default search action
Ding-Xuan Zhou
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j84]Langming Liu, Ding-Xuan Zhou:
Analysis of regularized federated learning. Neurocomputing 611: 128579 (2025) - 2024
- [j83]Puyu Wang, Yunwen Lei, Yiming Ying, Ding-Xuan Zhou:
Differentially private stochastic gradient descent with low-noise. Neurocomputing 585: 127557 (2024) - [j82]Yuqing Liu, Tong Mao, Ding-Xuan Zhou:
Approximation of functions from Korobov spaces by shallow neural networks. Inf. Sci. 670: 120573 (2024) - [j81]Jianfei Li, Han Feng, Ding-Xuan Zhou:
SignReLU neural network and its approximation ability. J. Comput. Appl. Math. 440: 115551 (2024) - [j80]Zihan Zhang, Lei Shi, Ding-Xuan Zhou:
Classification with Deep Neural Networks and Logistic Loss. J. Mach. Learn. Res. 25: 125:1-125:117 (2024) - [j79]Yunfei Yang, Ding-Xuan Zhou:
Nonparametric Regression Using Over-parameterized Shallow ReLU Neural Networks. J. Mach. Learn. Res. 25: 165:1-165:35 (2024) - [j78]Shao-Bo Lin, Di Wang, Ding-Xuan Zhou:
Sketching with Spherical Designs for Noisy Data Fitting on Spheres. SIAM J. Sci. Comput. 46(1): 313- (2024) - [j77]Zhan Yu, Jun Fan, Zhongjie Shi, Ding-Xuan Zhou:
Distributed Gradient Descent for Functional Learning. IEEE Trans. Inf. Theory 70(9): 6547-6571 (2024) - [i50]Zhongjie Shi, Jun Fan, Linhao Song, Ding-Xuan Zhou, Johan A. K. Suykens:
Nonlinear functional regression by functional deep neural network with kernel embedding. CoRR abs/2401.02890 (2024) - [i49]Yunfei Yang, Han Feng, Ding-Xuan Zhou:
On the rates of convergence for learning with convolutional neural networks. CoRR abs/2403.16459 (2024) - [i48]Junyu Zhou, Puyu Wang, Ding-Xuan Zhou:
Generalization analysis with deep ReLU networks for metric and similarity learning. CoRR abs/2405.06415 (2024) - [i47]Guangrui Yang, Jianfei Li, Ming Li, Han Feng, Ding-Xuan Zhou:
Bridging Smoothness and Approximation: Theoretical Insights into Over-Smoothing in Graph Neural Networks. CoRR abs/2407.01281 (2024) - [i46]Jianfei Li, Han Feng, Ding-Xuan Zhou:
Convergence Analysis for Deep Sparse Coding via Convolutional Neural Networks. CoRR abs/2408.05540 (2024) - [i45]Zhenyu Yang, Shuo Huang, Han Feng, Ding-Xuan Zhou:
Spherical Analysis of Learning Nonlinear Functionals. CoRR abs/2410.01047 (2024) - 2023
- [j76]Zhan Yu, Ding-Xuan Zhou:
Deep learning theory of distribution regression with CNNs. Adv. Comput. Math. 49(4): 51 (2023) - [j75]Tong Mao, Ding-Xuan Zhou:
Rates of approximation by ReLU shallow neural networks. J. Complex. 79: 101784 (2023) - [j74]Le-Yin Wei, Zhan Yu, Ding-Xuan Zhou:
Federated learning for minimizing nonsmooth convex loss functions. Math. Found. Comput. 6(4): 753-770 (2023) - [j73]Shuo Huang, Junyu Zhou, Han Feng, Ding-Xuan Zhou:
Generalization Analysis of Pairwise Learning for Ranking With Deep Neural Networks. Neural Comput. 35(6): 1135-1158 (2023) - [j72]Linhao Song, Ying Liu, Jun Fan, Ding-Xuan Zhou:
Approximation of smooth functionals using deep ReLU networks. Neural Networks 166: 424-436 (2023) - [j71]Han Feng, Shuo Huang, Ding-Xuan Zhou:
Generalization Analysis of CNNs for Classification on Spheres. IEEE Trans. Neural Networks Learn. Syst. 34(9): 6200-6213 (2023) - [c7]Yunwen Lei, Tianbao Yang, Yiming Ying, Ding-Xuan Zhou:
Generalization Analysis for Contrastive Representation Learning. ICML 2023: 19200-19227 - [i44]Yunwen Lei, Tianbao Yang, Yiming Ying, Ding-Xuan Zhou:
Generalization Analysis for Contrastive Representation Learning. CoRR abs/2302.12383 (2023) - [i43]Shaobo Lin, Di Wang, Ding-Xuan Zhou:
Sketching with Spherical Designs for Noisy Data Fitting on Spheres. CoRR abs/2303.04550 (2023) - [i42]Yunfei Yang, Ding-Xuan Zhou:
Optimal rates of approximation by shallow ReLUk neural networks and applications to nonparametric regression. CoRR abs/2304.01561 (2023) - [i41]Linhao Song, Jun Fan, Di-Rong Chen, Ding-Xuan Zhou:
Approximation of Nonlinear Functionals Using Deep ReLU Networks. CoRR abs/2304.04443 (2023) - [i40]Zhan Yu, Jun Fan, Ding-Xuan Zhou:
Distributed Gradient Descent for Functional Learning. CoRR abs/2305.07408 (2023) - [i39]Puyu Wang, Yunwen Lei, Di Wang, Yiming Ying, Ding-Xuan Zhou:
Generalization Guarantees of Gradient Descent for Multi-Layer Neural Networks. CoRR abs/2305.16891 (2023) - [i38]Junyu Zhou, Shuo Huang, Han Feng, Ding-Xuan Zhou:
Optimal Estimates for Pairwise Learning with Deep ReLU Networks. CoRR abs/2305.19640 (2023) - [i37]Yunfei Yang, Ding-Xuan Zhou:
Nonparametric regression using over-parameterized shallow ReLU neural networks. CoRR abs/2306.08321 (2023) - [i36]Zhongjie Shi, Zhan Yu, Ding-Xuan Zhou:
Learning Theory of Distribution Regression with Neural Networks. CoRR abs/2307.03487 (2023) - [i35]Tong Mao, Ding-Xuan Zhou:
Rates of Approximation by ReLU Shallow Neural Networks. CoRR abs/2307.12461 (2023) - [i34]Zhi Han, Baichen Liu, Shao-Bo Lin, Ding-Xuan Zhou:
Deep Convolutional Neural Networks with Zero-Padding: Feature Extraction and Learning. CoRR abs/2307.16203 (2023) - [i33]Zihan Zhang, Lei Shi, Ding-Xuan Zhou:
Classification with Deep Neural Networks and Logistic Loss. CoRR abs/2307.16792 (2023) - [i32]Guanhang Lei, Zhen Lei, Lei Shi, Chenyu Zeng, Ding-Xuan Zhou:
Solving PDEs on Spheres with Physics-Informed Convolutional Neural Networks. CoRR abs/2308.09605 (2023) - [i31]Di Wang, Xiaotong Liu, Shao-Bo Lin, Ding-Xuan Zhou:
Adaptive Distributed Kernel Ridge Regression: A Feasible Distributed Learning Scheme for Data Silos. CoRR abs/2309.04236 (2023) - [i30]Shao-Bo Lin, Tao Li, Shaojie Tang, Yao Wang, Ding-Xuan Zhou:
Lifting the Veil: Unlocking the Power of Depth in Q-learning. CoRR abs/2310.17915 (2023) - 2022
- [j70]Tong Mao, Ding-Xuan Zhou:
Approximation of functions from Korobov spaces by deep convolutional neural networks. Adv. Comput. Math. 48(6): 84 (2022) - [j69]Jinshan Zeng, Wotao Yin, Ding-Xuan Zhou:
Moreau Envelope Augmented Lagrangian Method for Nonconvex Optimization with Linear Constraints. J. Sci. Comput. 91(2): 61 (2022) - [j68]Han Feng, Sizai Hou, Le-Yin Wei, Ding-Xuan Zhou:
CNN models for readability of Chinese texts. Math. Found. Comput. 5(4): 351 (2022) - [j67]Zhi Han, Siquan Yu, Shao-Bo Lin, Ding-Xuan Zhou:
Depth Selection for Deep ReLU Nets in Feature Extraction and Generalization. IEEE Trans. Pattern Anal. Mach. Intell. 44(4): 1853-1868 (2022) - [j66]Shao-Bo Lin, Kaidong Wang, Yao Wang, Ding-Xuan Zhou:
Universal Consistency of Deep Convolutional Neural Networks. IEEE Trans. Inf. Theory 68(7): 4610-4617 (2022) - [j65]Charles K. Chui, Shao-Bo Lin, Bo Zhang, Ding-Xuan Zhou:
Realization of Spatial Sparseness by Deep ReLU Nets With Massive Data. IEEE Trans. Neural Networks Learn. Syst. 33(1): 229-243 (2022) - [c6]Jinshan Zeng, Yudong Xie, Xianglong Yu, John Lee, Ding-Xuan Zhou:
Enhancing Automatic Readability Assessment with Pre-training and Soft Labels for Ordinal Regression. EMNLP (Findings) 2022: 4557-4568 - [c5]Puyu Wang, Yunwen Lei, Yiming Ying, Ding-Xuan Zhou:
Stability and Generalization for Markov Chain Stochastic Gradient Methods. NeurIPS 2022 - [i29]Zhiying Fang, Yidong Ouyang, Ding-Xuan Zhou, Guang Cheng:
Attention Enables Zero Approximation Error. CoRR abs/2202.12166 (2022) - [i28]Puyu Wang, Yunwen Lei, Yiming Ying, Ding-Xuan Zhou:
Differentially Private Stochastic Gradient Descent with Low-Noise. CoRR abs/2209.04188 (2022) - [i27]Puyu Wang, Yunwen Lei, Yiming Ying, Ding-Xuan Zhou:
Stability and Generalization for Markov Chain Stochastic Gradient Methods. CoRR abs/2209.08005 (2022) - [i26]Han Feng, Jianfei Li, Ding-Xuan Zhou:
Approximation analysis of CNNs from feature extraction view. CoRR abs/2210.09041 (2022) - [i25]Jianfei Li, Han Feng, Ding-Xuan Zhou:
A new activation for neural networks and its approximation. CoRR abs/2210.10264 (2022) - 2021
- [j64]Ting Hu, Qiang Wu, Ding-Xuan Zhou:
Kernel gradient descent algorithm for information theoretic learning. J. Approx. Theory 263: 105518 (2021) - [j63]Jinshan Zeng, Shao-Bo Lin, Yuan Yao, Ding-Xuan Zhou:
On ADMM in Deep Learning: Convergence and Saturation-Avoidance. J. Mach. Learn. Res. 22: 199:1-199:67 (2021) - [j62]Tong Mao, Zhongjie Shi, Ding-Xuan Zhou:
Theory of deep convolutional neural networks III: Approximating radial functions. Neural Networks 144: 778-790 (2021) - [j61]Shaobo Lin, Yuguang Wang, Ding-Xuan Zhou:
Distributed Filtered Hyperinterpolation for Noisy Data on the Sphere. SIAM J. Numer. Anal. 59(2): 634-659 (2021) - [c4]Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, Quanquan Gu:
Towards Understanding the Spectral Bias of Deep Learning. IJCAI 2021: 2205-2211 - [i24]Zhan Yu, Daniel W. C. Ho, Ding-Xuan Zhou:
Robust Kernel-based Distribution Regression. CoRR abs/2104.10637 (2021) - [i23]Shao-Bo Lin, Kaidong Wang, Yao Wang, Ding-Xuan Zhou:
Universal Consistency of Deep Convolutional Neural Networks. CoRR abs/2106.12498 (2021) - [i22]Tong Mao, Zhongjie Shi, Ding-Xuan Zhou:
Theory of Deep Convolutional Neural Networks III: Approximating Radial Functions. CoRR abs/2107.00896 (2021) - [i21]Shao-Bo Lin, Yao Wang, Ding-Xuan Zhou:
Generalization Performance of Empirical Risk Minimization on Over-parameterized Deep ReLU Nets. CoRR abs/2111.14039 (2021) - [i20]Han Feng, Shao-Bo Lin, Ding-Xuan Zhou:
Radial Basis Function Approximation with Distributively Stored Data on Spheres. CoRR abs/2112.02499 (2021) - 2020
- [j60]Zhiying Fang, Zheng-Chu Guo, Ding-Xuan Zhou:
Optimal learning rates for distribution regression. J. Complex. 56 (2020) - [j59]Shao-Bo Lin, Di Wang, Ding-Xuan Zhou:
Distributed Kernel Ridge Regression with Communications. J. Mach. Learn. Res. 21: 93:1-93:38 (2020) - [j58]Ding-Xuan Zhou:
Theory of deep convolutional neural networks: Downsampling. Neural Networks 124: 319-327 (2020) - [j57]Zhiying Fang, Han Feng, Shuo Huang, Ding-Xuan Zhou:
Theory of deep convolutional neural networks II: Spherical analysis. Neural Networks 131: 154-162 (2020) - [i19]Shao-Bo Lin, Di Wang, Ding-Xuan Zhou:
Distributed Kernel Ridge Regression with Communications. CoRR abs/2003.12210 (2020) - [i18]Zhi Han, Siquan Yu, Shao-Bo Lin, Ding-Xuan Zhou:
Depth Selection for Deep ReLU Nets in Feature Extraction and Generalization. CoRR abs/2004.00245 (2020) - [i17]Zhiying Fang, Han Feng, Shuo Huang, Ding-Xuan Zhou:
Theory of Deep Convolutional Neural Networks II: Spherical Analysis. CoRR abs/2007.14285 (2020)
2010 – 2019
- 2019
- [j56]Charles K. Chui, Shao-Bo Lin, Ding-Xuan Zhou:
Deep Net Tree Structure for Balance of Capacity and Approximation Ability. Frontiers Appl. Math. Stat. 5: 46 (2019) - [j55]Shao-Bo Lin, Yunwen Lei, Ding-Xuan Zhou:
Boosted Kernel Ridge Regression: Optimal Learning Rates and Early Stopping. J. Mach. Learn. Res. 20: 46:1-46:36 (2019) - [j54]Yunwen Lei, Ürün Dogan, Ding-Xuan Zhou, Marius Kloft:
Data-Dependent Generalization Bounds for Multi-Class Classification. IEEE Trans. Inf. Theory 65(5): 2995-3021 (2019) - [c3]Yunwen Lei, Peng Yang, Ke Tang, Ding-Xuan Zhou:
Optimal Stochastic and Online Learning with Individual Iterates. NeurIPS 2019: 5416-5426 - [i16]Charles K. Chui, Shao-Bo Lin, Ding-Xuan Zhou:
Deep Neural Networks for Rotation-Invariance Approximation and Learning. CoRR abs/1904.01814 (2019) - [i15]Shao-Bo Lin, Yu Guang Wang, Ding-Xuan Zhou:
Distributed filtered hyperinterpolation for noisy data on the sphere. CoRR abs/1910.02434 (2019) - [i14]Jinshan Zeng, Minrun Wu, Shao-Bo Lin, Ding-Xuan Zhou:
Fast Polynomial Kernel Classification for Massive Data. CoRR abs/1911.10558 (2019) - [i13]Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, Quanquan Gu:
Towards Understanding the Spectral Bias of Deep Learning. CoRR abs/1912.01198 (2019) - [i12]Charles K. Chui, Shao-Bo Lin, Bo Zhang, Ding-Xuan Zhou:
Realization of spatial sparseness by deep ReLU nets with massive data. CoRR abs/1912.07464 (2019) - 2018
- [j53]Junhong Lin, Lorenzo Rosasco, Silvia Villa, Ding-Xuan Zhou:
Modified Fejér sequences and applications. Comput. Optim. Appl. 71(1): 95-113 (2018) - [j52]Charles K. Chui, Shao-Bo Lin, Ding-Xuan Zhou:
Construction of Neural Networks for Realization of Localized Deep Learning. Frontiers Appl. Math. Stat. 4: 14 (2018) - [j51]Andreas Christmann, Dao-Hong Xiang, Ding-Xuan Zhou:
Total stability of kernel methods. Neurocomputing 289: 101-118 (2018) - [j50]Yunwen Lei, Ding-Xuan Zhou:
Learning Theory of Randomized Sparse Kaczmarz Method. SIAM J. Imaging Sci. 11(1): 547-574 (2018) - [j49]Junhong Lin, Ding-Xuan Zhou:
Online Learning Algorithms Can Converge Comparably Fast as Batch Learning. IEEE Trans. Neural Networks Learn. Syst. 29(6): 2367-2378 (2018) - [i11]Yunwen Lei, Ding-Xuan Zhou:
Convergence of Online Mirror Descent Algorithms. CoRR abs/1802.06357 (2018) - [i10]Charles K. Chui, Shaobo Lin, Ding-Xuan Zhou:
Construction of neural networks for realization of localized deep learning. CoRR abs/1803.03503 (2018) - [i9]Ding-Xuan Zhou:
Universality of Deep Convolutional Neural Networks. CoRR abs/1805.10769 (2018) - 2017
- [j48]Zheng-Chu Guo, Yiming Ying, Ding-Xuan Zhou:
Online regularized learning with pairwise loss functions. Adv. Comput. Math. 43(1): 127-150 (2017) - [j47]Junhong Lin, Yunwen Lei, Bo Zhang, Ding-Xuan Zhou:
Online pairwise learning algorithms with convex loss functions. Inf. Sci. 406: 57-70 (2017) - [j46]Bing-Zheng Li, Bo-Lu He, Ding-Xuan Zhou:
Approximation on variable exponent spaces by linear integral operators. J. Approx. Theory 223: 29-51 (2017) - [j45]Xiangyu Chang, Shaobo Lin, Ding-Xuan Zhou:
Distributed Semi-supervised Learning with Kernel Ridge Regression. J. Mach. Learn. Res. 18: 46:1-46:22 (2017) - [j44]Shaobo Lin, Xin Guo, Ding-Xuan Zhou:
Distributed Learning with Regularized Least Squares. J. Mach. Learn. Res. 18: 92:1-92:31 (2017) - [j43]Yunwen Lei, Ding-Xuan Zhou:
Analysis of Online Composite Mirror Descent Algorithm. Neural Comput. 29(3): 825-860 (2017) - [i8]Yunwen Lei, Ürün Dogan, Ding-Xuan Zhou, Marius Kloft:
Generalization Error Bounds for Extreme Multi-class Classification. CoRR abs/1706.09814 (2017) - [i7]Andreas Christmann, Dao-Hong Xiang, Ding-Xuan Zhou:
Total stability of kernel methods. CoRR abs/1709.07625 (2017) - 2016
- [j42]Andreas Christmann, Ding-Xuan Zhou:
On the robustness of regularized pairwise learning methods based on kernels. J. Complex. 37: 1-33 (2016) - [j41]Junhong Lin, Lorenzo Rosasco, Ding-Xuan Zhou:
Iterative Regularization for Learning with Convex Loss Functions. J. Mach. Learn. Res. 17: 77:1-77:38 (2016) - [j40]Xin Guo, Jun Fan, Ding-Xuan Zhou:
Sparsity and Error Analysis of Empirical Feature-Based Regularization Schemes. J. Mach. Learn. Res. 17: 89:1-89:34 (2016) - [j39]Yiming Ying, Ding-Xuan Zhou:
Online Pairwise Learning Algorithms. Neural Comput. 28(4): 743-777 (2016) - [j38]Ting Hu, Qiang Wu, Ding-Xuan Zhou:
Convergence of Gradient Descent for Minimum Error Entropy Principle in Linear Regression. IEEE Trans. Signal Process. 64(24): 6571-6579 (2016) - [c2]Martin Boissier, Siwei Lyu, Yiming Ying, Ding-Xuan Zhou:
Fast Convergence of Online Pairwise Learning Algorithms. AISTATS 2016: 204-212 - [i6]Shaobo Lin, Xin Guo, Ding-Xuan Zhou:
Distributed Learning with Regularized Least Squares. CoRR abs/1608.03339 (2016) - 2015
- [j37]Junhong Lin, Ding-Xuan Zhou:
Learning theory of randomized Kaczmarz algorithm. J. Mach. Learn. Res. 16: 3341-3365 (2015) - [i5]Yiming Ying, Ding-Xuan Zhou:
Online Pairwise Learning Algorithms with Kernels. CoRR abs/1502.07229 (2015) - [i4]Yiming Ying, Ding-Xuan Zhou:
Unregularized Online Learning Algorithms with General Loss Functions. CoRR abs/1503.00623 (2015) - [i3]Ming Yuan, Ding-Xuan Zhou:
Minimax Optimal Rates of Estimation in High Dimensional Additive Models: Universal Phase Transition. CoRR abs/1503.02817 (2015) - 2014
- [j36]Anyue Chen, Junping Li, Yiqing Chen, Ding-Xuan Zhou:
Asymptotic Behaviour of Extinction Probability of Interacting Branching Collision Processes. J. Appl. Probab. 51(1): 219-234 (2014) - [i2]Jun Fan, Ting Hu, Qiang Wu, Ding-Xuan Zhou:
Consistency Analysis of an Empirical Minimum Error Entropy Algorithm. CoRR abs/1412.5272 (2014) - 2013
- [j35]Zheng-Chu Guo, Ding-Xuan Zhou:
Concentration estimates for learning with unbounded sampling. Adv. Comput. Math. 38(1): 207-223 (2013) - [j34]Hong-Yan Wang, Quan-Wu Xiao, Ding-Xuan Zhou:
An approximation theory approach to learning with ℓ1 regularization. J. Approx. Theory 167: 240-258 (2013) - [j33]Ting Hu, Jun Fan, Qiang Wu, Ding-Xuan Zhou:
Learning theory approach to minimum error entropy criterion. J. Mach. Learn. Res. 14(1): 377-397 (2013) - 2012
- [j32]Dao-Hong Xiang, Ting Hu, Ding-Xuan Zhou:
Approximation Analysis of Learning Algorithms for Support Vector Regression and Quantile Regression. J. Appl. Math. 2012: 902139:1-902139:17 (2012) - [i1]Ting Hu, Jun Fan, Qiang Wu, Ding-Xuan Zhou:
Learning Theory Approach to Minimum Error Entropy Criterion. CoRR abs/1208.0848 (2012) - 2011
- [j31]Dao-Hong Xiang, Ting Hu, Ding-Xuan Zhou:
Learning with varying insensitive loss. Appl. Math. Lett. 24(12): 2107-2109 (2011) - [j30]Cheng Wang, Ding-Xuan Zhou:
Optimal learning rates for least squares regularized regression with unbounded sampling. J. Complex. 27(1): 55-67 (2011) - [j29]Lei Shi, Ding-Xuan Zhou:
Normal estimation on manifolds by gradient learning. Numer. Linear Algebra Appl. 18(2): 249-259 (2011) - 2010
- [j28]Hong-Yan Wang, Dao-Hong Xiang, Ding-Xuan Zhou:
Moving least-square method in learning theory. J. Approx. Theory 162(3): 599-614 (2010) - [j27]Lei Shi, Xin Guo, Ding-Xuan Zhou:
Hermite learning with gradient data. J. Comput. Appl. Math. 233(11): 3046-3059 (2010)
2000 – 2009
- 2009
- [j26]Xiang-Jun Zhou, Ding-Xuan Zhou:
High order Parzen windows and randomized sampling. Adv. Comput. Math. 31(4): 349-368 (2009) - [j25]Jia Cai, Hongyan Wang, Ding-Xuan Zhou:
Gradient learning in a classification setting by gradient descent. J. Approx. Theory 161(2): 674-692 (2009) - [j24]Dao-Hong Xiang, Ding-Xuan Zhou:
Classification with Gaussians and Convex Loss. J. Mach. Learn. Res. 10: 1447-1468 (2009) - [j23]Ting Hu, Ding-Xuan Zhou:
Online Learning with Samples Drawn from Non-identical Distributions. J. Mach. Learn. Res. 10: 2873-2898 (2009) - 2008
- [j22]Gui-Bo Ye, Ding-Xuan Zhou:
Learning and approximation by Gaussians on Riemannian manifolds. Adv. Comput. Math. 29(3): 291-310 (2008) - [j21]Qiang Wu, Ding-Xuan Zhou:
Learning with sample dependent hypothesis spaces. Comput. Math. Appl. 56(11): 2896-2907 (2008) - [j20]Zhi-Wei Pan, Dao-Hong Xiang, Quan-Wu Xiao, Ding-Xuan Zhou:
Parzen windows for multi-class classification. J. Complex. 24(5-6): 606-618 (2008) - 2007
- [j19]Qiang Wu, Yiming Ying, Ding-Xuan Zhou:
Multi-kernel regularized classifiers. J. Complex. 23(1): 108-134 (2007) - [j18]Yiming Ying, Ding-Xuan Zhou:
Learnability of Gaussians with Flexible Variances. J. Mach. Learn. Res. 8: 249-276 (2007) - 2006
- [j17]Ding-Xuan Zhou, Kurt Jetter:
Approximation with polynomial kernels and SVM classifiers. Adv. Comput. Math. 25(1-3): 323-344 (2006) - [j16]Qiang Wu, Yiming Ying, Ding-Xuan Zhou:
Learning Rates of Least-Square Regularized Regression. Found. Comput. Math. 6(2): 171-192 (2006) - [j15]Sayan Mukherjee, Ding-Xuan Zhou:
Learning Coordinate Covariances via Gradients. J. Mach. Learn. Res. 7: 519-549 (2006) - [j14]Yiming Ying, Ding-Xuan Zhou:
Online Regularized Classification Algorithms. IEEE Trans. Inf. Theory 52(11): 4775-4788 (2006) - 2005
- [j13]Qiang Wu, Ding-Xuan Zhou:
SVM Soft Margin Classifiers: Linear Programming versus Quadratic Programming. Neural Comput. 17(5): 1160-1187 (2005) - 2004
- [j12]Felipe Cucker, Steve Smale, Ding-Xuan Zhou:
Modeling Language Evolution. Found. Comput. Math. 4(3): 315-343 (2004) - [j11]Di-Rong Chen, Qiang Wu, Yiming Ying, Ding-Xuan Zhou:
Support Vector Machine Soft Margin Classifiers: Error Analysis. J. Mach. Learn. Res. 5: 1143-1175 (2004) - 2003
- [j10]Gerlind Plonka, Ding-Xuan Zhou:
Properties of locally linearly independent refinable function vectors. J. Approx. Theory 122(1): 24-41 (2003) - [j9]Ding-Xuan Zhou:
Capacity of reproducing kernel spaces in learning theory. IEEE Trans. Inf. Theory 49(7): 1743-1752 (2003) - 2002
- [j8]Hoi Ling Cheung, Canqin Tang, Ding-Xuan Zhou:
Supports of Locally Linearly Independent M-Refinable Functions, Attractors of Iterated Function Systems and Tilings. Adv. Comput. Math. 17(3): 257-268 (2002) - [j7]Ding-Xuan Zhou:
The covering number in learning theory. J. Complex. 18(3): 739-767 (2002) - [j6]Ding-Xuan Zhou:
Interpolatory orthogonal multiwavelets and refinable functions. IEEE Trans. Signal Process. 50(3): 520-527 (2002) - 2001
- [j5]Geoff Boyd, Charles A. Micchelli, Gilbert Strang, Ding-Xuan Zhou:
Binomial Matrices. Adv. Comput. Math. 14(4): 379-391 (2001) - [j4]Ding-Xuan Zhou:
Self-Similar Lattice Tilings and Subdivision Schemes. SIAM J. Math. Anal. 33(1): 1-15 (2001) - 2000
- [j3]Rong-Qing Jia, Ding-Xuan Zhou:
Convergence of Subdivision Schemes Associated with Nonnegative Masks. SIAM J. Matrix Anal. Appl. 21(2): 418-430 (2000)
1990 – 1999
- 1999
- [j2]Rong-Qing Jia, Sherman D. Riemenschneider, Ding-Xuan Zhou:
Smoothness of Multiple Refinable Functions and Multiple Wavelets. SIAM J. Matrix Anal. Appl. 21(1): 1-28 (1999) - [c1]Daniel W. C. Ho, Jinhua Xu, Ding-Xuan Zhou:
System identification using wavelet neural networks. ECC 1999: 2245-2250 - 1998
- [j1]Rong-Qing Jia, Sherman D. Riemenschneider, Ding-Xuan Zhou:
Vector subdivision schemes and multiple wavelets. Math. Comput. 67(224): 1533-1563 (1998)
Coauthor Index
aka: Shao-Bo Lin
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-06 21:33 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint