1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
//! Utilities for the array primitive type.
//!
//! *[See also the array primitive type](array).*
#![stable(feature = "core_array", since = "1.36.0")]
use crate::borrow::{Borrow, BorrowMut};
use crate::cmp::Ordering;
use crate::convert::Infallible;
use crate::error::Error;
use crate::fmt;
use crate::hash::{self, Hash};
use crate::iter::{repeat_n, UncheckedIterator};
use crate::mem::{self, MaybeUninit};
use crate::ops::{
ChangeOutputType, ControlFlow, FromResidual, Index, IndexMut, NeverShortCircuit, Residual, Try,
};
use crate::slice::{Iter, IterMut};
mod ascii;
mod drain;
mod equality;
mod iter;
pub(crate) use drain::drain_array_with;
#[stable(feature = "array_value_iter", since = "1.51.0")]
pub use iter::IntoIter;
/// Creates an array of type `[T; N]` by repeatedly cloning a value.
///
/// This is the same as `[val; N]`, but it also works for types that do not
/// implement [`Copy`].
///
/// The provided value will be used as an element of the resulting array and
/// will be cloned N - 1 times to fill up the rest. If N is zero, the value
/// will be dropped.
///
/// # Example
///
/// Creating muliple copies of a `String`:
/// ```rust
/// #![feature(array_repeat)]
///
/// use std::array;
///
/// let string = "Hello there!".to_string();
/// let strings = array::repeat(string);
/// assert_eq!(strings, ["Hello there!", "Hello there!"]);
/// ```
#[inline]
#[unstable(feature = "array_repeat", issue = "126695")]
pub fn repeat<T: Clone, const N: usize>(val: T) -> [T; N] {
from_trusted_iterator(repeat_n(val, N))
}
/// Creates an array of type [T; N], where each element `T` is the returned value from `cb`
/// using that element's index.
///
/// # Arguments
///
/// * `cb`: Callback where the passed argument is the current array index.
///
/// # Example
///
/// ```rust
/// // type inference is helping us here, the way `from_fn` knows how many
/// // elements to produce is the length of array down there: only arrays of
/// // equal lengths can be compared, so the const generic parameter `N` is
/// // inferred to be 5, thus creating array of 5 elements.
///
/// let array = core::array::from_fn(|i| i);
/// // indexes are: 0 1 2 3 4
/// assert_eq!(array, [0, 1, 2, 3, 4]);
///
/// let array2: [usize; 8] = core::array::from_fn(|i| i * 2);
/// // indexes are: 0 1 2 3 4 5 6 7
/// assert_eq!(array2, [0, 2, 4, 6, 8, 10, 12, 14]);
///
/// let bool_arr = core::array::from_fn::<_, 5, _>(|i| i % 2 == 0);
/// // indexes are: 0 1 2 3 4
/// assert_eq!(bool_arr, [true, false, true, false, true]);
/// ```
#[inline]
#[stable(feature = "array_from_fn", since = "1.63.0")]
pub fn from_fn<T, const N: usize, F>(cb: F) -> [T; N]
where
F: FnMut(usize) -> T,
{
try_from_fn(NeverShortCircuit::wrap_mut_1(cb)).0
}
/// Creates an array `[T; N]` where each fallible array element `T` is returned by the `cb` call.
/// Unlike [`from_fn`], where the element creation can't fail, this version will return an error
/// if any element creation was unsuccessful.
///
/// The return type of this function depends on the return type of the closure.
/// If you return `Result<T, E>` from the closure, you'll get a `Result<[T; N], E>`.
/// If you return `Option<T>` from the closure, you'll get an `Option<[T; N]>`.
///
/// # Arguments
///
/// * `cb`: Callback where the passed argument is the current array index.
///
/// # Example
///
/// ```rust
/// #![feature(array_try_from_fn)]
///
/// let array: Result<[u8; 5], _> = std::array::try_from_fn(|i| i.try_into());
/// assert_eq!(array, Ok([0, 1, 2, 3, 4]));
///
/// let array: Result<[i8; 200], _> = std::array::try_from_fn(|i| i.try_into());
/// assert!(array.is_err());
///
/// let array: Option<[_; 4]> = std::array::try_from_fn(|i| i.checked_add(100));
/// assert_eq!(array, Some([100, 101, 102, 103]));
///
/// let array: Option<[_; 4]> = std::array::try_from_fn(|i| i.checked_sub(100));
/// assert_eq!(array, None);
/// ```
#[inline]
#[unstable(feature = "array_try_from_fn", issue = "89379")]
pub fn try_from_fn<R, const N: usize, F>(cb: F) -> ChangeOutputType<R, [R::Output; N]>
where
F: FnMut(usize) -> R,
R: Try,
R::Residual: Residual<[R::Output; N]>,
{
let mut array = [const { MaybeUninit::uninit() }; N];
match try_from_fn_erased(&mut array, cb) {
ControlFlow::Break(r) => FromResidual::from_residual(r),
ControlFlow::Continue(()) => {
// SAFETY: All elements of the array were populated.
try { unsafe { MaybeUninit::array_assume_init(array) } }
}
}
}
/// Converts a reference to `T` into a reference to an array of length 1 (without copying).
#[stable(feature = "array_from_ref", since = "1.53.0")]
#[rustc_const_stable(feature = "const_array_from_ref_shared", since = "1.63.0")]
pub const fn from_ref<T>(s: &T) -> &[T; 1] {
// SAFETY: Converting `&T` to `&[T; 1]` is sound.
unsafe { &*(s as *const T).cast::<[T; 1]>() }
}
/// Converts a mutable reference to `T` into a mutable reference to an array of length 1 (without copying).
#[stable(feature = "array_from_ref", since = "1.53.0")]
#[rustc_const_unstable(feature = "const_array_from_ref", issue = "90206")]
pub const fn from_mut<T>(s: &mut T) -> &mut [T; 1] {
// SAFETY: Converting `&mut T` to `&mut [T; 1]` is sound.
unsafe { &mut *(s as *mut T).cast::<[T; 1]>() }
}
/// The error type returned when a conversion from a slice to an array fails.
#[stable(feature = "try_from", since = "1.34.0")]
#[derive(Debug, Copy, Clone)]
pub struct TryFromSliceError(());
#[stable(feature = "core_array", since = "1.36.0")]
impl fmt::Display for TryFromSliceError {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
#[allow(deprecated)]
self.description().fmt(f)
}
}
#[stable(feature = "try_from", since = "1.34.0")]
impl Error for TryFromSliceError {
#[allow(deprecated)]
fn description(&self) -> &str {
"could not convert slice to array"
}
}
#[stable(feature = "try_from_slice_error", since = "1.36.0")]
impl From<Infallible> for TryFromSliceError {
fn from(x: Infallible) -> TryFromSliceError {
match x {}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, const N: usize> AsRef<[T]> for [T; N] {
#[inline]
fn as_ref(&self) -> &[T] {
&self[..]
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, const N: usize> AsMut<[T]> for [T; N] {
#[inline]
fn as_mut(&mut self) -> &mut [T] {
&mut self[..]
}
}
#[stable(feature = "array_borrow", since = "1.4.0")]
impl<T, const N: usize> Borrow<[T]> for [T; N] {
fn borrow(&self) -> &[T] {
self
}
}
#[stable(feature = "array_borrow", since = "1.4.0")]
impl<T, const N: usize> BorrowMut<[T]> for [T; N] {
fn borrow_mut(&mut self) -> &mut [T] {
self
}
}
/// Tries to create an array `[T; N]` by copying from a slice `&[T]`. Succeeds if
/// `slice.len() == N`.
///
/// ```
/// let bytes: [u8; 3] = [1, 0, 2];
///
/// let bytes_head: [u8; 2] = <[u8; 2]>::try_from(&bytes[0..2]).unwrap();
/// assert_eq!(1, u16::from_le_bytes(bytes_head));
///
/// let bytes_tail: [u8; 2] = bytes[1..3].try_into().unwrap();
/// assert_eq!(512, u16::from_le_bytes(bytes_tail));
/// ```
#[stable(feature = "try_from", since = "1.34.0")]
impl<T, const N: usize> TryFrom<&[T]> for [T; N]
where
T: Copy,
{
type Error = TryFromSliceError;
#[inline]
fn try_from(slice: &[T]) -> Result<[T; N], TryFromSliceError> {
<&Self>::try_from(slice).copied()
}
}
/// Tries to create an array `[T; N]` by copying from a mutable slice `&mut [T]`.
/// Succeeds if `slice.len() == N`.
///
/// ```
/// let mut bytes: [u8; 3] = [1, 0, 2];
///
/// let bytes_head: [u8; 2] = <[u8; 2]>::try_from(&mut bytes[0..2]).unwrap();
/// assert_eq!(1, u16::from_le_bytes(bytes_head));
///
/// let bytes_tail: [u8; 2] = (&mut bytes[1..3]).try_into().unwrap();
/// assert_eq!(512, u16::from_le_bytes(bytes_tail));
/// ```
#[stable(feature = "try_from_mut_slice_to_array", since = "1.59.0")]
impl<T, const N: usize> TryFrom<&mut [T]> for [T; N]
where
T: Copy,
{
type Error = TryFromSliceError;
#[inline]
fn try_from(slice: &mut [T]) -> Result<[T; N], TryFromSliceError> {
<Self>::try_from(&*slice)
}
}
/// Tries to create an array ref `&[T; N]` from a slice ref `&[T]`. Succeeds if
/// `slice.len() == N`.
///
/// ```
/// let bytes: [u8; 3] = [1, 0, 2];
///
/// let bytes_head: &[u8; 2] = <&[u8; 2]>::try_from(&bytes[0..2]).unwrap();
/// assert_eq!(1, u16::from_le_bytes(*bytes_head));
///
/// let bytes_tail: &[u8; 2] = bytes[1..3].try_into().unwrap();
/// assert_eq!(512, u16::from_le_bytes(*bytes_tail));
/// ```
#[stable(feature = "try_from", since = "1.34.0")]
impl<'a, T, const N: usize> TryFrom<&'a [T]> for &'a [T; N] {
type Error = TryFromSliceError;
#[inline]
fn try_from(slice: &'a [T]) -> Result<&'a [T; N], TryFromSliceError> {
if slice.len() == N {
let ptr = slice.as_ptr() as *const [T; N];
// SAFETY: ok because we just checked that the length fits
unsafe { Ok(&*ptr) }
} else {
Err(TryFromSliceError(()))
}
}
}
/// Tries to create a mutable array ref `&mut [T; N]` from a mutable slice ref
/// `&mut [T]`. Succeeds if `slice.len() == N`.
///
/// ```
/// let mut bytes: [u8; 3] = [1, 0, 2];
///
/// let bytes_head: &mut [u8; 2] = <&mut [u8; 2]>::try_from(&mut bytes[0..2]).unwrap();
/// assert_eq!(1, u16::from_le_bytes(*bytes_head));
///
/// let bytes_tail: &mut [u8; 2] = (&mut bytes[1..3]).try_into().unwrap();
/// assert_eq!(512, u16::from_le_bytes(*bytes_tail));
/// ```
#[stable(feature = "try_from", since = "1.34.0")]
impl<'a, T, const N: usize> TryFrom<&'a mut [T]> for &'a mut [T; N] {
type Error = TryFromSliceError;
#[inline]
fn try_from(slice: &'a mut [T]) -> Result<&'a mut [T; N], TryFromSliceError> {
if slice.len() == N {
let ptr = slice.as_mut_ptr() as *mut [T; N];
// SAFETY: ok because we just checked that the length fits
unsafe { Ok(&mut *ptr) }
} else {
Err(TryFromSliceError(()))
}
}
}
/// The hash of an array is the same as that of the corresponding slice,
/// as required by the `Borrow` implementation.
///
/// ```
/// use std::hash::BuildHasher;
///
/// let b = std::hash::RandomState::new();
/// let a: [u8; 3] = [0xa8, 0x3c, 0x09];
/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
/// assert_eq!(b.hash_one(a), b.hash_one(s));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Hash, const N: usize> Hash for [T; N] {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
Hash::hash(&self[..], state)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug, const N: usize> fmt::Debug for [T; N] {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&&self[..], f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T, const N: usize> IntoIterator for &'a [T; N] {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T, const N: usize> IntoIterator for &'a mut [T; N] {
type Item = &'a mut T;
type IntoIter = IterMut<'a, T>;
fn into_iter(self) -> IterMut<'a, T> {
self.iter_mut()
}
}
#[stable(feature = "index_trait_on_arrays", since = "1.50.0")]
impl<T, I, const N: usize> Index<I> for [T; N]
where
[T]: Index<I>,
{
type Output = <[T] as Index<I>>::Output;
#[inline]
fn index(&self, index: I) -> &Self::Output {
Index::index(self as &[T], index)
}
}
#[stable(feature = "index_trait_on_arrays", since = "1.50.0")]
impl<T, I, const N: usize> IndexMut<I> for [T; N]
where
[T]: IndexMut<I>,
{
#[inline]
fn index_mut(&mut self, index: I) -> &mut Self::Output {
IndexMut::index_mut(self as &mut [T], index)
}
}
/// Implements comparison of arrays [lexicographically](Ord#lexicographical-comparison).
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialOrd, const N: usize> PartialOrd for [T; N] {
#[inline]
fn partial_cmp(&self, other: &[T; N]) -> Option<Ordering> {
PartialOrd::partial_cmp(&&self[..], &&other[..])
}
#[inline]
fn lt(&self, other: &[T; N]) -> bool {
PartialOrd::lt(&&self[..], &&other[..])
}
#[inline]
fn le(&self, other: &[T; N]) -> bool {
PartialOrd::le(&&self[..], &&other[..])
}
#[inline]
fn ge(&self, other: &[T; N]) -> bool {
PartialOrd::ge(&&self[..], &&other[..])
}
#[inline]
fn gt(&self, other: &[T; N]) -> bool {
PartialOrd::gt(&&self[..], &&other[..])
}
}
/// Implements comparison of arrays [lexicographically](Ord#lexicographical-comparison).
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord, const N: usize> Ord for [T; N] {
#[inline]
fn cmp(&self, other: &[T; N]) -> Ordering {
Ord::cmp(&&self[..], &&other[..])
}
}
#[stable(feature = "copy_clone_array_lib", since = "1.58.0")]
impl<T: Copy, const N: usize> Copy for [T; N] {}
#[stable(feature = "copy_clone_array_lib", since = "1.58.0")]
impl<T: Clone, const N: usize> Clone for [T; N] {
#[inline]
fn clone(&self) -> Self {
SpecArrayClone::clone(self)
}
#[inline]
fn clone_from(&mut self, other: &Self) {
self.clone_from_slice(other);
}
}
trait SpecArrayClone: Clone {
fn clone<const N: usize>(array: &[Self; N]) -> [Self; N];
}
impl<T: Clone> SpecArrayClone for T {
#[inline]
default fn clone<const N: usize>(array: &[T; N]) -> [T; N] {
from_trusted_iterator(array.iter().cloned())
}
}
impl<T: Copy> SpecArrayClone for T {
#[inline]
fn clone<const N: usize>(array: &[T; N]) -> [T; N] {
*array
}
}
// The Default impls cannot be done with const generics because `[T; 0]` doesn't
// require Default to be implemented, and having different impl blocks for
// different numbers isn't supported yet.
macro_rules! array_impl_default {
{$n:expr, $t:ident $($ts:ident)*} => {
#[stable(since = "1.4.0", feature = "array_default")]
impl<T> Default for [T; $n] where T: Default {
fn default() -> [T; $n] {
[$t::default(), $($ts::default()),*]
}
}
array_impl_default!{($n - 1), $($ts)*}
};
{$n:expr,} => {
#[stable(since = "1.4.0", feature = "array_default")]
impl<T> Default for [T; $n] {
fn default() -> [T; $n] { [] }
}
};
}
array_impl_default! {32, T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T}
impl<T, const N: usize> [T; N] {
/// Returns an array of the same size as `self`, with function `f` applied to each element
/// in order.
///
/// If you don't necessarily need a new fixed-size array, consider using
/// [`Iterator::map`] instead.
///
///
/// # Note on performance and stack usage
///
/// Unfortunately, usages of this method are currently not always optimized
/// as well as they could be. This mainly concerns large arrays, as mapping
/// over small arrays seem to be optimized just fine. Also note that in
/// debug mode (i.e. without any optimizations), this method can use a lot
/// of stack space (a few times the size of the array or more).
///
/// Therefore, in performance-critical code, try to avoid using this method
/// on large arrays or check the emitted code. Also try to avoid chained
/// maps (e.g. `arr.map(...).map(...)`).
///
/// In many cases, you can instead use [`Iterator::map`] by calling `.iter()`
/// or `.into_iter()` on your array. `[T; N]::map` is only necessary if you
/// really need a new array of the same size as the result. Rust's lazy
/// iterators tend to get optimized very well.
///
///
/// # Examples
///
/// ```
/// let x = [1, 2, 3];
/// let y = x.map(|v| v + 1);
/// assert_eq!(y, [2, 3, 4]);
///
/// let x = [1, 2, 3];
/// let mut temp = 0;
/// let y = x.map(|v| { temp += 1; v * temp });
/// assert_eq!(y, [1, 4, 9]);
///
/// let x = ["Ferris", "Bueller's", "Day", "Off"];
/// let y = x.map(|v| v.len());
/// assert_eq!(y, [6, 9, 3, 3]);
/// ```
#[stable(feature = "array_map", since = "1.55.0")]
pub fn map<F, U>(self, f: F) -> [U; N]
where
F: FnMut(T) -> U,
{
self.try_map(NeverShortCircuit::wrap_mut_1(f)).0
}
/// A fallible function `f` applied to each element on array `self` in order to
/// return an array the same size as `self` or the first error encountered.
///
/// The return type of this function depends on the return type of the closure.
/// If you return `Result<T, E>` from the closure, you'll get a `Result<[T; N], E>`.
/// If you return `Option<T>` from the closure, you'll get an `Option<[T; N]>`.
///
/// # Examples
///
/// ```
/// #![feature(array_try_map)]
///
/// let a = ["1", "2", "3"];
/// let b = a.try_map(|v| v.parse::<u32>()).unwrap().map(|v| v + 1);
/// assert_eq!(b, [2, 3, 4]);
///
/// let a = ["1", "2a", "3"];
/// let b = a.try_map(|v| v.parse::<u32>());
/// assert!(b.is_err());
///
/// use std::num::NonZero;
///
/// let z = [1, 2, 0, 3, 4];
/// assert_eq!(z.try_map(NonZero::new), None);
///
/// let a = [1, 2, 3];
/// let b = a.try_map(NonZero::new);
/// let c = b.map(|x| x.map(NonZero::get));
/// assert_eq!(c, Some(a));
/// ```
#[unstable(feature = "array_try_map", issue = "79711")]
pub fn try_map<R>(self, f: impl FnMut(T) -> R) -> ChangeOutputType<R, [R::Output; N]>
where
R: Try<Residual: Residual<[R::Output; N]>>,
{
drain_array_with(self, |iter| try_from_trusted_iterator(iter.map(f)))
}
/// Returns a slice containing the entire array. Equivalent to `&s[..]`.
#[stable(feature = "array_as_slice", since = "1.57.0")]
#[rustc_const_stable(feature = "array_as_slice", since = "1.57.0")]
pub const fn as_slice(&self) -> &[T] {
self
}
/// Returns a mutable slice containing the entire array. Equivalent to
/// `&mut s[..]`.
#[stable(feature = "array_as_slice", since = "1.57.0")]
pub fn as_mut_slice(&mut self) -> &mut [T] {
self
}
/// Borrows each element and returns an array of references with the same
/// size as `self`.
///
///
/// # Example
///
/// ```
/// let floats = [3.1, 2.7, -1.0];
/// let float_refs: [&f64; 3] = floats.each_ref();
/// assert_eq!(float_refs, [&3.1, &2.7, &-1.0]);
/// ```
///
/// This method is particularly useful if combined with other methods, like
/// [`map`](#method.map). This way, you can avoid moving the original
/// array if its elements are not [`Copy`].
///
/// ```
/// let strings = ["Ferris".to_string(), "♥".to_string(), "Rust".to_string()];
/// let is_ascii = strings.each_ref().map(|s| s.is_ascii());
/// assert_eq!(is_ascii, [true, false, true]);
///
/// // We can still access the original array: it has not been moved.
/// assert_eq!(strings.len(), 3);
/// ```
#[stable(feature = "array_methods", since = "1.77.0")]
pub fn each_ref(&self) -> [&T; N] {
from_trusted_iterator(self.iter())
}
/// Borrows each element mutably and returns an array of mutable references
/// with the same size as `self`.
///
///
/// # Example
///
/// ```
///
/// let mut floats = [3.1, 2.7, -1.0];
/// let float_refs: [&mut f64; 3] = floats.each_mut();
/// *float_refs[0] = 0.0;
/// assert_eq!(float_refs, [&mut 0.0, &mut 2.7, &mut -1.0]);
/// assert_eq!(floats, [0.0, 2.7, -1.0]);
/// ```
#[stable(feature = "array_methods", since = "1.77.0")]
pub fn each_mut(&mut self) -> [&mut T; N] {
from_trusted_iterator(self.iter_mut())
}
/// Divides one array reference into two at an index.
///
/// The first will contain all indices from `[0, M)` (excluding
/// the index `M` itself) and the second will contain all
/// indices from `[M, N)` (excluding the index `N` itself).
///
/// # Panics
///
/// Panics if `M > N`.
///
/// # Examples
///
/// ```
/// #![feature(split_array)]
///
/// let v = [1, 2, 3, 4, 5, 6];
///
/// {
/// let (left, right) = v.split_array_ref::<0>();
/// assert_eq!(left, &[]);
/// assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
/// }
///
/// {
/// let (left, right) = v.split_array_ref::<2>();
/// assert_eq!(left, &[1, 2]);
/// assert_eq!(right, &[3, 4, 5, 6]);
/// }
///
/// {
/// let (left, right) = v.split_array_ref::<6>();
/// assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
/// assert_eq!(right, &[]);
/// }
/// ```
#[unstable(
feature = "split_array",
reason = "return type should have array as 2nd element",
issue = "90091"
)]
#[inline]
pub fn split_array_ref<const M: usize>(&self) -> (&[T; M], &[T]) {
(&self[..]).split_first_chunk::<M>().unwrap()
}
/// Divides one mutable array reference into two at an index.
///
/// The first will contain all indices from `[0, M)` (excluding
/// the index `M` itself) and the second will contain all
/// indices from `[M, N)` (excluding the index `N` itself).
///
/// # Panics
///
/// Panics if `M > N`.
///
/// # Examples
///
/// ```
/// #![feature(split_array)]
///
/// let mut v = [1, 0, 3, 0, 5, 6];
/// let (left, right) = v.split_array_mut::<2>();
/// assert_eq!(left, &mut [1, 0][..]);
/// assert_eq!(right, &mut [3, 0, 5, 6]);
/// left[1] = 2;
/// right[1] = 4;
/// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
/// ```
#[unstable(
feature = "split_array",
reason = "return type should have array as 2nd element",
issue = "90091"
)]
#[inline]
pub fn split_array_mut<const M: usize>(&mut self) -> (&mut [T; M], &mut [T]) {
(&mut self[..]).split_first_chunk_mut::<M>().unwrap()
}
/// Divides one array reference into two at an index from the end.
///
/// The first will contain all indices from `[0, N - M)` (excluding
/// the index `N - M` itself) and the second will contain all
/// indices from `[N - M, N)` (excluding the index `N` itself).
///
/// # Panics
///
/// Panics if `M > N`.
///
/// # Examples
///
/// ```
/// #![feature(split_array)]
///
/// let v = [1, 2, 3, 4, 5, 6];
///
/// {
/// let (left, right) = v.rsplit_array_ref::<0>();
/// assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
/// assert_eq!(right, &[]);
/// }
///
/// {
/// let (left, right) = v.rsplit_array_ref::<2>();
/// assert_eq!(left, &[1, 2, 3, 4]);
/// assert_eq!(right, &[5, 6]);
/// }
///
/// {
/// let (left, right) = v.rsplit_array_ref::<6>();
/// assert_eq!(left, &[]);
/// assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
/// }
/// ```
#[unstable(
feature = "split_array",
reason = "return type should have array as 2nd element",
issue = "90091"
)]
#[inline]
pub fn rsplit_array_ref<const M: usize>(&self) -> (&[T], &[T; M]) {
(&self[..]).split_last_chunk::<M>().unwrap()
}
/// Divides one mutable array reference into two at an index from the end.
///
/// The first will contain all indices from `[0, N - M)` (excluding
/// the index `N - M` itself) and the second will contain all
/// indices from `[N - M, N)` (excluding the index `N` itself).
///
/// # Panics
///
/// Panics if `M > N`.
///
/// # Examples
///
/// ```
/// #![feature(split_array)]
///
/// let mut v = [1, 0, 3, 0, 5, 6];
/// let (left, right) = v.rsplit_array_mut::<4>();
/// assert_eq!(left, &mut [1, 0]);
/// assert_eq!(right, &mut [3, 0, 5, 6][..]);
/// left[1] = 2;
/// right[1] = 4;
/// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
/// ```
#[unstable(
feature = "split_array",
reason = "return type should have array as 2nd element",
issue = "90091"
)]
#[inline]
pub fn rsplit_array_mut<const M: usize>(&mut self) -> (&mut [T], &mut [T; M]) {
(&mut self[..]).split_last_chunk_mut::<M>().unwrap()
}
}
/// Populate an array from the first `N` elements of `iter`
///
/// # Panics
///
/// If the iterator doesn't actually have enough items.
///
/// By depending on `TrustedLen`, however, we can do that check up-front (where
/// it easily optimizes away) so it doesn't impact the loop that fills the array.
#[inline]
fn from_trusted_iterator<T, const N: usize>(iter: impl UncheckedIterator<Item = T>) -> [T; N] {
try_from_trusted_iterator(iter.map(NeverShortCircuit)).0
}
#[inline]
fn try_from_trusted_iterator<T, R, const N: usize>(
iter: impl UncheckedIterator<Item = R>,
) -> ChangeOutputType<R, [T; N]>
where
R: Try<Output = T>,
R::Residual: Residual<[T; N]>,
{
assert!(iter.size_hint().0 >= N);
fn next<T>(mut iter: impl UncheckedIterator<Item = T>) -> impl FnMut(usize) -> T {
move |_| {
// SAFETY: We know that `from_fn` will call this at most N times,
// and we checked to ensure that we have at least that many items.
unsafe { iter.next_unchecked() }
}
}
try_from_fn(next(iter))
}
/// Version of [`try_from_fn`] using a passed-in slice in order to avoid
/// needing to monomorphize for every array length.
///
/// This takes a generator rather than an iterator so that *at the type level*
/// it never needs to worry about running out of items. When combined with
/// an infallible `Try` type, that means the loop canonicalizes easily, allowing
/// it to optimize well.
///
/// It would be *possible* to unify this and [`iter_next_chunk_erased`] into one
/// function that does the union of both things, but last time it was that way
/// it resulted in poor codegen from the "are there enough source items?" checks
/// not optimizing away. So if you give it a shot, make sure to watch what
/// happens in the codegen tests.
#[inline]
fn try_from_fn_erased<T, R>(
buffer: &mut [MaybeUninit<T>],
mut generator: impl FnMut(usize) -> R,
) -> ControlFlow<R::Residual>
where
R: Try<Output = T>,
{
let mut guard = Guard { array_mut: buffer, initialized: 0 };
while guard.initialized < guard.array_mut.len() {
let item = generator(guard.initialized).branch()?;
// SAFETY: The loop condition ensures we have space to push the item
unsafe { guard.push_unchecked(item) };
}
mem::forget(guard);
ControlFlow::Continue(())
}
/// Panic guard for incremental initialization of arrays.
///
/// Disarm the guard with `mem::forget` once the array has been initialized.
///
/// # Safety
///
/// All write accesses to this structure are unsafe and must maintain a correct
/// count of `initialized` elements.
///
/// To minimize indirection fields are still pub but callers should at least use
/// `push_unchecked` to signal that something unsafe is going on.
struct Guard<'a, T> {
/// The array to be initialized.
pub array_mut: &'a mut [MaybeUninit<T>],
/// The number of items that have been initialized so far.
pub initialized: usize,
}
impl<T> Guard<'_, T> {
/// Adds an item to the array and updates the initialized item counter.
///
/// # Safety
///
/// No more than N elements must be initialized.
#[inline]
pub unsafe fn push_unchecked(&mut self, item: T) {
// SAFETY: If `initialized` was correct before and the caller does not
// invoke this method more than N times then writes will be in-bounds
// and slots will not be initialized more than once.
unsafe {
self.array_mut.get_unchecked_mut(self.initialized).write(item);
self.initialized = self.initialized.unchecked_add(1);
}
}
}
impl<T> Drop for Guard<'_, T> {
fn drop(&mut self) {
debug_assert!(self.initialized <= self.array_mut.len());
// SAFETY: this slice will contain only initialized objects.
unsafe {
crate::ptr::drop_in_place(MaybeUninit::slice_assume_init_mut(
self.array_mut.get_unchecked_mut(..self.initialized),
));
}
}
}
/// Pulls `N` items from `iter` and returns them as an array. If the iterator
/// yields fewer than `N` items, `Err` is returned containing an iterator over
/// the already yielded items.
///
/// Since the iterator is passed as a mutable reference and this function calls
/// `next` at most `N` times, the iterator can still be used afterwards to
/// retrieve the remaining items.
///
/// If `iter.next()` panicks, all items already yielded by the iterator are
/// dropped.
///
/// Used for [`Iterator::next_chunk`].
#[inline]
pub(crate) fn iter_next_chunk<T, const N: usize>(
iter: &mut impl Iterator<Item = T>,
) -> Result<[T; N], IntoIter<T, N>> {
let mut array = [const { MaybeUninit::uninit() }; N];
let r = iter_next_chunk_erased(&mut array, iter);
match r {
Ok(()) => {
// SAFETY: All elements of `array` were populated.
Ok(unsafe { MaybeUninit::array_assume_init(array) })
}
Err(initialized) => {
// SAFETY: Only the first `initialized` elements were populated
Err(unsafe { IntoIter::new_unchecked(array, 0..initialized) })
}
}
}
/// Version of [`iter_next_chunk`] using a passed-in slice in order to avoid
/// needing to monomorphize for every array length.
///
/// Unfortunately this loop has two exit conditions, the buffer filling up
/// or the iterator running out of items, making it tend to optimize poorly.
#[inline]
fn iter_next_chunk_erased<T>(
buffer: &mut [MaybeUninit<T>],
iter: &mut impl Iterator<Item = T>,
) -> Result<(), usize> {
let mut guard = Guard { array_mut: buffer, initialized: 0 };
while guard.initialized < guard.array_mut.len() {
let Some(item) = iter.next() else {
// Unlike `try_from_fn_erased`, we want to keep the partial results,
// so we need to defuse the guard instead of using `?`.
let initialized = guard.initialized;
mem::forget(guard);
return Err(initialized);
};
// SAFETY: The loop condition ensures we have space to push the item
unsafe { guard.push_unchecked(item) };
}
mem::forget(guard);
Ok(())
}