default search action
Arthur Gretton
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j27]Zhu Li, Dimitri Meunier, Mattes Mollenhauer, Arthur Gretton:
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm. J. Mach. Learn. Res. 25: 181:1-181:51 (2024) - [c111]Katherine Tsai, Stephen R. Pfohl, Olawale Salaudeen, Nicole Chiou, Matt J. Kusner, Alexander D'Amour, Sanmi Koyejo, Arthur Gretton:
Proxy Methods for Domain Adaptation. AISTATS 2024: 3961-3969 - [c110]Li Kevin Wenliang, Grégoire Delétang, Matthew Aitchison, Marcus Hutter, Anian Ruoss, Arthur Gretton, Mark Rowland:
Distributional Bellman Operators over Mean Embeddings. ICML 2024 - [c109]Harley Wiltzer, Jesse Farebrother, Arthur Gretton, Yunhao Tang, André Barreto, Will Dabney, Marc G. Bellemare, Mark Rowland:
A Distributional Analogue to the Successor Representation. ICML 2024 - [i89]Harley Wiltzer, Jesse Farebrother, Arthur Gretton, Yunhao Tang, André Barreto, Will Dabney, Marc G. Bellemare, Mark Rowland:
A Distributional Analogue to the Successor Representation. CoRR abs/2402.08530 (2024) - [i88]Roman Pogodin, Antonin Schrab, Yazhe Li, Danica J. Sutherland, Arthur Gretton:
Practical Kernel Tests of Conditional Independence. CoRR abs/2402.13196 (2024) - [i87]Katherine Tsai, Stephen R. Pfohl, Olawale Salaudeen, Nicole Chiou, Matt J. Kusner, Alexander D'Amour, Sanmi Koyejo, Arthur Gretton:
Proxy Methods for Domain Adaptation. CoRR abs/2403.07442 (2024) - [i86]Alexandre Galashov, Valentin De Bortoli, Arthur Gretton:
Deep MMD Gradient Flow without adversarial training. CoRR abs/2405.06780 (2024) - [i85]Dimitri Meunier, Zikai Shen, Mattes Mollenhauer, Arthur Gretton, Zhu Li:
Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms. CoRR abs/2405.14778 (2024) - [i84]Zonghao Chen, Masha Naslidnyk, Arthur Gretton, François-Xavier Briol:
Conditional Bayesian Quadrature. CoRR abs/2406.16530 (2024) - [i83]Jessica Schrouff, Alexis Bellot, Amal Rannen-Triki, Alan Malek, Isabela Albuquerque, Arthur Gretton, Alexander D'Amour, Silvia Chiappa:
Mind the Graph When Balancing Data for Fairness or Robustness. CoRR abs/2406.17433 (2024) - [i82]Tongzheng Ren, Haotian Sun, Antoine Moulin, Arthur Gretton, Bo Dai:
Spectral Representation for Causal Estimation with Hidden Confounders. CoRR abs/2407.10448 (2024) - [i81]Harley Wiltzer, Jesse Farebrother, Arthur Gretton, Mark Rowland:
Foundations of Multivariate Distributional Reinforcement Learning. CoRR abs/2409.00328 (2024) - [i80]Zonghao Chen, Aratrika Mustafi, Pierre Glaser, Anna Korba, Arthur Gretton, Bharath K. Sriperumbudur:
(De)-regularized Maximum Mean Discrepancy Gradient Flow. CoRR abs/2409.14980 (2024) - 2023
- [j26]Antonin Schrab, Ilmun Kim, Mélisande Albert, Béatrice Laurent, Benjamin Guedj, Arthur Gretton:
MMD Aggregated Two-Sample Test. J. Mach. Learn. Res. 24: 194:1-194:81 (2023) - [c108]Ibrahim Alabdulmohsin, Nicole Chiou, Alexander D'Amour, Arthur Gretton, Sanmi Koyejo, Matt J. Kusner, Stephen R. Pfohl, Olawale Salaudeen, Jessica Schrouff, Katherine Tsai:
Adapting to Latent Subgroup Shifts via Concepts and Proxies. AISTATS 2023: 9637-9661 - [c107]Roman Pogodin, Namrata Deka, Yazhe Li, Danica J. Sutherland, Victor Veitch, Arthur Gretton:
Efficient Conditionally Invariant Representation Learning. ICLR 2023 - [c106]Liyuan Xu, Arthur Gretton:
A Neural Mean Embedding Approach for Back-door and Front-door Adjustment. ICLR 2023 - [c105]Jerome Baum, Heishiro Kanagawa, Arthur Gretton:
A Kernel Stein Test of Goodness of Fit for Sequential Models. ICML 2023: 1936-1953 - [c104]Felix Biggs, Antonin Schrab, Arthur Gretton:
MMD-Fuse: Learning and Combining Kernels for Two-Sample Testing Without Data Splitting. NeurIPS 2023 - [c103]Pierre Glaser, David Widmann, Fredrik Lindsten, Arthur Gretton:
Fast and scalable score-based kernel calibration tests. UAI 2023: 691-700 - [i79]Lisa M. Koch, Christian M. Schürch, Christian F. Baumgartner, Arthur Gretton, Philipp Berens:
Deep Hypothesis Tests Detect Clinically Relevant Subgroup Shifts in Medical Images. CoRR abs/2303.04862 (2023) - [i78]Felix Biggs, Antonin Schrab, Arthur Gretton:
MMD-FUSE: Learning and Combining Kernels for Two-Sample Testing Without Data Splitting. CoRR abs/2306.08777 (2023) - [i77]William I. Walker, Arthur Gretton, Maneesh Sahani:
Prediction under Latent Subgroup Shifts with High-Dimensional Observations. CoRR abs/2306.13472 (2023) - [i76]Dimitri Meunier, Zhu Li, Arthur Gretton, Samory Kpotufe:
Nonlinear Meta-Learning Can Guarantee Faster Rates. CoRR abs/2307.10870 (2023) - [i75]Liyuan Xu, Arthur Gretton:
Kernel Single Proxy Control for Deterministic Confounding. CoRR abs/2308.04585 (2023) - [i74]Zhu Li, Dimitri Meunier, Mattes Mollenhauer, Arthur Gretton:
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm. CoRR abs/2312.07186 (2023) - [i73]Li Kevin Wenliang, Grégoire Delétang, Matthew Aitchison, Marcus Hutter, Anian Ruoss, Arthur Gretton, Mark Rowland:
Distributional Bellman Operators over Mean Embeddings. CoRR abs/2312.07358 (2023) - 2022
- [j25]Yutian Chen, Liyuan Xu, Çaglar Gülçehre, Tom Le Paine, Arthur Gretton, Nando de Freitas, Arnaud Doucet:
On Instrumental Variable Regression for Deep Offline Policy Evaluation. J. Mach. Learn. Res. 23: 302:1-302:40 (2022) - [c102]Chieh Tzu Wu, Aria Masoomi, Arthur Gretton, Jennifer G. Dy:
Deep Layer-wise Networks Have Closed-Form Weights. AISTATS 2022: 188-225 - [c101]Liyuan Xu, Yutian Chen, Arnaud Doucet, Arthur Gretton:
Importance Weighted Kernel Bayes' Rule. ICML 2022: 24524-24538 - [c100]Lisa M. Koch, Christian M. Schürch, Arthur Gretton, Philipp Berens:
Hidden in Plain Sight: Subgroup Shifts Escape OOD Detection. MIDL 2022: 726-740 - [c99]Zhu Li, Dimitri Meunier, Mattes Mollenhauer, Arthur Gretton:
Optimal Rates for Regularized Conditional Mean Embedding Learning. NeurIPS 2022 - [c98]Antonin Schrab, Benjamin Guedj, Arthur Gretton:
KSD Aggregated Goodness-of-fit Test. NeurIPS 2022 - [c97]Antonin Schrab, Ilmun Kim, Benjamin Guedj, Arthur Gretton:
Efficient Aggregated Kernel Tests using Incomplete $U$-statistics. NeurIPS 2022 - [c96]Yuchen Zhu, Limor Gultchin, Arthur Gretton, Matt J. Kusner, Ricardo Silva:
Causal inference with treatment measurement error: a nonparametric instrumental variable approach. UAI 2022: 2414-2424 - [i72]Antonin Schrab, Benjamin Guedj, Arthur Gretton:
KSD Aggregated Goodness-of-fit Test. CoRR abs/2202.00824 (2022) - [i71]Liyuan Xu, Yutian Chen, Arnaud Doucet, Arthur Gretton:
Importance Weighting Approach in Kernel Bayes' Rule. CoRR abs/2202.02474 (2022) - [i70]Yuchen Zhu, Limor Gultchin, Arthur Gretton, Matt J. Kusner, Ricardo Silva:
Causal Inference with Treatment Measurement Error: A Nonparametric Instrumental Variable Approach. CoRR abs/2206.09186 (2022) - [i69]Antonin Schrab, Ilmun Kim, Benjamin Guedj, Arthur Gretton:
Efficient Aggregated Kernel Tests using Incomplete U-statistics. CoRR abs/2206.09194 (2022) - [i68]Antonin Schrab, Wittawat Jitkrittum, Zoltán Szabó, Dino Sejdinovic, Arthur Gretton:
Discussion of 'Multiscale Fisher's Independence Test for Multivariate Dependence'. CoRR abs/2206.11142 (2022) - [i67]Zhu Li, Dimitri Meunier, Mattes Mollenhauer, Arthur Gretton:
Optimal Rates for Regularized Conditional Mean Embedding Learning. CoRR abs/2208.01711 (2022) - [i66]Liyuan Xu, Arthur Gretton:
A Neural Mean Embedding Approach for Back-door and Front-door Adjustment. CoRR abs/2210.06610 (2022) - [i65]Jerome Baum, Heishiro Kanagawa, Arthur Gretton:
A kernel Stein test of goodness of fit for sequential models. CoRR abs/2210.10741 (2022) - [i64]Pierre Glaser, Michael Arbel, Arnaud Doucet, Arthur Gretton:
Maximum Likelihood Learning of Energy-Based Models for Simulation-Based Inference. CoRR abs/2210.14756 (2022) - [i63]Heishiro Kanagawa, Arthur Gretton, Lester Mackey:
Controlling Moments with Kernel Stein Discrepancies. CoRR abs/2211.05408 (2022) - [i62]Roman Pogodin, Namrata Deka, Yazhe Li, Danica J. Sutherland, Victor Veitch, Arthur Gretton:
Efficient Conditionally Invariant Representation Learning. CoRR abs/2212.08645 (2022) - [i61]Ibrahim Alabdulmohsin, Nicole Chiou, Alexander D'Amour, Arthur Gretton, Sanmi Koyejo, Matt J. Kusner, Stephen R. Pfohl, Olawale Salaudeen, Jessica Schrouff, Katherine Tsai:
Adapting to Latent Subgroup Shifts via Concepts and Proxies. CoRR abs/2212.11254 (2022) - 2021
- [c95]Michael Arbel, Liang Zhou, Arthur Gretton:
Generalized Energy Based Models. ICLR 2021 - [c94]Ted Moskovitz, Michael Arbel, Ferenc Huszar, Arthur Gretton:
Efficient Wasserstein Natural Gradients for Reinforcement Learning. ICLR 2021 - [c93]Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, Arthur Gretton:
Learning Deep Features in Instrumental Variable Regression. ICLR 2021 - [c92]Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner, Arthur Gretton, Krikamol Muandet:
Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction. ICML 2021: 7512-7523 - [c91]Pierre Glaser, Michael Arbel, Arthur Gretton:
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support. NeurIPS 2021: 8018-8031 - [c90]Yazhe Li, Roman Pogodin, Danica J. Sutherland, Arthur Gretton:
Self-Supervised Learning with Kernel Dependence Maximization. NeurIPS 2021: 15543-15556 - [c89]Liyuan Xu, Heishiro Kanagawa, Arthur Gretton:
Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation. NeurIPS 2021: 26264-26275 - [c88]Alexander Marx, Arthur Gretton, Joris M. Mooij:
A weaker faithfulness assumption based on triple interactions. UAI 2021: 451-460 - [i60]Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner, Arthur Gretton, Krikamol Muandet:
Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction. CoRR abs/2105.04544 (2021) - [i59]Yutian Chen, Liyuan Xu, Çaglar Gülçehre, Tom Le Paine, Arthur Gretton, Nando de Freitas, Arnaud Doucet:
On Instrumental Variable Regression for Deep Offline Policy Evaluation. CoRR abs/2105.10148 (2021) - [i58]Zhu Li, Zhi-Hua Zhou, Arthur Gretton:
Towards an Understanding of Benign Overfitting in Neural Networks. CoRR abs/2106.03212 (2021) - [i57]Liyuan Xu, Heishiro Kanagawa, Arthur Gretton:
Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation. CoRR abs/2106.03907 (2021) - [i56]Yazhe Li, Roman Pogodin, Danica J. Sutherland, Arthur Gretton:
Self-Supervised Learning with Kernel Dependence Maximization. CoRR abs/2106.08320 (2021) - [i55]Pierre Glaser, Michael Arbel, Arthur Gretton:
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support. CoRR abs/2106.08929 (2021) - [i54]Antonin Schrab, Ilmun Kim, Mélisande Albert, Béatrice Laurent, Benjamin Guedj, Arthur Gretton:
MMD Aggregated Two-Sample Test. CoRR abs/2110.15073 (2021) - [i53]Rahul Singh, Liyuan Xu, Arthur Gretton:
Kernel Methods for Multistage Causal Inference: Mediation Analysis and Dynamic Treatment Effects. CoRR abs/2111.03950 (2021) - [i52]Oscar Key, Tamara Fernandez, Arthur Gretton, François-Xavier Briol:
Composite Goodness-of-fit Tests with Kernels. CoRR abs/2111.10275 (2021) - 2020
- [j24]Iryna Korshunova, Yarin Gal, Arthur Gretton, Joni Dambre:
Conditional BRUNO: A neural process for exchangeable labelled data. Neurocomputing 416: 305-309 (2020) - [j23]Yu Nishiyama, Motonobu Kanagawa, Arthur Gretton, Kenji Fukumizu:
Model-based kernel sum rule: kernel Bayesian inference with probabilistic models. Mach. Learn. 109(5): 939-972 (2020) - [c87]Mihaela Rosca, Theophane Weber, Arthur Gretton, Shakir Mohamed:
A case for new neural network smoothness constraints. ICBINB@NeurIPS 2020: 21-32 - [c86]Michael Arbel, Arthur Gretton, Wuchen Li, Guido Montúfar:
Kernelized Wasserstein Natural Gradient. ICLR 2020 - [c85]Tamara Fernandez, Nicolas Rivera, Wenkai Xu, Arthur Gretton:
Kernelized Stein Discrepancy Tests of Goodness-of-fit for Time-to-Event Data. ICML 2020: 3112-3122 - [c84]Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, Danica J. Sutherland:
Learning Deep Kernels for Non-Parametric Two-Sample Tests. ICML 2020: 6316-6326 - [c83]Tamara Fernandez, Wenkai Xu, Marc Ditzhaus, Arthur Gretton:
A kernel test for quasi-independence. NeurIPS 2020 - [c82]Anna Korba, Adil Salim, Michael Arbel, Giulia Luise, Arthur Gretton:
A Non-Asymptotic Analysis for Stein Variational Gradient Descent. NeurIPS 2020 - [i51]Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, Danica J. Sutherland:
Learning Deep Kernels for Non-Parametric Two-Sample Tests. CoRR abs/2002.09116 (2020) - [i50]Michael Arbel, Liang Zhou, Arthur Gretton:
KALE: When Energy-Based Learning Meets Adversarial Training. CoRR abs/2003.05033 (2020) - [i49]Chieh Wu, Aria Masoomi, Arthur Gretton, Jennifer G. Dy:
Layer-wise Learning of Kernel Dependence Networks. CoRR abs/2006.08539 (2020) - [i48]Anna Korba, Adil Salim, Michael Arbel, Giulia Luise, Arthur Gretton:
A Non-Asymptotic Analysis for Stein Variational Gradient Descent. CoRR abs/2006.09797 (2020) - [i47]Tamara Fernandez, Nicolas Rivera, Wenkai Xu, Arthur Gretton:
Kernelized Stein Discrepancy Tests of Goodness-of-fit for Time-to-Event Data. CoRR abs/2008.08397 (2020) - [i46]Rahul Singh, Liyuan Xu, Arthur Gretton:
Kernel Methods for Policy Evaluation: Treatment Effects, Mediation Analysis, and Off-Policy Planning. CoRR abs/2010.04855 (2020) - [i45]Ted Moskovitz, Michael Arbel, Ferenc Huszar, Arthur Gretton:
Efficient Wasserstein Natural Gradients for Reinforcement Learning. CoRR abs/2010.05380 (2020) - [i44]Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, Arthur Gretton:
Learning Deep Features in Instrumental Variable Regression. CoRR abs/2010.07154 (2020) - [i43]Alexander Marx, Arthur Gretton, Joris M. Mooij:
A Weaker Faithfulness Assumption based on Triple Interactions. CoRR abs/2010.14265 (2020) - [i42]Chieh Wu, Aria Masoomi, Arthur Gretton, Jennifer G. Dy:
Kernel Dependence Network. CoRR abs/2011.03320 (2020) - [i41]Mihaela Rosca, Theophane Weber, Arthur Gretton, Shakir Mohamed:
A case for new neural network smoothness constraints. CoRR abs/2012.07969 (2020)
2010 – 2019
- 2019
- [j22]Maria Lomeli, Mark Rowland, Arthur Gretton, Zoubin Ghahramani:
Antithetic and Monte Carlo kernel estimators for partial rankings. Stat. Comput. 29(5): 1127-1147 (2019) - [c81]Bo Dai, Hanjun Dai, Arthur Gretton, Le Song, Dale Schuurmans, Niao He:
Kernel Exponential Family Estimation via Doubly Dual Embedding. AISTATS 2019: 2321-2330 - [c80]Tamara Fernandez, Arthur Gretton:
A maximum-mean-discrepancy goodness-of-fit test for censored data. AISTATS 2019: 2966-2975 - [c79]Iryna Korshunova, Yarin Gal, Arthur Gretton, Joni Dambre:
Conditional BRUNO: a neural process for exchangeable labelled data. ESANN 2019 - [c78]Wenliang Li, Danica J. Sutherland, Heiko Strathmann, Arthur Gretton:
Learning deep kernels for exponential family densities. ICML 2019: 6737-6746 - [c77]Rahul Singh, Maneesh Sahani, Arthur Gretton:
Kernel Instrumental Variable Regression. NeurIPS 2019: 4595-4607 - [c76]Michael Arbel, Anna Korba, Adil Salim, Arthur Gretton:
Maximum Mean Discrepancy Gradient Flow. NeurIPS 2019: 6481-6491 - [c75]Bo Dai, Zhen Liu, Hanjun Dai, Niao He, Arthur Gretton, Le Song, Dale Schuurmans:
Exponential Family Estimation via Adversarial Dynamics Embedding. NeurIPS 2019: 10977-10988 - [i40]Bo Dai, Zhen Liu, Hanjun Dai, Niao He, Arthur Gretton, Le Song, Dale Schuurmans:
Exponential Family Estimation via Adversarial Dynamics Embedding. CoRR abs/1904.12083 (2019) - [i39]Rahul Singh, Maneesh Sahani, Arthur Gretton:
Kernel Instrumental Variable Regression. CoRR abs/1906.00232 (2019) - [i38]Michael Arbel, Anna Korba, Adil Salim, Arthur Gretton:
Maximum Mean Discrepancy Gradient Flow. CoRR abs/1906.04370 (2019) - [i37]Heishiro Kanagawa, Wittawat Jitkrittum, Lester Mackey, Kenji Fukumizu, Arthur Gretton:
A Kernel Stein Test for Comparing Latent Variable Models. CoRR abs/1907.00586 (2019) - [i36]Nicolò Colombo, Ricardo Silva, Soong Moon Kang, Arthur Gretton:
Counterfactual Distribution Regression for Structured Inference. CoRR abs/1908.07193 (2019) - [i35]Michael Arbel, Arthur Gretton, Wuchen Li, Guido Montúfar:
Kernelized Wasserstein Natural Gradient. CoRR abs/1910.09652 (2019) - 2018
- [j21]Qinyi Zhang, Sarah Filippi, Arthur Gretton, Dino Sejdinovic:
Large-scale kernel methods for independence testing. Stat. Comput. 28(1): 113-130 (2018) - [c74]Danica J. Sutherland, Heiko Strathmann, Michael Arbel, Arthur Gretton:
Efficient and principled score estimation with Nyström kernel exponential families. AISTATS 2018: 652-660 - [c73]Michael Arbel, Arthur Gretton:
Kernel Conditional Exponential Family. AISTATS 2018: 1337-1346 - [c72]Mikolaj Binkowski, Danica J. Sutherland, Michael Arbel, Arthur Gretton:
Demystifying MMD GANs. ICLR (Poster) 2018 - [c71]Wittawat Jitkrittum, Heishiro Kanagawa, Patsorn Sangkloy, James Hays, Bernhard Schölkopf, Arthur Gretton:
Informative Features for Model Comparison. NeurIPS 2018: 816-827 - [c70]Michael Arbel, Danica J. Sutherland, Mikolaj Binkowski, Arthur Gretton:
On gradient regularizers for MMD GANs. NeurIPS 2018: 6701-6711 - [c69]Iryna Korshunova, Jonas Degrave, Ferenc Huszar, Yarin Gal, Arthur Gretton, Joni Dambre:
BRUNO: A Deep Recurrent Model for Exchangeable Data. NeurIPS 2018: 7190-7198 - [i34]Mikolaj Binkowski, Danica J. Sutherland, Michael Arbel, Arthur Gretton:
Demystifying MMD GANs. CoRR abs/1801.01401 (2018) - [i33]Michael Arbel, Danica J. Sutherland, Mikolaj Binkowski, Arthur Gretton:
On gradient regularizers for MMD GANs. CoRR abs/1805.11565 (2018) - [i32]Maria Lomeli, Mark Rowland, Arthur Gretton, Zoubin Ghahramani:
Antithetic and Monte Carlo kernel estimators for partial rankings. CoRR abs/1807.00400 (2018) - [i31]Wittawat Jitkrittum, Heishiro Kanagawa, Patsorn Sangkloy, James Hays, Bernhard Schölkopf, Arthur Gretton:
Informative Features for Model Comparison. CoRR abs/1810.11630 (2018) - [i30]Bo Dai, Hanjun Dai, Arthur Gretton, Le Song, Dale Schuurmans, Niao He:
Kernel Exponential Family Estimation via Doubly Dual Embedding. CoRR abs/1811.02228 (2018) - [i29]Wenliang Li, Danica J. Sutherland, Heiko Strathmann, Arthur Gretton:
Learning deep kernels for exponential family densities. CoRR abs/1811.08357 (2018) - 2017
- [j20]Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Aapo Hyvärinen, Revant Kumar:
Density Estimation in Infinite Dimensional Exponential Families. J. Mach. Learn. Res. 18: 57:1-57:59 (2017) - [j19]Jacquelyn A. Shelton, Jan Gasthaus, Zhenwen Dai, Jörg Lücke, Arthur Gretton:
GP-Select: Accelerating EM Using Adaptive Subspace Preselection. Neural Comput. 29(8): 2177-2202 (2017) - [c68]Danica J. Sutherland, Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alexander J. Smola, Arthur Gretton:
Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy. ICLR (Poster) 2017 - [c67]Wittawat Jitkrittum, Zoltán Szabó, Arthur Gretton:
An Adaptive Test of Independence with Analytic Kernel Embeddings. ICML 2017: 1742-1751 - [c66]Wittawat Jitkrittum, Wenkai Xu, Zoltán Szabó, Kenji Fukumizu, Arthur Gretton:
A Linear-Time Kernel Goodness-of-Fit Test. NIPS 2017: 262-271 - [i28]Wittawat Jitkrittum, Wenkai Xu, Zoltán Szabó, Kenji Fukumizu, Arthur Gretton:
A Linear-Time Kernel Goodness-of-Fit Test. CoRR abs/1705.07673 (2017) - [i27]Danica J. Sutherland, Heiko Strathmann, Michael Arbel, Arthur Gretton:
Efficient and principled score estimation. CoRR abs/1705.08360 (2017) - 2016
- [j18]Krikamol Muandet, Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf:
Kernel Mean Shrinkage Estimators. J. Mach. Learn. Res. 17: 48:1-48:41 (2016) - [j17]Zoltán Szabó, Bharath K. Sriperumbudur, Barnabás Póczos, Arthur Gretton:
Learning Theory for Distribution Regression. J. Mach. Learn. Res. 17: 152:1-152:40 (2016) - [j16]Sebastian Weichwald, Moritz Grosse-Wentrup, Arthur Gretton:
MERLiN: Mixture Effect Recovery in Linear Networks. IEEE J. Sel. Top. Signal Process. 10(7): 1254-1266 (2016) - [j15]Motonobu Kanagawa, Yu Nishiyama, Arthur Gretton, Kenji Fukumizu:
Filtering with State-Observation Examples via Kernel Monte Carlo Filter. Neural Comput. 28(2): 382-444 (2016) - [c65]Kacper Chwialkowski, Heiko Strathmann, Arthur Gretton:
A Kernel Test of Goodness of Fit. ICML 2016: 2606-2615 - [c64]Wittawat Jitkrittum, Zoltán Szabó, Kacper P. Chwialkowski, Arthur Gretton:
Interpretable Distribution Features with Maximum Testing Power. NIPS 2016: 181-189 - [c63]Sebastian Weichwald, Arthur Gretton, Bernhard Schölkopf, Moritz Grosse-Wentrup:
Recovery of non-linear cause-effect relationships from linearly mixed neuroimaging data. PRNI 2016: 1-4 - [c62]Paul K. Rubenstein, Kacper Chwialkowski, Arthur Gretton:
A Kernel Test for Three-Variable Interactions with Random Processes. UAI 2016 - [c61]Wacha Bounliphone, Eugene Belilovsky, Matthew B. Blaschko, Ioannis Antonoglou, Arthur Gretton:
A Test of Relative Similarity For Model Selection in Generative Models. ICLR (Poster) 2016 - [e1]Arthur Gretton, Christian C. Robert:
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016. JMLR Workshop and Conference Proceedings 51, JMLR.org 2016 [contents] - [i26]Sebastian Weichwald, Arthur Gretton, Bernhard Schölkopf, Moritz Grosse-Wentrup:
Recovery of non-linear cause-effect relationships from linearly mixed neuroimaging data. CoRR abs/1605.00391 (2016) - [i25]Wittawat Jitkrittum, Zoltán Szabó, Kacper Chwialkowski, Arthur Gretton:
Interpretable Distribution Features with Maximum Testing Power. CoRR abs/1605.06796 (2016) - [i24]Wittawat Jitkrittum, Zoltán Szabó, Arthur Gretton:
An Adaptive Test of Independence with Analytic Kernel Embeddings. CoRR abs/1610.04782 (2016) - [i23]Danica J. Sutherland, Hsiao-Yu Fish Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alexander J. Smola, Arthur Gretton:
Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy. CoRR abs/1611.04488 (2016) - [i22]Wacha Bounliphone, Eugene Belilovsky, Arthur Tenenhaus, Ioannis Antonoglou, Arthur Gretton, Matthew B. Blaschko:
Fast Non-Parametric Tests of Relative Dependency and Similarity. CoRR abs/1611.05740 (2016) - [i21]Arthur Gretton, Philipp Hennig, Carl Edward Rasmussen, Bernhard Schölkopf:
New Directions for Learning with Kernels and Gaussian Processes (Dagstuhl Seminar 16481). Dagstuhl Reports 6(11): 142-167 (2016) - 2015
- [c60]Zoltán Szabó, Arthur Gretton, Barnabás Póczos, Bharath K. Sriperumbudur:
Two-stage sampled learning theory on distributions. AISTATS 2015 - [c59]Wacha Bounliphone, Arthur Gretton, Arthur Tenenhaus, Matthew B. Blaschko:
A low variance consistent test of relative dependency. ICML 2015: 20-29 - [c58]Heiko Strathmann, Dino Sejdinovic, Samuel Livingstone, Zoltán Szabó, Arthur Gretton:
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families. NIPS 2015: 955-963 - [c57]Kacper Chwialkowski, Aaditya Ramdas, Dino Sejdinovic, Arthur Gretton:
Fast Two-Sample Testing with Analytic Representations of Probability Measures. NIPS 2015: 1981-1989 - [c56]Wittawat Jitkrittum, Arthur Gretton, Nicolas Heess, S. M. Ali Eslami, Balaji Lakshminarayanan, Dino Sejdinovic, Zoltán Szabó:
Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages. UAI 2015: 405-414 - [i20]Wittawat Jitkrittum, Arthur Gretton, Nicolas Heess:
Passing Expectation Propagation Messages with Kernel Methods. CoRR abs/1501.00375 (2015) - [i19]Wittawat Jitkrittum, Arthur Gretton, Nicolas Heess, S. M. Ali Eslami, Balaji Lakshminarayanan, Dino Sejdinovic, Zoltán Szabó:
Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages. CoRR abs/1503.02551 (2015) - 2014
- [c55]Motonobu Kanagawa, Yu Nishiyama, Arthur Gretton, Kenji Fukumizu:
Monte Carlo Filtering Using Kernel Embedding of Distributions. AAAI 2014: 1897-1903 - [c54]Krikamol Muandet, Kenji Fukumizu, Bharath K. Sriperumbudur, Arthur Gretton, Bernhard Schölkopf:
Kernel Mean Estimation and Stein Effect. ICML 2014: 10-18 - [c53]Kacper Chwialkowski, Arthur Gretton:
A Kernel Independence Test for Random Processes. ICML 2014: 1422-1430 - [c52]Dino Sejdinovic, Heiko Strathmann, Maria Lomeli Garcia, Christophe Andrieu, Arthur Gretton:
Kernel Adaptive Metropolis-Hastings. ICML 2014: 1665-1673 - [c51]Kacper Chwialkowski, Dino Sejdinovic, Arthur Gretton:
A Wild Bootstrap for Degenerate Kernel Tests. NIPS 2014: 3608-3616 - [i18]Zoltán Szabó, Arthur Gretton, Barnabás Póczos, Bharath K. Sriperumbudur:
Consistent, Two-Stage Sampled Distribution Regression via Mean Embedding. CoRR abs/1402.1754 (2014) - [i17]Krikamol Muandet, Kenji Fukumizu, Bharath K. Sriperumbudur, Arthur Gretton, Bernhard Schölkopf:
Kernel Mean Shrinkage Estimators. CoRR abs/1405.5505 (2014) - [i16]Wacha Bounliphone, Arthur Gretton, Matthew B. Blaschko:
A low variance consistent test of relative dependency. CoRR abs/1406.3852 (2014) - [i15]Zoltán Szabó, Arthur Gretton, Barnabás Póczos, Bharath K. Sriperumbudur:
Learning Theory for Distribution Regression. CoRR abs/1411.2066 (2014) - [i14]Jacquelyn A. Shelton, Jan Gasthaus, Zhenwen Dai, Jörg Lücke, Arthur Gretton:
GP-select: Accelerating EM using adaptive subspace preselection. CoRR abs/1412.3411 (2014) - 2013
- [j14]Kenji Fukumizu, Le Song, Arthur Gretton:
Kernel Bayes' rule: Bayesian inference with positive definite kernels. J. Mach. Learn. Res. 14(1): 3753-3783 (2013) - [j13]Le Song, Kenji Fukumizu, Arthur Gretton:
Kernel Embeddings of Conditional Distributions: A Unified Kernel Framework for Nonparametric Inference in Graphical Models. IEEE Signal Process. Mag. 30(4): 98-111 (2013) - [c50]Steffen Grünewälder, Arthur Gretton, John Shawe-Taylor:
Smooth Operators. ICML (3) 2013: 1184-1192 - [c49]Wojciech Zaremba, Arthur Gretton, Matthew B. Blaschko:
B-test: A Non-parametric, Low Variance Kernel Two-sample Test. NIPS 2013: 755-763 - [c48]Dino Sejdinovic, Arthur Gretton, Wicher Bergsma:
A Kernel Test for Three-Variable Interactions. NIPS 2013: 1124-1132 - [c47]Matthew B. Blaschko, Wojciech Zaremba, Arthur Gretton:
Taxonomic Prediction with Tree-Structured Covariances. ECML/PKDD (2) 2013: 304-319 - [c46]Byron Boots, Geoffrey J. Gordon, Arthur Gretton:
Hilbert Space Embeddings of Predictive State Representations. UAI 2013 - [i13]Krikamol Muandet, Kenji Fukumizu, Bharath K. Sriperumbudur, Arthur Gretton, Bernhard Schölkopf:
Kernel Mean Estimation and Stein's Effect. CoRR abs/1306.0842 (2013) - [i12]Wojciech Zaremba, Arthur Gretton, Matthew B. Blaschko:
B-test: A Non-parametric, Low Variance Kernel Two-sample Test. CoRR abs/1307.1954 (2013) - [i11]Dino Sejdinovic, Maria Lomeli Garcia, Heiko Strathmann, Christophe Andrieu, Arthur Gretton:
Kernel Adaptive Metropolis-Hastings. CoRR abs/1307.5302 (2013) - [i10]Byron Boots, Geoffrey J. Gordon, Arthur Gretton:
Hilbert Space Embeddings of Predictive State Representations. CoRR abs/1309.6819 (2013) - 2012
- [j12]Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, Alexander J. Smola:
A Kernel Two-Sample Test. J. Mach. Learn. Res. 13: 723-773 (2012) - [j11]Le Song, Alexander J. Smola, Arthur Gretton, Justin Bedo, Karsten M. Borgwardt:
Feature Selection via Dependence Maximization. J. Mach. Learn. Res. 13: 1393-1434 (2012) - [c45]Steffen Grünewälder, Guy Lever, Luca Baldassarre, Massimiliano Pontil, Arthur Gretton:
Modelling transition dynamics in MDPs with RKHS embeddings. ICML 2012 - [c44]Steffen Grünewälder, Guy Lever, Arthur Gretton, Luca Baldassarre, Sam Patterson, Massimiliano Pontil:
Conditional mean embeddings as regressors. ICML 2012 - [c43]Dino Sejdinovic, Arthur Gretton, Bharath K. Sriperumbudur, Kenji Fukumizu:
Hypothesis testing using pairwise distances and associated kernels. ICML 2012 - [c42]Arthur Gretton, Bharath K. Sriperumbudur, Dino Sejdinovic, Heiko Strathmann, Sivaraman Balakrishnan, Massimiliano Pontil, Kenji Fukumizu:
Optimal kernel choice for large-scale two-sample tests. NIPS 2012: 1214-1222 - [c41]Yu Nishiyama, Abdeslam Boularias, Arthur Gretton, Kenji Fukumizu:
Hilbert Space Embeddings of POMDPs. UAI 2012: 644-653 - [i9]Dino Sejdinovic, Arthur Gretton, Bharath K. Sriperumbudur, Kenji Fukumizu:
Hypothesis testing using pairwise distances and associated kernels (with Appendix). CoRR abs/1205.0411 (2012) - [i8]Steffen Grünewälder, Guy Lever, Luca Baldassarre, Sam Patterson, Arthur Gretton, Massimiliano Pontil:
Conditional mean embeddings as regressors - supplementary. CoRR abs/1205.4656 (2012) - [i7]Steffen Grünewälder, Guy Lever, Luca Baldassarre, Massimiliano Pontil, Arthur Gretton:
Modelling transition dynamics in MDPs with RKHS embeddings. CoRR abs/1206.4655 (2012) - [i6]Dino Sejdinovic, Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu:
Equivalence of distance-based and RKHS-based statistics in hypothesis testing. CoRR abs/1207.6076 (2012) - [i5]Yu Nishiyama, Abdeslam Boularias, Arthur Gretton, Kenji Fukumizu:
Hilbert Space Embeddings of POMDPs. CoRR abs/1210.4887 (2012) - 2011
- [j10]Matthew B. Blaschko, Jacquelyn A. Shelton, Andreas M. Bartels, Christoph H. Lampert, Arthur Gretton:
Semi-supervised kernel canonical correlation analysis with application to human fMRI. Pattern Recognit. Lett. 32(11): 1572-1583 (2011) - [c40]Kenji Fukumizu, Le Song, Arthur Gretton:
Kernel Bayes' Rule. NIPS 2011: 1737-1745 - [c39]Joseph Gonzalez, Yucheng Low, Arthur Gretton, Carlos Guestrin:
Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees. AISTATS 2011: 324-332 - [c38]Le Song, Arthur Gretton, Danny Bickson, Yucheng Low, Carlos Guestrin:
Kernel Belief Propagation. AISTATS 2011: 707-715 - [i4]Le Song, Arthur Gretton, Danny Bickson, Yucheng Low, Carlos Guestrin:
Kernel Belief Propagation. CoRR abs/1105.5592 (2011) - 2010
- [j9]Arthur Gretton, László Györfi:
Consistent Nonparametric Tests of Independence. J. Mach. Learn. Res. 11: 1391-1423 (2010) - [j8]Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, Gert R. G. Lanckriet:
Hilbert Space Embeddings and Metrics on Probability Measures. J. Mach. Learn. Res. 11: 1517-1561 (2010) - [j7]Felix Bießmann, Frank C. Meinecke, Arthur Gretton, Alexander Rauch, Gregor Rainer, Nikos K. Logothetis, Klaus-Robert Müller:
Temporal kernel CCA and its application in multimodal neuronal data analysis. Mach. Learn. 79(1-2): 5-27 (2010) - [j6]Marisa Thoma, Hong Cheng, Arthur Gretton, Jiawei Han, Hans-Peter Kriegel, Alexander J. Smola, Le Song, Philip S. Yu, Xifeng Yan, Karsten M. Borgwardt:
Discriminative frequent subgraph mining with optimality guarantees. Stat. Anal. Data Min. 3(5): 302-318 (2010) - [c37]Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, Gert R. G. Lanckriet:
Non-parametric estimation of integral probability metrics. ISIT 2010: 1428-1432 - [c36]Somayeh Danafar, Arthur Gretton, Jürgen Schmidhuber:
Characteristic Kernels on Structured Domains Excel in Robotics and Human Action Recognition. ECML/PKDD (1) 2010: 264-279 - [c35]Le Song, Arthur Gretton, Carlos Guestrin:
Nonparametric Tree Graphical Models. AISTATS 2010: 765-772
2000 – 2009
- 2009
- [j5]Hao Shen, Stefanie Jegelka, Arthur Gretton:
Fast kernel-based independent component analysis. IEEE Trans. Signal Process. 57(9): 3498-3511 (2009) - [c34]Jonas Peters, Dominik Janzing, Arthur Gretton, Bernhard Schölkopf:
Detecting the direction of causal time series. ICML 2009: 801-808 - [c33]Stefanie Jegelka, Arthur Gretton, Bernhard Schölkopf, Bharath K. Sriperumbudur, Ulrike von Luxburg:
Generalized Clustering via Kernel Embeddings. KI 2009: 144-152 - [c32]Arthur Gretton, Kenji Fukumizu, Zaïd Harchaoui, Bharath K. Sriperumbudur:
A Fast, Consistent Kernel Two-Sample Test. NIPS 2009: 673-681 - [c31]Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Gert R. G. Lanckriet, Bernhard Schölkopf:
Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions. NIPS 2009: 1750-1758 - [c30]Robert E. Tillman, Arthur Gretton, Peter Spirtes:
Nonlinear directed acyclic structure learning with weakly additive noise models. NIPS 2009: 1847-1855 - [c29]Marisa Thoma, Hong Cheng, Arthur Gretton, Jiawei Han, Hans-Peter Kriegel, Alexander J. Smola, Le Song, Philip S. Yu, Xifeng Yan, Karsten M. Borgwardt:
Near-optimal Supervised Feature Selection among Frequent Subgraphs. SDM 2009: 1076-1087 - [i3]Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Gert R. G. Lanckriet, Bernhard Schölkopf:
A note on integral probability metrics and $\phi$-divergences. CoRR abs/0901.2698 (2009) - 2008
- [c28]Arthur Gretton, László Györfi:
Nonparametric Independence Tests: Space Partitioning and Kernel Approaches. ALT 2008: 183-198 - [c27]Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Gert R. G. Lanckriet, Bernhard Schölkopf:
Injective Hilbert Space Embeddings of Probability Measures. COLT 2008: 111-122 - [c26]Jonas Peters, Dominik Janzing, Arthur Gretton, Bernhard Schölkopf:
Kernel Methods for Detecting the Direction of Time Series. GfKl 2008: 57-66 - [c25]Le Song, Xinhua Zhang, Alexander J. Smola, Arthur Gretton, Bernhard Schölkopf:
Tailoring density estimation via reproducing kernel moment matching. ICML 2008: 992-999 - [c24]Matthew B. Blaschko, Arthur Gretton:
Learning Taxonomies by Dependence Maximization. NIPS 2008: 153-160 - [c23]Kenji Fukumizu, Bharath K. Sriperumbudur, Arthur Gretton, Bernhard Schölkopf:
Characteristic Kernels on Groups and Semigroups. NIPS 2008: 473-480 - [c22]Xinhua Zhang, Le Song, Arthur Gretton, Alexander J. Smola:
Kernel Measures of Independence for non-iid Data. NIPS 2008: 1937-1944 - [c21]Matthew B. Blaschko, Christoph H. Lampert, Arthur Gretton:
Semi-supervised Laplacian Regularization of Kernel Canonical Correlation Analysis. ECML/PKDD (1) 2008: 133-145 - [i2]Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, Alexander J. Smola:
A Kernel Method for the Two-Sample Problem. CoRR abs/0805.2368 (2008) - 2007
- [j4]Kenji Fukumizu, Francis R. Bach, Arthur Gretton:
Statistical Consistency of Kernel Canonical Correlation Analysis. J. Mach. Learn. Res. 8: 361-383 (2007) - [c20]Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, Alexander J. Smola:
A Kernel Approach to Comparing Distributions. AAAI 2007: 1637-1641 - [c19]Alexander J. Smola, Arthur Gretton, Le Song, Bernhard Schölkopf:
A Hilbert Space Embedding for Distributions. ALT 2007: 13-31 - [c18]Alexander J. Smola, Arthur Gretton, Le Song, Bernhard Schölkopf:
A Hilbert Space Embedding for Distributions. Discovery Science 2007: 40-41 - [c17]Le Song, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt:
A dependence maximization view of clustering. ICML 2007: 815-822 - [c16]Le Song, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt, Justin Bedo:
Supervised feature selection via dependence estimation. ICML 2007: 823-830 - [c15]Le Song, Justin Bedo, Karsten M. Borgwardt, Arthur Gretton, Alexander J. Smola:
Gene selection via the BAHSIC family of algorithms. ISMB/ECCB (Supplement of Bioinformatics) 2007: 490-498 - [c14]Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, Bernhard Schölkopf:
Kernel Measures of Conditional Dependence. NIPS 2007: 489-496 - [c13]Arthur Gretton, Kenji Fukumizu, Choon Hui Teo, Le Song, Bernhard Schölkopf, Alexander J. Smola:
A Kernel Statistical Test of Independence. NIPS 2007: 585-592 - [c12]Le Song, Alexander J. Smola, Karsten M. Borgwardt, Arthur Gretton:
Colored Maximum Variance Unfolding. NIPS 2007: 1385-1392 - [c11]Hao Shen, Stefanie Jegelka, Arthur Gretton:
Fast Kernel ICA using an Approximate Newton Method. AISTATS 2007: 476-483 - [i1]Le Song, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt, Justin Bedo:
Supervised Feature Selection via Dependence Estimation. CoRR abs/0704.2668 (2007) - 2006
- [j3]Manuel Davy, Frédéric Desobry, Arthur Gretton, Christian Doncarli:
An online support vector machine for abnormal events detection. Signal Process. 86(8): 2009-2025 (2006) - [c10]Karsten M. Borgwardt, Arthur Gretton, Malte J. Rasch, Hans-Peter Kriegel, Bernhard Schölkopf, Alexander J. Smola:
Integrating structured biological data by Kernel Maximum Mean Discrepancy. ISMB (Supplement of Bioinformatics) 2006: 49-57 - [c9]Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, Alexander J. Smola:
A Kernel Method for the Two-Sample-Problem. NIPS 2006: 513-520 - [c8]Jiayuan Huang, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt, Bernhard Schölkopf:
Correcting Sample Selection Bias by Unlabeled Data. NIPS 2006: 601-608 - 2005
- [j2]Arthur Gretton, Ralf Herbrich, Alexander J. Smola, Olivier Bousquet, Bernhard Schölkopf:
Kernel Methods for Measuring Independence. J. Mach. Learn. Res. 6: 2075-2129 (2005) - [c7]Arthur Gretton, Alexander J. Smola, Olivier Bousquet, Ralf Herbrich, Andrei Belitski, Mark Augath, Yusuke Murayama, Jon Pauls, Bernhard Schölkopf, Nikos K. Logothetis:
Kernel Constrained Covariance for Dependence Measurement. AISTATS 2005: 112-119 - [c6]Arthur Gretton, Olivier Bousquet, Alexander J. Smola, Bernhard Schölkopf:
Measuring Statistical Dependence with Hilbert-Schmidt Norms. ALT 2005: 63-77 - [c5]Kenji Fukumizu, Francis R. Bach, Arthur Gretton:
Statistical Convergence of Kernel CCA. NIPS 2005: 387-394 - 2004
- [c4]Gökhan H. Bakir, Arthur Gretton, Matthias O. Franz, Bernhard Schölkopf:
Multivariate Regression via Stiefel Manifold Constraints. DAGM-Symposium 2004: 262-269 - 2003
- [c3]Arthur Gretton, Frédéric Desobry:
On-line one-class support vector machines. An application to signal segmentation. ICASSP (2) 2003: 709-712 - [c2]Arthur Gretton, Ralf Herbrich, Alexander J. Smola:
The kernel mutual information. ICASSP (4) 2003: 880-884 - [c1]Dengyong Zhou, Jason Weston, Arthur Gretton, Olivier Bousquet, Bernhard Schölkopf:
Ranking on Data Manifolds. NIPS 2003: 169-176 - 2002
- [j1]Manuel Davy, Arthur Gretton, Arnaud Doucet, Peter J. W. Rayner:
Optimized support vector machines for nonstationary signal classification. IEEE Signal Process. Lett. 9(12): 442-445 (2002)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-22 20:16 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint