1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
use core::iter::{
    FusedIterator, InPlaceIterable, SourceIter, TrustedFused, TrustedLen,
    TrustedRandomAccessNoCoerce,
};
use core::marker::PhantomData;
use core::mem::{ManuallyDrop, MaybeUninit, SizedTypeProperties};
use core::num::NonZero;
#[cfg(not(no_global_oom_handling))]
use core::ops::Deref;
use core::ptr::{self, NonNull};
use core::slice::{self};
use core::{array, fmt};

#[cfg(not(no_global_oom_handling))]
use super::AsVecIntoIter;
use crate::alloc::{Allocator, Global};
#[cfg(not(no_global_oom_handling))]
use crate::collections::VecDeque;
use crate::raw_vec::RawVec;

macro non_null {
    (mut $place:expr, $t:ident) => {{
        #![allow(unused_unsafe)] // we're sometimes used within an unsafe block
        unsafe { &mut *(ptr::addr_of_mut!($place) as *mut NonNull<$t>) }
    }},
    ($place:expr, $t:ident) => {{
        #![allow(unused_unsafe)] // we're sometimes used within an unsafe block
        unsafe { *(ptr::addr_of!($place) as *const NonNull<$t>) }
    }},
}

/// An iterator that moves out of a vector.
///
/// This `struct` is created by the `into_iter` method on [`Vec`](super::Vec)
/// (provided by the [`IntoIterator`] trait).
///
/// # Example
///
/// ```
/// let v = vec![0, 1, 2];
/// let iter: std::vec::IntoIter<_> = v.into_iter();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_insignificant_dtor]
pub struct IntoIter<
    T,
    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
> {
    pub(super) buf: NonNull<T>,
    pub(super) phantom: PhantomData<T>,
    pub(super) cap: usize,
    // the drop impl reconstructs a RawVec from buf, cap and alloc
    // to avoid dropping the allocator twice we need to wrap it into ManuallyDrop
    pub(super) alloc: ManuallyDrop<A>,
    pub(super) ptr: NonNull<T>,
    /// If T is a ZST, this is actually ptr+len. This encoding is picked so that
    /// ptr == end is a quick test for the Iterator being empty, that works
    /// for both ZST and non-ZST.
    /// For non-ZSTs the pointer is treated as `NonNull<T>`
    pub(super) end: *const T,
}

#[stable(feature = "vec_intoiter_debug", since = "1.13.0")]
impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("IntoIter").field(&self.as_slice()).finish()
    }
}

impl<T, A: Allocator> IntoIter<T, A> {
    /// Returns the remaining items of this iterator as a slice.
    ///
    /// # Examples
    ///
    /// ```
    /// let vec = vec!['a', 'b', 'c'];
    /// let mut into_iter = vec.into_iter();
    /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
    /// let _ = into_iter.next().unwrap();
    /// assert_eq!(into_iter.as_slice(), &['b', 'c']);
    /// ```
    #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
    pub fn as_slice(&self) -> &[T] {
        unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len()) }
    }

    /// Returns the remaining items of this iterator as a mutable slice.
    ///
    /// # Examples
    ///
    /// ```
    /// let vec = vec!['a', 'b', 'c'];
    /// let mut into_iter = vec.into_iter();
    /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
    /// into_iter.as_mut_slice()[2] = 'z';
    /// assert_eq!(into_iter.next().unwrap(), 'a');
    /// assert_eq!(into_iter.next().unwrap(), 'b');
    /// assert_eq!(into_iter.next().unwrap(), 'z');
    /// ```
    #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")]
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        unsafe { &mut *self.as_raw_mut_slice() }
    }

    /// Returns a reference to the underlying allocator.
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn allocator(&self) -> &A {
        &self.alloc
    }

    fn as_raw_mut_slice(&mut self) -> *mut [T] {
        ptr::slice_from_raw_parts_mut(self.ptr.as_ptr(), self.len())
    }

    /// Drops remaining elements and relinquishes the backing allocation.
    ///
    /// This method guarantees it won't panic before relinquishing the backing
    /// allocation.
    ///
    /// This is roughly equivalent to the following, but more efficient
    ///
    /// ```
    /// # let mut vec = Vec::<u8>::with_capacity(10);
    /// # let ptr = vec.as_mut_ptr();
    /// # let mut into_iter = vec.into_iter();
    /// let mut into_iter = std::mem::replace(&mut into_iter, Vec::new().into_iter());
    /// (&mut into_iter).for_each(drop);
    /// std::mem::forget(into_iter);
    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
    /// # drop(unsafe { Vec::<u8>::from_raw_parts(ptr, 0, 10) });
    /// ```
    ///
    /// This method is used by in-place iteration, refer to the vec::in_place_collect
    /// documentation for an overview.
    #[cfg(not(no_global_oom_handling))]
    pub(super) fn forget_allocation_drop_remaining(&mut self) {
        let remaining = self.as_raw_mut_slice();

        // overwrite the individual fields instead of creating a new
        // struct and then overwriting &mut self.
        // this creates less assembly
        self.cap = 0;
        self.buf = RawVec::NEW.non_null();
        self.ptr = self.buf;
        self.end = self.buf.as_ptr();

        // Dropping the remaining elements can panic, so this needs to be
        // done only after updating the other fields.
        unsafe {
            ptr::drop_in_place(remaining);
        }
    }

    /// Forgets to Drop the remaining elements while still allowing the backing allocation to be freed.
    pub(crate) fn forget_remaining_elements(&mut self) {
        // For the ZST case, it is crucial that we mutate `end` here, not `ptr`.
        // `ptr` must stay aligned, while `end` may be unaligned.
        self.end = self.ptr.as_ptr();
    }

    #[cfg(not(no_global_oom_handling))]
    #[inline]
    pub(crate) fn into_vecdeque(self) -> VecDeque<T, A> {
        // Keep our `Drop` impl from dropping the elements and the allocator
        let mut this = ManuallyDrop::new(self);

        // SAFETY: This allocation originally came from a `Vec`, so it passes
        // all those checks. We have `this.buf` ≤ `this.ptr` ≤ `this.end`,
        // so the `sub_ptr`s below cannot wrap, and will produce a well-formed
        // range. `end` ≤ `buf + cap`, so the range will be in-bounds.
        // Taking `alloc` is ok because nothing else is going to look at it,
        // since our `Drop` impl isn't going to run so there's no more code.
        unsafe {
            let buf = this.buf.as_ptr();
            let initialized = if T::IS_ZST {
                // All the pointers are the same for ZSTs, so it's fine to
                // say that they're all at the beginning of the "allocation".
                0..this.len()
            } else {
                this.ptr.sub_ptr(this.buf)..this.end.sub_ptr(buf)
            };
            let cap = this.cap;
            let alloc = ManuallyDrop::take(&mut this.alloc);
            VecDeque::from_contiguous_raw_parts_in(buf, initialized, cap, alloc)
        }
    }
}

#[stable(feature = "vec_intoiter_as_ref", since = "1.46.0")]
impl<T, A: Allocator> AsRef<[T]> for IntoIter<T, A> {
    fn as_ref(&self) -> &[T] {
        self.as_slice()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send, A: Allocator + Send> Send for IntoIter<T, A> {}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Sync, A: Allocator + Sync> Sync for IntoIter<T, A> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> Iterator for IntoIter<T, A> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        let ptr = if T::IS_ZST {
            if self.ptr.as_ptr() == self.end as *mut T {
                return None;
            }
            // `ptr` has to stay where it is to remain aligned, so we reduce the length by 1 by
            // reducing the `end`.
            self.end = self.end.wrapping_byte_sub(1);
            self.ptr
        } else {
            if self.ptr == non_null!(self.end, T) {
                return None;
            }
            let old = self.ptr;
            self.ptr = unsafe { old.add(1) };
            old
        };
        Some(unsafe { ptr.read() })
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let exact = if T::IS_ZST {
            self.end.addr().wrapping_sub(self.ptr.as_ptr().addr())
        } else {
            unsafe { non_null!(self.end, T).sub_ptr(self.ptr) }
        };
        (exact, Some(exact))
    }

    #[inline]
    fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
        let step_size = self.len().min(n);
        let to_drop = ptr::slice_from_raw_parts_mut(self.ptr.as_ptr(), step_size);
        if T::IS_ZST {
            // See `next` for why we sub `end` here.
            self.end = self.end.wrapping_byte_sub(step_size);
        } else {
            // SAFETY: the min() above ensures that step_size is in bounds
            self.ptr = unsafe { self.ptr.add(step_size) };
        }
        // SAFETY: the min() above ensures that step_size is in bounds
        unsafe {
            ptr::drop_in_place(to_drop);
        }
        NonZero::new(n - step_size).map_or(Ok(()), Err)
    }

    #[inline]
    fn count(self) -> usize {
        self.len()
    }

    #[inline]
    fn next_chunk<const N: usize>(&mut self) -> Result<[T; N], core::array::IntoIter<T, N>> {
        let mut raw_ary = [const { MaybeUninit::uninit() }; N];

        let len = self.len();

        if T::IS_ZST {
            if len < N {
                self.forget_remaining_elements();
                // Safety: ZSTs can be conjured ex nihilo, only the amount has to be correct
                return Err(unsafe { array::IntoIter::new_unchecked(raw_ary, 0..len) });
            }

            self.end = self.end.wrapping_byte_sub(N);
            // Safety: ditto
            return Ok(unsafe { raw_ary.transpose().assume_init() });
        }

        if len < N {
            // Safety: `len` indicates that this many elements are available and we just checked that
            // it fits into the array.
            unsafe {
                ptr::copy_nonoverlapping(self.ptr.as_ptr(), raw_ary.as_mut_ptr() as *mut T, len);
                self.forget_remaining_elements();
                return Err(array::IntoIter::new_unchecked(raw_ary, 0..len));
            }
        }

        // Safety: `len` is larger than the array size. Copy a fixed amount here to fully initialize
        // the array.
        return unsafe {
            ptr::copy_nonoverlapping(self.ptr.as_ptr(), raw_ary.as_mut_ptr() as *mut T, N);
            self.ptr = self.ptr.add(N);
            Ok(raw_ary.transpose().assume_init())
        };
    }

    fn fold<B, F>(mut self, mut accum: B, mut f: F) -> B
    where
        F: FnMut(B, Self::Item) -> B,
    {
        if T::IS_ZST {
            while self.ptr.as_ptr() != self.end.cast_mut() {
                // SAFETY: we just checked that `self.ptr` is in bounds.
                let tmp = unsafe { self.ptr.read() };
                // See `next` for why we subtract from `end` here.
                self.end = self.end.wrapping_byte_sub(1);
                accum = f(accum, tmp);
            }
        } else {
            // SAFETY: `self.end` can only be null if `T` is a ZST.
            while self.ptr != non_null!(self.end, T) {
                // SAFETY: we just checked that `self.ptr` is in bounds.
                let tmp = unsafe { self.ptr.read() };
                // SAFETY: the maximum this can be is `self.end`.
                // Increment `self.ptr` first to avoid double dropping in the event of a panic.
                self.ptr = unsafe { self.ptr.add(1) };
                accum = f(accum, tmp);
            }
        }
        accum
    }

    fn try_fold<B, F, R>(&mut self, mut accum: B, mut f: F) -> R
    where
        Self: Sized,
        F: FnMut(B, Self::Item) -> R,
        R: core::ops::Try<Output = B>,
    {
        if T::IS_ZST {
            while self.ptr.as_ptr() != self.end.cast_mut() {
                // SAFETY: we just checked that `self.ptr` is in bounds.
                let tmp = unsafe { self.ptr.read() };
                // See `next` for why we subtract from `end` here.
                self.end = self.end.wrapping_byte_sub(1);
                accum = f(accum, tmp)?;
            }
        } else {
            // SAFETY: `self.end` can only be null if `T` is a ZST.
            while self.ptr != non_null!(self.end, T) {
                // SAFETY: we just checked that `self.ptr` is in bounds.
                let tmp = unsafe { self.ptr.read() };
                // SAFETY: the maximum this can be is `self.end`.
                // Increment `self.ptr` first to avoid double dropping in the event of a panic.
                self.ptr = unsafe { self.ptr.add(1) };
                accum = f(accum, tmp)?;
            }
        }
        R::from_output(accum)
    }

    unsafe fn __iterator_get_unchecked(&mut self, i: usize) -> Self::Item
    where
        Self: TrustedRandomAccessNoCoerce,
    {
        // SAFETY: the caller must guarantee that `i` is in bounds of the
        // `Vec<T>`, so `i` cannot overflow an `isize`, and the `self.ptr.add(i)`
        // is guaranteed to pointer to an element of the `Vec<T>` and
        // thus guaranteed to be valid to dereference.
        //
        // Also note the implementation of `Self: TrustedRandomAccess` requires
        // that `T: Copy` so reading elements from the buffer doesn't invalidate
        // them for `Drop`.
        unsafe { self.ptr.add(i).read() }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> {
    #[inline]
    fn next_back(&mut self) -> Option<T> {
        if T::IS_ZST {
            if self.ptr.as_ptr() == self.end as *mut _ {
                return None;
            }
            // See above for why 'ptr.offset' isn't used
            self.end = self.end.wrapping_byte_sub(1);
            // Note that even though this is next_back() we're reading from `self.ptr`, not
            // `self.end`. We track our length using the byte offset from `self.ptr` to `self.end`,
            // so the end pointer may not be suitably aligned for T.
            Some(unsafe { ptr::read(self.ptr.as_ptr()) })
        } else {
            if self.ptr == non_null!(self.end, T) {
                return None;
            }
            unsafe {
                self.end = self.end.sub(1);
                Some(ptr::read(self.end))
            }
        }
    }

    #[inline]
    fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>> {
        let step_size = self.len().min(n);
        if T::IS_ZST {
            // SAFETY: same as for advance_by()
            self.end = self.end.wrapping_byte_sub(step_size);
        } else {
            // SAFETY: same as for advance_by()
            self.end = unsafe { self.end.sub(step_size) };
        }
        let to_drop = ptr::slice_from_raw_parts_mut(self.end as *mut T, step_size);
        // SAFETY: same as for advance_by()
        unsafe {
            ptr::drop_in_place(to_drop);
        }
        NonZero::new(n - step_size).map_or(Ok(()), Err)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> {
    fn is_empty(&self) -> bool {
        if T::IS_ZST {
            self.ptr.as_ptr() == self.end as *mut _
        } else {
            self.ptr == non_null!(self.end, T)
        }
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {}

#[doc(hidden)]
#[unstable(issue = "none", feature = "trusted_fused")]
unsafe impl<T, A: Allocator> TrustedFused for IntoIter<T, A> {}

#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<T, A: Allocator> TrustedLen for IntoIter<T, A> {}

#[stable(feature = "default_iters", since = "1.70.0")]
impl<T, A> Default for IntoIter<T, A>
where
    A: Allocator + Default,
{
    /// Creates an empty `vec::IntoIter`.
    ///
    /// ```
    /// # use std::vec;
    /// let iter: vec::IntoIter<u8> = Default::default();
    /// assert_eq!(iter.len(), 0);
    /// assert_eq!(iter.as_slice(), &[]);
    /// ```
    fn default() -> Self {
        super::Vec::new_in(Default::default()).into_iter()
    }
}

#[doc(hidden)]
#[unstable(issue = "none", feature = "std_internals")]
#[rustc_unsafe_specialization_marker]
pub trait NonDrop {}

// T: Copy as approximation for !Drop since get_unchecked does not advance self.ptr
// and thus we can't implement drop-handling
#[unstable(issue = "none", feature = "std_internals")]
impl<T: Copy> NonDrop for T {}

#[doc(hidden)]
#[unstable(issue = "none", feature = "std_internals")]
// TrustedRandomAccess (without NoCoerce) must not be implemented because
// subtypes/supertypes of `T` might not be `NonDrop`
unsafe impl<T, A: Allocator> TrustedRandomAccessNoCoerce for IntoIter<T, A>
where
    T: NonDrop,
{
    const MAY_HAVE_SIDE_EFFECT: bool = false;
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_into_iter_clone", since = "1.8.0")]
impl<T: Clone, A: Allocator + Clone> Clone for IntoIter<T, A> {
    #[cfg(not(test))]
    fn clone(&self) -> Self {
        self.as_slice().to_vec_in(self.alloc.deref().clone()).into_iter()
    }
    #[cfg(test)]
    fn clone(&self) -> Self {
        crate::slice::to_vec(self.as_slice(), self.alloc.deref().clone()).into_iter()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<#[may_dangle] T, A: Allocator> Drop for IntoIter<T, A> {
    fn drop(&mut self) {
        struct DropGuard<'a, T, A: Allocator>(&'a mut IntoIter<T, A>);

        impl<T, A: Allocator> Drop for DropGuard<'_, T, A> {
            fn drop(&mut self) {
                unsafe {
                    // `IntoIter::alloc` is not used anymore after this and will be dropped by RawVec
                    let alloc = ManuallyDrop::take(&mut self.0.alloc);
                    // RawVec handles deallocation
                    let _ = RawVec::from_nonnull_in(self.0.buf, self.0.cap, alloc);
                }
            }
        }

        let guard = DropGuard(self);
        // destroy the remaining elements
        unsafe {
            ptr::drop_in_place(guard.0.as_raw_mut_slice());
        }
        // now `guard` will be dropped and do the rest
    }
}

// In addition to the SAFETY invariants of the following three unsafe traits
// also refer to the vec::in_place_collect module documentation to get an overview
#[unstable(issue = "none", feature = "inplace_iteration")]
#[doc(hidden)]
unsafe impl<T, A: Allocator> InPlaceIterable for IntoIter<T, A> {
    const EXPAND_BY: Option<NonZero<usize>> = NonZero::new(1);
    const MERGE_BY: Option<NonZero<usize>> = NonZero::new(1);
}

#[unstable(issue = "none", feature = "inplace_iteration")]
#[doc(hidden)]
unsafe impl<T, A: Allocator> SourceIter for IntoIter<T, A> {
    type Source = Self;

    #[inline]
    unsafe fn as_inner(&mut self) -> &mut Self::Source {
        self
    }
}

#[cfg(not(no_global_oom_handling))]
unsafe impl<T> AsVecIntoIter for IntoIter<T> {
    type Item = T;

    fn as_into_iter(&mut self) -> &mut IntoIter<Self::Item> {
        self
    }
}