” as an alternative to
“yes” or “no” in the “mandatory” columns of
the grammar definition.

Remove “Constraints” columns in grammar
definitions.

Clarify that entry_schema is mandatory for
collection types.

WD03,
Rev03

2020-07-
28

Tal Liron
Introduce clear specification of TOSCA built-
in types (Sections 4.4.1, 4.4.2, and 4.4.3)

WD03,
Rev04

2020-08-
03

Chris
Lauwers Fix typos

Minor formatting fixes

Revision Date Editor Changes Made

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 272 of 282

WD03,
Rev05

2020-08-
18

Tal Liron
Chris
Lauwers

Add description of timestamp type

Move scalar-unit types into the Special Types
section (4.4.2)

Remove multiples of “bytes per second” from
scalar-unit.bitrate to make all scalar units
case insensitive

Remove references to the tosca namespace
prefix from the built-in type definitions.

WD03,
Rev06

2020-08-
31

Tal Liron
Chris
lauwers

Introduce the notion of “profiles”

Support “import by profile name”

Simplify “namespaces”

WD03,
Rev07

2020-09-
06

Chris
Lauwers
Tal Liron

Remove obsolete prose about namespace
URIs (4.2)

Update the section about “import processing
rules” (4.2.3.1)

Introduce new prose about support for
namespaces (4.2.3.2)

WD03,
Rev08

2020-09-
07

Calin
Curescu Clarify discussion of custom keynames in

CSAR (6.2.1)

WD03,
Rev09

2020-10-
26

Chris
Lauwers Additional discussion of TOSCA Profiles

(section 4.2.2)

Revision Date Editor Changes Made

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 273 of 282

WD03,
Rev10

2020-10-
27

Calin
Curescu Clarified throughout the specification that the

key_schema keyname for maps has the
default value as “string”, and that the
entry_schema keyname definition is
mandatory for lists and maps (sections 4.4.5
Schema definition, 4.4.7 Property definition,
4.4.9 Attribute definition, 4.4.11 Parameter
definition, 4.4.4. Data type)

WD04,
Rev01

2020-11-
19

Chris
Lauwers New OASIS Logo

Correct broken cross reference (Section
4.3.5.8)

WD04,
Rev02

2021-01-
25

Chris
Lauwers Incorporate comments provided as part of

external review by Paul Jordan (BT) and Mike
Rehder (Amdocs)

WD04,
Rev03

2021-05-
03

Chris
Lauwers Introduce new Chapter 4 that describes

Operational Model.

WD04,
Rev04

2021-06-
28

Chris
Lauwers Slight reorganization of the Operation Model

chapter (Chapter 4)

Revision Date Editor Changes Made

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 274 of 282

WD04,
Rev05

2022-02-
15

Calin
Curescu Modified the capability definition (Section

5.3.5.2) and assignment (Section 5.3.5.3)
removing the occurrences keyname We also
added the scope of relationships to the
capability assignment (via directives).

Modified the requirement definition (Section
5.3.5.5) and assignment (Section 5.3.5.6)
replacing the occurrences keyname with the
count_range keyname in the requirements
definition, and how the assignment must
respect the definition and how an automated
assignment is assumed to exist if no
assignment is specified. The keyname count
replaces the keyname occurrences in the
assignment to remove any confusion
between their slightly different semantics. We
also added the scope of relationships to the
requirement assignment (via directives).
Finally, we added the optional keyname for a
requirement assignment to designate if the
assignment is optional or not.

We also added the possibility to specify
capacity allocation in a requirement
assignment (Section 5.3.5.6) where the
target capability properties can act as
capacity.

Made the relationship definition conditional, it
must be present either in the requirement
definition (Section 5.3.5.5) or in the
requirement assignment (Section 5.3.5.5).

WD04,
Rev06

2022-06-
08

Calin
Curescu Increased the expressivity of accessing

properties and attributes in the
representation graph by improving the
navigation expression in the get_property
and get_attribute functions. The
representation graph traversal is handled via
a new definition (tosca path), that is common
to both and is described in section 6.4.2.2.1

Revision Date Editor Changes Made

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 275 of 282

The simplified TOSCA_PATH definition in
BNF format.

Added multi-step traversal of the
representation graph

Added the backward traversal from
capabilities to incoming relationships

Added the target capability of a relationship
as a possible traversal

Added the specification of indexes and
allowing traversal of multi-count requirements

Examples for get_property have been
corrected and extended.

Removed the deprecated
get_operation_output function

In relationship types (section 5.3.3) following
keynames changed/added:

valid_capability_types replaces
valid_target_types

valid_target_node_types - new

valid_source_node_types - new

In capability type (section 5.3.5.1) and
definition (section 5.3.5.2) following
keynames changed/added:

valid_source_node_types - replaces
valid_source_types

valid_relationship_types - new

Revision Date Editor Changes Made

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 276 of 282

WD05,
Rev01

2022-06-
14

Chris
Lauwers Fix formatting errors and typos.

Remove Section 6.1 about reserved function
keywords (replaced with TOSCA Path
discussion)

Remove Section 6.2 about reserved
environment variables.

Rename topology_template keyword to
service_template

Remove reference to TOSCA v1.0
specification (Section 5.2.6.2.8)

WD05,
Rev02

2022-06-
14

Chris
Lauwers Remove ‘get_nodes_of_type’ function

(Section 6.4)

Remove section about ‘Context-based entity
names’ (Section 6.6)

Remove sections about “Metadata
keynames” (Section 5.2.1.1.1, Section
5.2.1.3.4, Section 5.2.1.3.5, Section
5.2.1.3.6)

Document new metadata grammar (Section
5.2.1.3.3)

Document short notation for schema
definitions (Section 5.4.5.2)

Revision Date Editor Changes Made

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 277 of 282

WD05,
Rev03

2022-09-
28 Chris

Lauwers

Calin
Curescu

Change default count range to [0,
UNBOUNDED] (Section 5.3.5.5)

Clarify semantics of profile keynames in
imported TOSCA files (Section 5.2.2.2)

Add section about function syntax (Section
6.1)

Add section about defining user-defined
custom functions (Section 6.6)

Update all intrinsic functions with the new
dollar sign syntax.

WD05,
Rev04

2022-11-
21

Chris
Lauwers Remove Normative Values (Section 5.8).

Removal of the Simple Profile has made this
section obsolete.

Add Condition functions (Section 6.5)

Update policy trigger syntax to use Boolean
expressions.

Update workflow precondition syntax to use
Boolean expressions

Move sections about functions and function
definitions into the TOSCA Definitions
chapter

WD05,
Rev05

2022-11-
21

Chris
Lauwers Introduce new syntax for defining validation

clauses on data types and property
definitions.

Update node filter syntax to use Boolean
expressions.

WD05,
Rev06

2022-11-
28

Chris
Lauwers Validation syntax examples.

Revision Date Editor Changes Made

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 278 of 282

WD05,
Rev07

2022-12-
14

Calin
Curescu Added the short string-value form for

functions without arguments and changed
section Function syntax (Section 5.4.14)
accordingly.

Added all the existing comparison operators
as Boolean functions, the new Boolean logic
functions and the new string, list and map
membership Boolean functions (Section 6.2)
and set manipulation (section 6.4) and
arithmetic functions (Section 6.5).

WD05,
Rev08

2023-01-
17 Chris

Lauwers

Calin
Curescu

Cleanup for correctness and consistency.

Additional built-in functions (Section 6)

WD05,
Rev09

2023-01-
18

Chris
Lauwers Document the ‘value’ function (Section 6.1.5)

WD06,
Rev01

2023-02-
19

Chris
Lauwers Fix document problems found when

publishing CSD05.

WD06,
Rev02

Chris
Lauwers Remove support for the “range” built-in type

(Section 5.4.2)

Revision Date Editor Changes Made

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 279 of 282

Appendix E. Example Appendix with subsections
E.1 Subsection title
E.1.1 Sub-subsection

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 280 of 282

Appendix F. Notices
Copyright © OASIS Open 2024. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS
Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the
OASIS website.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published, and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this section are included on all such copies
and derivative works. However, this document itself may not be modified in any way, including
by removing the copyright notice or references to OASIS, except as needed for the purpose of
developing any document or deliverable produced by an OASIS Technical Committee (in
which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be
followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and
OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

As stated in the OASIS IPR Policy, the following three paragraphs in brackets apply to OASIS
Standards Final Deliverable documents (Committee Specification, Candidate OASIS
Standard, OASIS Standard, or Approved Errata).

[OASIS requests that any OASIS Party or any other party that believes it has patent claims
that would necessarily be infringed by implementations of this OASIS Standards Final
Deliverable, to notify OASIS TC Administrator and provide an indication of its willingness to
grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the
OASIS Technical Committee that produced this deliverable.]

[OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of
ownership of any patent claims that would necessarily be infringed by implementations of this
OASIS Standards Final Deliverable by a patent holder that is not willing to provide a license to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical
Committee that produced this OASIS Standards Final Deliverable. OASIS may include such
claims on its website, but disclaims any obligation to do so.]

[OASIS takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology
described in this OASIS Standards Final Deliverable or the extent to which any license under

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 281 of 282

https://www.oasis-open.org/policies-guidelines/ipr/

such rights might or might not be available; neither does it represent that it has made any
effort to identify any such rights. Information on OASIS' procedures with respect to rights in any
document or deliverable produced by an OASIS Technical Committee can be found on the
OASIS website. Copies of claims of rights made available for publication and any assurances
of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS
Standards Final Deliverable, can be obtained from the OASIS TC Administrator. OASIS
makes no representation that any information or list of intellectual property rights will at any
time be complete, or that any claims in such list are, in fact, Essential Claims.]

The name "OASIS" is a trademark of OASIS, the owner and developer of this specification,
and should be used only to refer to the organization and its official outputs. OASIS welcomes
reference to, and implementation and use of, specifications, while reserving the right to
enforce its marks against misleading uses. Please see https://www.oasis-open.org/policies-
guidelines/trademark/ for above guidance.

Standards Track Work Product

TOSCA-v2.0-csd06 Copyright © OASIS Open 2024. All Rights Reserved. 20 June 2024 - Page 282 of 282

https://www.oasis-open.org/
https://www.oasis-open.org/policies-guidelines/trademark/

	TOSCA Version 2.0
	Committee Specification Draft 06
	20 June 2024
	This stage:
	Previous stage:
	Latest stage:
	Technical Committee:
	Chair:
	Editors:
	Related work:
	Declared XML namespace:
	Abstract:
	Status:
	Key words:
	Citation format:
	Notices

	Table of Contents
	1 Introduction
	1.1 Changes from Earlier Versions
	1.2 Document conventions
	1.3 Glossary
	1.3.1 Definitions of terms
	1.3.2 Acronyms and abbreviations

	2 TOSCA Overview
	2.1 Objectives
	2.2 TOSCA Features and Benefits
	2.2.1 TOSCA is Model-Driven
	2.2.2 TOSCA Models are Graphs
	2.2.3 TOSCA Promotes Reuse and Modularity
	2.2.4 TOSCA is Domain-Independent

	2.3 TOSCA Core Concepts
	2.4 Using TOSCA
	2.4.1 TOSCA Files
	2.4.2 Archive Format for Cloud Applications

	3 TOSCA Language Abstractions
	3.1 Service Templates, Node Templates, and Relationship Templates
	3.2 Requirements and Capabilities
	3.3 Decomposition of Node Representations
	3.4 Interfaces, Operations, and Artifacts
	3.5 Workflows
	3.6 Policies

	4 TOSCA Operational Model
	4.1 TOSCA Functional Architecture
	4.2 TOSCA Processor
	4.2.1 Parser
	4.2.2 Resolver

	4.3 Orchestrator
	4.4 Changes in the Representation Graph

	5 TOSCA Grammar Overview
	5.1 TOSCA Modeling Concepts
	5.1.1 Type Definitions and Entity Definitions
	5.1.2 Templates and Entity Assignments
	5.1.3 Type Derivation, Augmentation, and Refinement
	5.1.4 Template reuse

	5.2 Mandatory Keynames
	5.3 Common Keynames
	5.3.1 metadata
	5.3.2 description

	6 TOSCA File Definition
	6.1 Keynames
	6.2 TOSCA Definitions Version
	6.3 DSL Definitions
	6.4 Type definitions
	6.4.1 Common Keynames in Type Definitions
	6.4.2 Type Derivation
	6.4.3 Types of Types
	6.4.3.1 Artifact Types
	6.4.3.2 Data Types
	6.4.3.3 Capability Types
	6.4.3.4 Interface Types
	6.4.3.5 Relationship Types
	6.4.3.6 Node Types
	6.4.3.7 Group Types
	6.4.3.8 Policy Types

	6.5 Repository Definitions
	6.6 Function Definitions
	6.7 Profiles
	6.7.1 Grammar
	6.7.2 TOSCA Simple Profile
	6.7.3 Profile Versions

	6.8 Imports and Namespaces
	6.8.1 Import Definitions
	6.8.2 Import Processing Rules
	6.8.2.1 Importing Profiles
	6.8.2.2 Importing TOSCA File

	6.8.3 Examples
	6.8.4 Namespaces

	6.9 Service Template Definition
	6.9.1 Service Template Grammar
	6.9.2 Input Parameters
	6.9.3 Node Templates
	6.9.4 Relationship Templates
	6.9.5 Output Parameters
	6.9.6 Workflow Definitions
	6.9.7 Group Definitions
	6.9.8 Policy Definitions
	6.9.10 Substitution Mapping

	7 Nodes and Relationships
	7.1 Node Type
	7.2 Node Template
	7.3 Relationship Type
	7.4 Relationship Template

	8 Capabilities and Requirements
	8.1 Capability Type
	8.2 Capability Definition
	8.3 Capability Refinement
	8.4 Capability Assignment
	8.5 Requirement Definition
	8.6 Requirement Refinement
	8.7 Requirement Assignment
	8.7.1 Supported Keynames
	8.7.2 Requirement Assignment Grammar
	8.7.4 Requirement Count
	8.7.5 Capability Allocation

	8.8 Node Filter definition

	9 Properties, Attributes, and Parameters
	9.1 TOSCA Built-In Types
	9.1.1 Primitive Types
	9.1.1.1 string
	9.1.1.2 integer
	9.1.1.3 float
	9.1.1.4 boolean
	9.1.1.5 bytes
	9.1.1.6 nil

	9.1.2 Special Types
	9.1.2.1 timestamp
	9.1.2.2 scalar-unit
	9.1.2.3 version

	9.1.3 Collection Types
	9.1.3.1 list
	9.1.3.2 map

	9.2 Data Type
	9.3 Schema Definition
	9.3 Property Definition
	9.4 Property Assignment
	9.5 Attribute Definition
	9.6 Attribute Assignment
	9.7 Parameter Definition
	9.8 Parameter Value Assignment
	9.9 Parameter Mapping Assignment
	9.10 Validation Clause

	10 TOSCA Functions
	10.1 Function Syntax
	10.2 TOSCA Built-In Functions
	10.2.1 Representation Graph Query Functions
	10.2.1.1 get_input
	10.2.1.2 get_property
	10.2.1.3 get_attribute
	10.2.1.4 get_artifact
	10.2.1.5 value
	10.2.1.6 node_index
	10.2.1.7 relationship_index
	10.2.1.8 available_allocation

	10.2.2 Boolean Functions
	10.2.2.1 Boolean Logic Functions
	10.2.2.2 Comparison Functions
	10.2.2.3 Boolean List, Map and String Functions

	10.2.3 String, List, and Map Functions
	10.2.3.1 length
	10.2.3.2 concat
	10.2.3.3 join
	10.2.3.4 token

	10.2.4 Set Functions
	10.2.4.1 union
	10.2.4.2 intersection

	10.2.5 Arithmetic Functions
	10.2.5.1 sum
	10.2.5.2 difference
	10.2.5.3 product
	10.2.5.4 quotient
	10.2.5.5 remainder
	10.2.5.6 round
	10.2.5.7 floor
	10.2.5.8 ceil

	10.3 TOSCA Path
	10.4 Function Definitions

	11 Interfaces, Operations, and Notifications
	11.1 Interface Type
	11.2 Interface Definition
	11.3 Interface Assignment
	11.4 Operation Definition
	11.5 Operation Assignment
	11.6 Notification Definition
	11.7 Notification Assignment
	11.8 Operation and Notification Implementations

	12 Artifacts
	12.1 Artifact Type
	12.2 Artifact definition

	13 Workflows
	13.1 Declarative Workflows
	13.2 Imperative Workflows
	13.2.1 Workflow Precondition Definition
	13.2.2 Workflow Step Definition
	13.2.3 Activity Definition
	13.2.3.1 Delegate Workflow Activity Definition
	13.2.3.2 Set State Activity Definition
	13.2.3.3 Call Operation Activity Definition
	13.2.3.4 Inline Workflow Activity Definition

	14 Creating Multiple Representations from Templates
	14.1 Specifying Number of Node Representations
	14.2 Node-Specific Input Values
	14.3 Cardinality of Relationships
	14.3.1 Many-to-One Relationships
	14.3.2 One-to-Many Relationships
	14.3.3 Full mesh
	14.3.4 Matched Pairs
	14.3.5 Random Pairs
	14.3.6 Many-to-Many Relationships

	14.4 Relationship-Specific Input Values

	15 Substitution
	15.1 Substitution Mapping
	15.2 Property mapping
	15.3 Attribute Mapping
	15.4 Capability Mapping
	15.5 Requirement Mapping
	15.5.1 Mapping Multiple Requirements with the Same Name
	15.5.2 Mapping a Requirement Multiple Times
	15.5.3 Requirement Mapping and Selectable Nodes
	15.5.4 Requirement Mapping Rules
	15.5.5 Handling UNBOUNDED Requirement Count Ranges

	15.6 Interface Mapping

	16 Groups and Policies
	16.1 Group Type
	16.2 Group Definition
	16.3 Policy Type
	16.4 Policy Definition
	16.5 Trigger Definition

	17 Cloud Service Archive (CSAR) Format
	17.1 Overall Structure of a CSAR
	17.1.1 CSAR Archiving Formats
	17.1.1.1 Tarballs
	17.1.1.2 Zip Files

	17.2 TOSCA Meta File
	17.2.1 Block 0 Keynames in the TOSCA.meta File
	17.2.2 Custom Keynames in the TOSCA.meta File

	17.3 CSAR Without TOSCA.meta

	18 Conformance
	18.1 Conformance Targets
	18.2 Conformance Clause 1: TOSCA YAML Service Template
	18.3 Conformance Clause 2: TOSCA Processor
	18.4 Conformance Clause 3: TOSCA Orchestrator
	18.5 Conformance Clause 4: TOSCA Generator
	18.6 Conformance Clause 5: TOSCA Archive

	Appendix A. References
	A.1 Normative References
	[RFC2119]
	[RFC8174]
	[YAML-1.2]

	A.2 Informative References
	[Maven-Version]
	[RFC3552]
	[File extensions for media types]
	[TOSCA discussion]
	[RFC3339]
	[SI Units]

	Appendix B. Safety, Security and Privacy Considerations
	Appendix C. Acknowledgments
	C.1 Special Thanks
	C.2 Participants

	Appendix D. Revision History
	Appendix E. Example Appendix with subsections
	E.1 Subsection title
	E.1.1 Sub-subsection

	Appendix F. Notices

