default search action
François Laviolette
Person information
- affiliation: Université Laval
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2023
- [j33]Josée Desharnais, François Laviolette, Héli Marcoux, Norbert Polat:
A cop-winning strategy on strongly cop-win graphs. Discret. Math. 346(8): 113419 (2023) - [c55]Louis Fortier-Dubois, Benjamin Leblanc, Gaël Letarte, François Laviolette, Pascal Germain:
PAC-Bayesian Learning of Aggregated Binary Activated Neural Networks with Probabilities over Representations. Canadian AI 2023 - [c54]Mazid Abiodoun Osseni, Prudencio Tossou, François Laviolette, Jacques Corbeil:
MOT: A Multi-Omics Transformer for Multiclass Classification Tumour Types Predictions. BIOINFORMATICS 2023: 252-261 - 2022
- [j32]Florian Tambon, Gabriel Laberge, Le An, Amin Nikanjam, Paulina Stevia Nouwou Mindom, Yann Pequignot, Foutse Khomh, Giulio Antoniol, Ettore Merlo, François Laviolette:
How to certify machine learning based safety-critical systems? A systematic literature review. Autom. Softw. Eng. 29(2): 38 (2022) - [j31]Dominique Benielli, Baptiste Bauvin, Sokol Koço, Riikka Huusari, Cécile Capponi, Hachem Kadri, François Laviolette:
Toolbox for Multimodal Learn (scikit-multimodallearn). J. Mach. Learn. Res. 23: 51:1-51:7 (2022) - 2021
- [j30]Rogia Kpanou, Mazid Abiodoun Osseni, Prudencio Tossou, François Laviolette, Jacques Corbeil:
On the robustness of generalization of drug-drug interaction models. BMC Bioinform. 22(1): 477 (2021) - [j29]Caroline Sirois, Richard Khoury, Audrey Durand, Pierre-Luc Déziel, Olga Bukhtiyarova, Yohann Chiu, Denis Talbot, Alexandre Bureau, Philippe Després, Christian Gagné, François Laviolette, Anne-Marie Savard, Jacques Corbeil, Thierry Badard, Sonia Jean, Marc Simard:
Exploring polypharmacy with artificial intelligence: data analysis protocol. BMC Medical Informatics Decis. Mak. 21(1): 219 (2021) - [j28]Frédéric Simard, Josée Desharnais, François Laviolette:
General Cops and Robbers games with randomness. Theor. Comput. Sci. 887: 30-50 (2021) - [c53]Mazid Abiodoun Osseni, Prudencio Tossou, Jacques Corbeil, François Laviolette:
Applying PySCMGroup to Breast Cancer Biomarkers Discovery. BIOINFORMATICS 2021: 72-82 - [c52]Marouane Yassine, David Beauchemin, François Laviolette, Luc Lamontagne:
Leveraging Subword Embeddings for Multinational Address Parsing. CIST 2021: 353-360 - [i33]Florian Tambon, Gabriel Laberge, Le An, Amin Nikanjam, Paulina Stevia Nouwou Mindom, Yann Pequignot, Foutse Khomh, Giulio Antoniol, Ettore Merlo, François Laviolette:
How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review. CoRR abs/2107.12045 (2021) - [i32]Louis Fortier-Dubois, Gaël Letarte, Benjamin Leblanc, François Laviolette, Pascal Germain:
Learning Aggregations of Binary Activated Neural Networks with Probabilities over Representations. CoRR abs/2110.15137 (2021) - [i31]Marouane Yassine, David Beauchemin, François Laviolette, Luc Lamontagne:
Multinational Address Parsing: A Zero-Shot Evaluation. CoRR abs/2112.04008 (2021) - 2020
- [j27]Ulysse Côté Allard, Gabriel Gagnon-Turcotte, Angkoon Phinyomark, Kyrre Glette, Erik J. Scheme, François Laviolette, Benoit Gosselin:
Unsupervised Domain Adversarial Self-Calibration for Electromyography-Based Gesture Recognition. IEEE Access 8: 177941-177955 (2020) - [j26]Pascal Germain, Amaury Habrard, François Laviolette, Emilie Morvant:
PAC-Bayes and domain adaptation. Neurocomputing 379: 379-397 (2020) - [j25]Baptiste Bauvin, Cécile Capponi, Jean-Francis Roy, François Laviolette:
Fast greedy C-bound minimization with guarantees. Mach. Learn. 109(9-10): 1945-1986 (2020) - [c51]Faizy Ahsan, Alexandre Drouin, François Laviolette, Doina Precup, Mathieu Blanchette:
Phylogenetic Manifold Regularization: A semi-supervised approach to predict transcription factor binding sites. BIBM 2020: 62-66 - [c50]Patrick Dallaire, Luca Ambrogioni, Ludovic Trottier, Umut Güçlü, Max Hinne, Philippe Giguère, Marcel van Gerven, François Laviolette:
The Indian Chefs Process. UAI 2020: 600-608 - [i30]Patrick Dallaire, Luca Ambrogioni, Ludovic Trottier, Umut Güçlü, Max Hinne, Philippe Giguère, Brahim Chaib-draa, Marcel van Gerven, François Laviolette:
The Indian Chefs Process. CoRR abs/2001.10657 (2020) - [i29]Frédéric Simard, Josée Desharnais, François Laviolette:
General Cops and Robbers Games with randomness. CoRR abs/2004.11503 (2020) - [i28]Marouane Yassine, David Beauchemin, François Laviolette, Luc Lamontagne:
Leveraging Subword Embeddings for Multinational Address Parsing. CoRR abs/2006.16152 (2020) - [i27]Yann Pequignot, Mathieu Alain, Patrick Dallaire, Alireza Yeganehparast, Pascal Germain, Josée Desharnais, François Laviolette:
Implicit Variational Inference: the Parameter and the Predictor Space. CoRR abs/2010.12995 (2020)
2010 – 2019
- 2019
- [j24]Ulysse Côté Allard, Gabriel Gagnon-Turcotte, François Laviolette, Benoit Gosselin:
A Low-Cost, Wireless, 3-D-Printed Custom Armband for sEMG Hand Gesture Recognition. Sensors 19(12): 2811 (2019) - [c49]Gaël Letarte, Pascal Germain, Benjamin Guedj, François Laviolette:
Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks. NeurIPS 2019: 6869-6879 - [c48]Gildas Kouko, Josée Desharnais, François Laviolette:
Finite Approximation of LMPs for Exact Verification of Reachability Properties. QEST 2019: 70-87 - [d1]Ulysse Côté Allard, Gabriel Gagnon-Turcotte, Angkoon Phinyomark, Kyrre Glette, Erik J. Scheme, François Laviolette, Benoit Gosselin:
Long-term 3DC Dataset. IEEE DataPort, 2019 - [i26]Gaël Letarte, Pascal Germain, Benjamin Guedj, François Laviolette:
Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks. CoRR abs/1905.10259 (2019) - [i25]Prudencio Tossou, Basile Dura, François Laviolette, Mario Marchand, Alexandre Lacoste:
Adaptive Deep Kernel Learning. CoRR abs/1905.12131 (2019) - [i24]Ulysse Côté Allard, Evan Campbell, Angkoon Phinyomark, François Laviolette, Benoit Gosselin, Erik J. Scheme:
Interpreting Deep Learning Features for Myoelectric Control: A Comparison with Handcrafted Features. CoRR abs/1912.00283 (2019) - [i23]Ulysse Côté Allard, Gabriel Gagnon-Turcotte, Angkoon Phinyomark, Kyrre Glette, Erik J. Scheme, François Laviolette, Benoit Gosselin:
Virtual Reality to Study the Gap Between Offline and Real-Time EMG-based Gesture Recognition. CoRR abs/1912.09380 (2019) - [i22]Ulysse Côté Allard, Gabriel Gagnon-Turcotte, Angkoon Phinyomark, Kyrre Glette, Erik J. Scheme, François Laviolette, Benoit Gosselin:
Unsupervised Domain Adversarial Self-Calibration for Electromyographic-based Gesture Recognition. CoRR abs/1912.11037 (2019) - 2018
- [c47]Gaël Letarte, Frédérik Paradis, Philippe Giguère, François Laviolette:
Importance of Self-Attention for Sentiment Analysis. BlackboxNLP@EMNLP 2018: 267-275 - [i21]Ulysse Côté Allard, Cheikh Latyr Fall, Alexandre Drouin, Alexandre Campeau-Lecours, Clément Gosselin, Kyrre Glette, François Laviolette, Benoit Gosselin:
Deep Learning for Electromyographic Hand Gesture Signal Classification by Leveraging Transfer Learning. CoRR abs/1801.07756 (2018) - 2017
- [j23]François Laviolette, Emilie Morvant, Liva Ralaivola, Jean-Francis Roy:
Risk upper bounds for general ensemble methods with an application to multiclass classification. Neurocomputing 219: 15-25 (2017) - [c46]Ulysse Côté Allard, Gabriel Dube, Richard Khoury, Luc Lamontagne, Benoit Gosselin, François Laviolette:
Time Adaptive Dual Particle Swarm Optimization. CEC 2017: 2534-2543 - [c45]Alexandre Drouin, Toby Hocking, François Laviolette:
Maximum Margin Interval Trees. NIPS 2017: 4947-4956 - [c44]Ulysse Côté Allard, David St-Onge, Philippe Giguère, François Laviolette, Benoit Gosselin:
Towards the use of consumer-grade electromyographic armbands for interactive, artistic robotics performances. RO-MAN 2017: 1030-1036 - [c43]Ulysse Côté Allard, Cheikh Latyr Fall, Alexandre Campeau-Lecours, Clément Gosselin, François Laviolette, Benoit Gosselin:
Transfer learning for sEMG hand gestures recognition using convolutional neural networks. SMC 2017: 1663-1668 - [p1]Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Victor S. Lempitsky:
Domain-Adversarial Training of Neural Networks. Domain Adaptation in Computer Vision Applications 2017: 189-209 - [i20]Alexandre Drouin, Toby Dylan Hocking, François Laviolette:
Maximum Margin Interval Trees. CoRR abs/1710.04234 (2017) - 2016
- [j22]Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Victor S. Lempitsky:
Domain-Adversarial Training of Neural Networks. J. Mach. Learn. Res. 17: 59:1-59:35 (2016) - [c42]Luc Bégin, Pascal Germain, François Laviolette, Jean-Francis Roy:
PAC-Bayesian Bounds based on the Rényi Divergence. AISTATS 2016: 435-444 - [c41]Jean-Francis Roy, Mario Marchand, François Laviolette:
A Column Generation Bound Minimization Approach with PAC-Bayesian Generalization Guarantees. AISTATS 2016: 1241-1249 - [c40]Pascal Germain, Amaury Habrard, François Laviolette, Emilie Morvant:
A New PAC-Bayesian Perspective on Domain Adaptation. ICML 2016: 859-868 - [c39]Ulysse Côté Allard, François Nougarou, Cheikh Latyr Fall, Philippe Giguère, Clément Gosselin, François Laviolette, Benoit Gosselin:
A convolutional neural network for robotic arm guidance using sEMG based frequency-features. IROS 2016: 2464-2470 - [i19]Alexandre Drouin, Frédéric Raymond, Gaël Letarte St-Pierre, Mario Marchand, Jacques Corbeil, François Laviolette:
Large scale modeling of antimicrobial resistance with interpretable classifiers. CoRR abs/1612.01030 (2016) - 2015
- [j21]Pascal Germain, Alexandre Lacasse, François Laviolette, Mario Marchand, Jean-Francis Roy:
Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm. J. Mach. Learn. Res. 16: 787-860 (2015) - [j20]Sébastien Giguère, François Laviolette, Mario Marchand, Denise M. Tremblay, Sylvain Moineau, Xinxia Liang, Éric Biron, Jacques Corbeil:
Machine Learning Assisted Design of Highly Active Peptides for Drug Discovery. PLoS Comput. Biol. 11(4) (2015) - [c38]Frédéric Simard, Michael Morin, Claude-Guy Quimper, François Laviolette, Josée Desharnais:
Bounding an Optimal Search Path with a Game of Cop and Robber on Graphs. CP 2015: 403-418 - [c37]Ulysse Côté Allard, Richard Khoury, Luc Lamontagne, Jonathan Bergeron, François Laviolette, Alexandre Bergeron Guyard:
Optimizing Question-Answering Systems Using Genetic Algorithms. FLAIRS 2015: 32-37 - [c36]Sébastien Giguère, Amélie Rolland, François Laviolette, Mario Marchand:
Algorithms for the Hard Pre-Image Problem of String Kernels and the General Problem of String Prediction. ICML 2015: 2021-2029 - [c35]Michael Morin, Frédérik Paradis, Amélie Rolland, Jean Wery, Jonathan Gaudreault, François Laviolette:
Machine learning-based metamodels for sawing simulation. WSC 2015: 2160-2171 - [i18]François Laviolette, Emilie Morvant, Liva Ralaivola, Jean-Francis Roy:
On Generalizing the C-Bound to the Multiclass and Multi-label Settings. CoRR abs/1501.03001 (2015) - [i17]Pascal Germain, Amaury Habrard, François Laviolette, Emilie Morvant:
An Improvement to the Domain Adaptation Bound in a PAC-Bayesian context. CoRR abs/1501.03002 (2015) - [i16]Pascal Germain, Amaury Habrard, François Laviolette, Emilie Morvant:
PAC-Bayesian Theorems for Domain Adaptation with Specialization to Linear Classifiers. CoRR abs/1503.06944 (2015) - [i15]Pascal Germain, Alexandre Lacasse, François Laviolette, Mario Marchand, Jean-Francis Roy:
Risk Bounds for the Majority Vote: From a PAC-Bayesian Analysis to a Learning Algorithm. CoRR abs/1503.08329 (2015) - [i14]Alexandre Drouin, Sébastien Giguère, Maxime Déraspe, François Laviolette, Mario Marchand, Jacques Corbeil:
Greedy Biomarker Discovery in the Genome with Applications to Antimicrobial Resistance. CoRR abs/1505.06249 (2015) - [i13]Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Victor S. Lempitsky:
Domain-Adversarial Training of Neural Networks. CoRR abs/1505.07818 (2015) - [i12]Louis Fortier-Dubois, François Laviolette, Mario Marchand, Louis-Émile Robitaille, Jean-Francis Roy:
Efficient Learning of Ensembles with QuadBoost. CoRR abs/1506.02535 (2015) - [i11]Pascal Germain, Amaury Habrard, François Laviolette, Emilie Morvant:
A New PAC-Bayesian Perspective on Domain Adaptation. CoRR abs/1506.04573 (2015) - 2014
- [c34]Luc Bégin, Pascal Germain, François Laviolette, Jean-Francis Roy:
PAC-Bayesian Theory for Transductive Learning. AISTATS 2014: 105-113 - [c33]Alexandre Lacoste, Mario Marchand, François Laviolette, Hugo Larochelle:
Agnostic Bayesian Learning of Ensembles. ICML 2014: 611-619 - [c32]Hamidreza Chinaei, Luc Lamontagne, François Laviolette, Richard Khoury:
A Topic Model Scoring Approach for Personalized QA Systems. TSD 2014: 84-92 - [c31]Alexandre Lacoste, Hugo Larochelle, Mario Marchand, François Laviolette:
Sequential Model-Based Ensemble Optimization. UAI 2014: 440-448 - [i10]Alexandre Lacoste, Hugo Larochelle, François Laviolette, Mario Marchand:
Sequential Model-Based Ensemble Optimization. CoRR abs/1402.0796 (2014) - [i9]Alexandre Drouin, Sébastien Giguère, Vladana Sagatovich, Maxime Déraspe, François Laviolette, Mario Marchand, Jacques Corbeil:
Learning interpretable models of phenotypes from whole genome sequences with the Set Covering Machine. CoRR abs/1412.1074 (2014) - [i8]Sébastien Giguère, Amélie Rolland, François Laviolette, Mario Marchand:
On the String Kernel Pre-Image Problem with Applications in Drug Discovery. CoRR abs/1412.1463 (2014) - [i7]Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand:
Domain-Adversarial Neural Networks. CoRR abs/1412.4446 (2014) - 2013
- [j19]Élénie Godzaridis, Sébastien Boisvert, Fangfang Xia, Mikhail Kandel, Steve Behling, Bill Long, Carlos P. Sosa, François Laviolette, Jacques Corbeil:
Human Analysts at Superhuman Scales: What Has Friendly Software To Do? Big Data 1(4): 227-236 (2013) - [j18]Sébastien Giguère, Mario Marchand, François Laviolette, Alexandre Drouin, Jacques Corbeil:
Learning a peptide-protein binding affinity predictor with kernel ridge regression. BMC Bioinform. 14: 82 (2013) - [j17]Josée Desharnais, François Laviolette, Sami Zhioua:
Testing probabilistic equivalence through Reinforcement Learning. Inf. Comput. 227: 21-57 (2013) - [j16]Guy Lever, François Laviolette, John Shawe-Taylor:
Tighter PAC-Bayes bounds through distribution-dependent priors. Theor. Comput. Sci. 473: 4-28 (2013) - [c30]Sébastien Giguère, François Laviolette, Mario Marchand, Khadidja Sylla:
Risk Bounds and Learning Algorithms for the Regression Approach to Structured Output Prediction. ICML (1) 2013: 107-114 - [c29]Pascal Germain, Amaury Habrard, François Laviolette, Emilie Morvant:
A PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear Classifiers. ICML (3) 2013: 738-746 - [c28]Maxime Latulippe, Alexandre Drouin, Philippe Giguère, François Laviolette:
Accelerated Robust Point Cloud Registration in Natural Environments through Positive and Unlabeled Learning. IJCAI 2013: 2480-2487 - 2012
- [j15]Yevgeny Seldin, François Laviolette, Nicolò Cesa-Bianchi, John Shawe-Taylor, Peter Auer:
PAC-Bayesian Inequalities for Martingales. IEEE Trans. Inf. Theory 58(12): 7086-7093 (2012) - [c27]Pascal Germain, Sébastien Giguère, Jean-Francis Roy, Brice Zirakiza, François Laviolette, Claude-Guy Quimper:
A Pseudo-Boolean Set Covering Machine. CP 2012: 916-924 - [c26]Michael Morin, Anika-Pascale Papillon, Irène Abi-Zeid, François Laviolette, Claude-Guy Quimper:
Constraint Programming for Path Planning with Uncertainty - Solving the Optimal Search Path Problem. CP 2012: 988-1003 - [c25]Yevgeny Seldin, François Laviolette, Nicolò Cesa-Bianchi, John Shawe-Taylor, Peter Auer:
PAC-Bayesian Inequalities for Martingales. UAI 2012: 12 - [c24]Yevgeny Seldin, Nicolò Cesa-Bianchi, Peter Auer, François Laviolette, John Shawe-Taylor:
PAC-Bayes-Bernstein Inequality for Martingales and its Application to Multiarmed Bandits. ICML On-line Trading of Exploration and Exploitation 2012: 98-111 - [c23]Alexandre Lacoste, François Laviolette, Mario Marchand:
Bayesian Comparison of Machine Learning Algorithms on Single and Multiple Datasets. AISTATS 2012: 665-675 - [i6]Sébastien Giguère, Mario Marchand, François Laviolette, Alexandre Drouin, Jacques Corbeil:
Learning a peptide-protein binding affinity predictor with kernel ridge regression. CoRR abs/1207.7253 (2012) - [i5]Pascal Germain, Amaury Habrard, François Laviolette, Emilie Morvant:
PAC-Bayesian Learning and Domain Adaptation. CoRR abs/1212.2340 (2012) - 2011
- [j14]Josée Desharnais, François Laviolette, Amélie Turgeon:
A logical duality for underspecified probabilistic systems. Inf. Comput. 209(5): 850-871 (2011) - [c22]Pascal Germain, Alexandre Lacoste, François Laviolette, Mario Marchand, Sara Shanian:
A PAC-Bayes Sample-compression Approach to Kernel Methods. ICML 2011: 297-304 - [c21]Jean-Francis Roy, François Laviolette, Mario Marchand:
From PAC-Bayes Bounds to Quadratic Programs for Majority Votes. ICML 2011: 649-656 - [c20]Yevgeny Seldin, Peter Auer, François Laviolette, John Shawe-Taylor, Ronald Ortner:
PAC-Bayesian Analysis of Contextual Bandits. NIPS 2011: 1683-1691 - [i4]Yevgeny Seldin, François Laviolette, John Shawe-Taylor, Jan Peters, Peter Auer:
PAC-Bayesian Analysis of Martingales and Multiarmed Bandits. CoRR abs/1105.2416 (2011) - [i3]Yevgeny Seldin, Nicolò Cesa-Bianchi, François Laviolette, Peter Auer, John Shawe-Taylor, Jan Peters:
PAC-Bayesian Analysis of the Exploration-Exploitation Trade-off. CoRR abs/1105.4585 (2011) - [i2]Yevgeny Seldin, Nicolò Cesa-Bianchi, Peter Auer, François Laviolette, John Shawe-Taylor:
PAC-Bayes-Bernstein Inequality for Martingales and its Application to Multiarmed Bandits. CoRR abs/1110.6755 (2011) - [i1]Yevgeny Seldin, François Laviolette, Nicolò Cesa-Bianchi, John Shawe-Taylor, Peter Auer:
PAC-Bayesian Inequalities for Martingales. CoRR abs/1110.6886 (2011) - 2010
- [j13]Sébastien Boisvert, François Laviolette, Jacques Corbeil:
Ray: Simultaneous Assembly of Reads from a Mix of High-Throughput Sequencing Technologies. J. Comput. Biol. 17(11): 1519-1533 (2010) - [j12]François Laviolette, Mario Marchand, Mohak Shah, Sara Shanian:
Learning the set covering machine by bound minimization and margin-sparsity trade-off. Mach. Learn. 78(1-2): 175-201 (2010) - [c19]Guy Lever, François Laviolette, John Shawe-Taylor:
Distribution-Dependent PAC-Bayes Priors. ALT 2010: 119-133 - [c18]Alexandre Lacasse, François Laviolette, Mario Marchand, Francis Turgeon-Boutin:
Learning with Randomized Majority Votes. ECML/PKDD (2) 2010: 162-177
2000 – 2009
- 2009
- [c17]Josée Desharnais, François Laviolette, Amélie Turgeon:
A Demonic Approach to Information in Probabilistic Systems. CONCUR 2009: 289-304 - [c16]Pascal Germain, Alexandre Lacasse, François Laviolette, Mario Marchand:
PAC-Bayesian learning of linear classifiers. ICML 2009: 353-360 - [c15]Pascal Germain, Alexandre Lacasse, François Laviolette, Mario Marchand, Sara Shanian:
From PAC-Bayes Bounds to KL Regularization. NIPS 2009: 603-610 - [c14]Sami Zhioua, Doina Precup, François Laviolette, Josée Desharnais:
Learning the Difference between Partially Observable Dynamical Systems. ECML/PKDD (2) 2009: 664-677 - 2008
- [c13]François Laviolette, Mario Marchand, Sara Shanian:
Selective Sampling for Classification. Canadian AI 2008: 191-202 - [c12]François Laviolette, Ludovic Tobin:
A Stochastic Point-Based Algorithm for POMDPs. Canadian AI 2008: 332-343 - [c11]Massih-Reza Amini, François Laviolette, Nicolas Usunier:
A Transductive Bound for the Voted Classifier with an Application to Semi-supervised Learning. NIPS 2008: 65-72 - [c10]Josée Desharnais, François Laviolette, Mathieu Tracol:
Approximate Analysis of Probabilistic Processes: Logic, Simulation and Games. QEST 2008: 264-273 - 2007
- [j11]François Laviolette, Mario Marchand:
PAC-Bayes Risk Bounds for Stochastic Averages and Majority Votes of Sample-Compressed Classifiers. J. Mach. Learn. Res. 8: 1461-1487 (2007) - [j10]Zakria Hussain, François Laviolette, Mario Marchand, John Shawe-Taylor, S. Charles Brubaker, Matthew D. Mullin:
Revised Loss Bounds for the Set Covering Machine and Sample-Compression Loss Bounds for Imbalanced Data. J. Mach. Learn. Res. 8: 2533-2549 (2007) - 2006
- [j9]Vincent Danos, Josée Desharnais, François Laviolette, Prakash Panangaden:
Bisimulation and cocongruence for probabilistic systems. Inf. Comput. 204(4): 503-523 (2006) - [c9]Josée Desharnais, François Laviolette, Krishna Priya Darsini Moturu, Sami Zhioua:
Trace Equivalence Characterization Through Reinforcement Learning. Canadian AI 2006: 371-382 - [c8]Massih-Reza Amini, Nicolas Usunier, François Laviolette, Alexandre Lacasse, Patrick Gallinari:
A Selective Sampling Strategy for Label Ranking. ECML 2006: 18-29 - [c7]Josée Desharnais, François Laviolette, Sami Zhioua:
Testing Probabilistic Equivalence Through Reinforcement Learning. FSTTCS 2006: 236-247 - [c6]Pascal Germain, Alexandre Lacasse, François Laviolette, Mario Marchand:
A PAC-Bayes Risk Bound for General Loss Functions. NIPS 2006: 449-456 - [c5]Alexandre Lacasse, François Laviolette, Mario Marchand, Pascal Germain, Nicolas Usunier:
PAC-Bayes Bounds for the Risk of the Majority Vote and the Variance of the Gibbs Classifier. NIPS 2006: 769-776 - 2005
- [j8]François Laviolette:
Decompositions of infinite graphs: I - bond-faithful decompositions. J. Comb. Theory B 94(2): 259-277 (2005) - [j7]François Laviolette:
Decompositions of infinite graphs: Part II circuit decompositions. J. Comb. Theory B 94(2): 278-333 (2005) - [c4]François Laviolette, Mario Marchand, Mohak Shah:
Margin-Sparsity Trade-Off for the Set Covering Machine. ECML 2005: 206-217 - [c3]François Laviolette, Mario Marchand:
PAC-Bayes risk bounds for sample-compressed Gibbs classifiers. ICML 2005: 481-488 - [c2]François Laviolette, Mario Marchand, Mohak Shah:
A PAC-Bayes approach to the Set Covering Machine. NIPS 2005: 731-738 - 2003
- [c1]François Laviolette:
The Countable Character of Uncountable Graphs. DTMPP 2003: 205-224 - 2002
- [j6]Gena Hahn, François Laviolette, Norbert Sauer, Robert E. Woodrow:
On cop-win graphs. Discret. Math. 258(1-3): 27-41 (2002) - 2000
- [j5]Marc Chastand, François Laviolette, Norbert Polat:
On constructible graphs, infinite bridged graphs and weakly cop-win graphs. Discret. Math. 224(1-3): 61-78 (2000)
1990 – 1999
- 1999
- [j4]François Laviolette, Norbert Polat:
Spanning trees of countable graphs omitting sets of dominated ends. Discret. Math. 194(1-3): 151-172 (1999) - 1998
- [j3]Benoît Larose, François Laviolette, Claude Tardif:
On Normal Cayley Graphs and Hom-idempotent Graphs. Eur. J. Comb. 19(7): 867-881 (1998) - 1997
- [j2]Gena Hahn, François Laviolette, Jozef Sirán:
Edge-Ends in Countable Graphs. J. Comb. Theory B 70(2): 225-244 (1997) - 1994
- [j1]François Laviolette:
Decomposition of infinite eulerian graphs with a small number of vertices of infinite degree. Discret. Math. 130(1-3): 83-87 (1994)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:20 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint