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ABSTRACT

We present a new video storage system (VSS) designed to decouple

high-level video operations from the low-level details required to

store and efficiently retrieve video data. VSS is designed to be the

storage subsystem of a video data management system (VDBMS)

and is responsible for: (1) transparently and automatically arranging

the data on disk in an efficient, granular format; (2) caching

frequently-retrieved regions in the most useful formats; and

(3) eliminating redundancies found in videos captured frommultiple

cameras with overlapping fields of view. Our results suggest that

VSS can improve VDBMS read performance by up to 54%, reduce

storage costs by up to 45%, and enable developers to focus on

application logic rather than video storage and retrieval.
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1 INTRODUCTION

The volume of video data captured and processed is rapidly

increasing: YouTube receivesmore than 400 hours of uploaded video

per minute [52], and more than six million closed-circuit television

cameras populate the United Kingdom, collectively amassing an

estimated 7.5 petabytes of video per day [9]. More than 200K body-

worn cameras are in service [24], collectively generating almost a

terabyte of video per day [55].

To support this video data deluge, many systems and applications

have emerged to ingest, transform, and reason about such data [19,

23, 25, 27, 28, 34, 43, 56]. Critically, however, most of these systems

lack efficient storage managers. They focus on query execution for
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Figure 1: VSS overview & API. Reads and writes require

specification of spatial (S ; resolution, region of interest),

temporal (T ; start/end time, frame rate), and physical (P ;
frame layout, compression codec, quality) parameters.

a video that is already decoded and loaded in memory [23, 27, 28] or

treat video compression as a black box [25, 34, 56] (cf. [19, 43]). In

practice, of course, videos are stored on disk, and the cost of reading

and decompressing is high relative to subsequent processing [11,

19], e.g., constituting more than 50% of total runtime [29]. The

result is a performance plateau limited by Amdahl’s law, where

an emphasis on post-decompression performance might yield

impressive results in isolation, but ignores the diminishing returns

when performance is evaluated end-to-end.

In this paper, we develop VSS, a video storage system designed to

serve as storage manager beneath a video data management system

or video processing application (collectively VDBMSs). Analogous

to a storage and buffer manager for relational data, VSS assumes

responsibility for storing, retrieving, and caching video data. It frees

higher-level components to focus on application logic, while VSS

optimizes the low-level performance of video data storage. As we

will show, this decoupling dramatically speeds up video processing

queries and decreases storage costs. VSS does this by addressing

the following three challenges:

First, modern video applications commonly issue multiple queries

over the same (potentially overlapping) video regions and build on

each other in different ways (e.g., Figure 1). Queries can also vary

video resolution and other characteristics (e.g., the SMOL system

https://doi.org/10.1145/3448016.3459242
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rescales video to various resolutions [29] andChameleon dynamically

adjusts input resolution [25]). Such queries can be dramatically faster

with an efficient storage manager that maintains and evolves a cache

of video data, each differently compressed and encoded.

Second, if the same video is queried using multiple systems

such as via a VDBMS optimized for simple select and aggregate

queries [27] and a separate vision system optimized for reasoning

about complex scenes [48] (e.g., Figure 1), then the video

file may be requested at different resolutions and frame rates

and using different encodings. Having a single storage system

that encapsulates all such details and provides a unified query

interface makes it seamless to create—and optimize—such federated

workflows. While some systems have attempted to mitigate this by

making multiple representations available to developers [49, 54],

they expensively do so for entire videos even if only small subsets

(e.g., the few seconds before and after an accident) are needed in

an alternate representation.

Third, many recent applications analyze large amounts of video

data with overlapping fields of view and proximate locations. For

example, traffic monitoring networks often have multiple cameras

oriented toward the same intersection and autonomous driving

and drone applications come with multiple overlapping sensors

that capture nearby video. Reducing the redundancies that occur

among these sets of physically proximate or otherwise similar

video streams is neglected in all modern VDBMSs. This is because

of the substantial difficulties involved: systems (or users) need

to consider the locations, orientations, and fields of view of each

camera to identify redundant video regions; measure overlap, jitter,

and temporally align each video; and ensure that deduplicated

video data can be recovered with sufficient quality. Despite these

challenges, and as we show herein, deduplicating overlapping video

data streams offers opportunities to greatly reduce storage costs.

VSS addresses the above challenges. As a storage manager, it

exposes a simple interface where VDBMSs read and write videos

using VSS’s API (see Figure 1). Using this API, systems write video

data in any format, encoding, and resolution—either compressed

or uncompressed—and VSS manages the underlying compression,

serialization, and physical layout on disk. When these systems

subsequently read video—once again in any configuration and

by optionally specifying regions of interest and other selection

criteria—VSS automatically identifies and leverages the most

efficient methods to retrieve and return the requested data.

VSS deploys the following optimizations and caching

mechanisms to improve read and write performance. First,

rather than storing video data on disk as opaque, monolithic

files, VSS decomposes video into sequences of contiguous,

independently-decodable sets of frames. In contrast with previous

systems that treat video as static and immutable data, VSS applies

transformations at the granularity of these sets of frames, freely

transforming them as needed to satisfy a read operation. For

example, if a query requests a video region compressed using a

different codec, VSS might elect to cache the transcoded subregion

and delete the original.

As VSS handles requests for video over time, it maintains a per-

video on-disk collection of materialized views that is populated

passively as a byproduct of read operations. When a VDBMS

performs a subsequent read, VSS leverages a minimal-cost subset of

these views to generate its answer. Because thesematerialized views

can arbitrarily overlap and have complex interdependencies, finding

the least-cost set of views is non-trivial. VSS uses a satisfiability

modulo theories (SMT) solver to identify the best views to satisfy a

request. VSS prunes stale views by selecting those least likely to

be useful in answering subsequent queries. Among equivalently

useful views, VSS optimizes for video quality and defragmentation.

Finally, VSS reduces the storage cost of redundant video

data collected from physically proximate cameras. It does so

by deploying a joint compression optimization that identifies

overlapping regions of video and stores these regions only

once. The key challenge lies in efficiently identifying potential

candidates for joint compression in a large database of videos. Our

approach identifies candidates efficiently without requiring any

metadata specification. To identify video overlap, VSS incrementally

fingerprints video fragments (i.e., it produces a feature vector

that robustly characterizes video regions) and, using the resulting

fingerprint index, searches for likely correspondences between

pairs of videos. It finally performs a more thorough comparison

between likely pairs.

In summary, we make the following contributions:

• We design a new storage manager for video data that

leverages the fine-grained physical properties of videos to

improve application performance (Section 2).

• We develop a novel technique to perform reads by selecting

from many materialized views to efficiently produce an

output while maintaining the quality of the resulting video

data (Section 3).

• We develop a method to optimize the storage required to

persist videos that are highly overlapping or contain similar

visual information, an indexing strategy to identify such

regions (Section 5), and a protocol for caching multiple

versions of the same video (Section 4).

We evaluate VSS against existing video storage techniques and

show that it can reduce video read time by up to 54% and decrease

storage requirements by up to 45% (Section 6).

2 VSS OVERVIEW

Consider an application that monitors an intersection for

automobiles associated with missing children or adults with

dementia. A typical implementation would first ingest video data

frommultiple locations around the intersection. It would then index

regions of interest, typically by decompressing and converting the

entire video to an alternate representation suitable for input to a

machine learning model trained to detect automobiles. Many video

query processing systems provide optimizations that accelerate this

process [27, 35, 54]. Subsequent operations, however, might execute

more specific queries only on the regions that have automobiles.

For example, if a red vehicle is missing, a user might issue a query

to identify all red vehicles in the dataset. Afterward, a user might

request and view all video sequences containing only the likely

candidates. This might involve further converting relevant regions

to a representation compatible with the viewer (e.g., at a resolution

compatible with a mobile device or compressed using a supported

codec). We show VSS’s performance for this application in Section 6.



While today’s video processing engines perform optimizations

for operations over entire videos (e.g., the indexing phase described

above), their storage layers provide little or no support for

subsequent queries over the results (even dedicated systems such as

quFiles [49] or VStore [54] transcode entire videos, even when only

a few frames are needed). Meanwhile, when the above application

uses VSS to read a few seconds of low-resolution, uncompressed

video data to find frames containing automobiles, it can delegate

responsibility to VSS for efficiently producing the desired frames.

This is true even if the video is streaming or has not fully been

written to disk.

Critically, VSS automatically selects the most efficient way to

generate the desired video data in the requested format and region of

interest (ROI) based on the original video and cached representations.

Further, to support real-time streaming scenarios, writes to VSS are

non-blocking and users may query prefixes of ingested video data

without waiting on the entire video to be persisted.

Figure 1 summarizes the set of VSS-supported operations. These

operations are over logical videos, which VSS executes to produce

or store fine-grained physical video data. Each operation involves

a point- or range-based scan or insertion over a single logical

video source. VSS allows constraints on combinations of temporal

(T ), spatial (S), and physical (P ) parameters. Temporal parameters

include start and end time interval ([s, e]) and frame rate (f ); spatial
parameters include resolution (rx × ry ) and region of interest

([x0..x1] and [y0..y1]); and physical parameters P include physical

frame layout (l ; e.g., yuv420, yuv422), compression method (c; e.g.,
hevc), and quality (to be discussed in Section 3.2).

Internally, VSS arranges eachwritten physical video as a sequence

of entities called groups of pictures (GOPs). Each GOP is composed of

a contiguous sequence of frames in the same format and resolution.

A GOP may include the full frame extent or be cropped to some

ROI and may contain raw pixel data or be compressed. Compressed

GOPs, however, are constrained such that they are independently

decodable and take no data dependencies on other GOPs.

Though a GOP may contain an unbounded number of frames,

video compression codecs typically fix their size to a small,

constant number of frames (30–300) and VSS accepts as-is ingested

compressed GOP sizes (which are typically less than 512kB). For

uncompressed GOPs, our prototype implementation automatically

partitions video data into blocks of size ≤ 25MB (the size of one rgb

4K frame), or a single frame for resolutions that exceed this threshold.

3 DATA RETRIEVAL FROM VSS

As mentioned, VSS internally represents a logical video as a

collection of materialized physical videos. When executing a read,

VSS produces the result using one or more of these views.

Consider a simplified version of the application described in

Section 2, where a single camera has captured 100 minutes of 4K

resolution, hevc-encoded video, and written it to VSS using the

name V . The application first reads the entire video and applies a

computer vision algorithm that identifies two regions (at minutes

30–60 and 70–95) containing automobiles. The application then

retrieves those fragments compressed using h264 to transmit to a

device that only supports this format. As a result of these operations,

VSS now contains the original video (m0) and the cached versions of

𝑚0 4K , 0, 100 , HEVC

𝑚1 4K , 30, 60 , H264 𝑚2 4K , 70, 95 , H264

𝑟𝑒𝑎𝑑 𝑉, 4K , [20, 80],H264

(a) Read operation on three materialized physical videos

𝑓5, 𝑐5 = 2 𝑓6, 𝑐6 = 2

𝑓1, 𝑐1 = 32 𝑓2, 𝑐2 = 32 𝑓3, 𝑐3 = 12 𝑓4, 𝑐4 = 12

ቊ

ቊ ቊ

𝑚0

𝑚1 𝑚2

(b) Physical video fragments with simplified cost formulae

Figure 2: Figure 2(a) shows the query read(V , 4k,
[20, 80],h264), where VSS has materialized m0, m1, and

m2. Figure 2(b) shows weighted fragments and costs. The

lowest-cost result is shaded.

the two fragments (m1,m2) as illustrated in Figure 2(a). The figure

indicates the labels {m0,m1,m2} of the three videos, their spatial

configuration (4k), start and end times (e.g., [0, 100] form0), and

physical characteristics (hevc or h264).

Later, a first responder on the scene views a one-hour portion of

the recorded video on her phone, which only has hardware support

for h264 decompression. To deliver this video, the application

executes read(V , 4k, [20, 80],h264), which, as illustrated by the

arrow in Figure 2(a), requests video V at 4k between time [20, 80]

compressed with h264.

VSS responds by first identifying subsets of the available physical

videos that can be leveraged to produce the result. For example,

VSS can simply transcodem0 between times [20, 80]. Alternatively,

it can transcodem0 between time [20, 30] and [60, 70],m1 between

[30, 60], andm2 between [70, 80]. The latter plan is themost efficient

sincem1 andm2 are already in the desired output format (h264),

hence VSS need not incur high transcoding costs for these regions.

Figure 2(b) shows the different selections that VSS might make

to answer this read. Each physical video fragment { f1, .. f6} in

Figure 2(b) represents a different region that VSS might select.

Note that VSS need not consider other subdivisions—for example

by subdividing f5 at [30, 40] and [40, 60]—since f5 being cheaper at

[30, 40] implies that it is at [40, 60] too.

To model these transcoding costs, VSS employs a transcode cost
model ct (f , P, S) that represents the cost of converting a physical
video fragment f into a target spatial and physical format S and

P . The selected fragments must be of sufficient quality, which

we model using a quality model u(f , f ′) and reject fragments of

insufficient quality. We introduce these models in the following

two subsections.

3.1 Cost Model

We first discuss how VSS selects fragments for use in performing

a read operation using its cost model. In general, given a read
operation and a set of physical videos, VSS must first select

fragments that cover the desired spatial and temporal ranges. To

ensure that a solution exists, VSS maintains a cover of the initially-
written video m0 consisting of physical video fragments with

quality equal to the original video (i.e.,u(m0, f ) ≥ τ ). Our prototype
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Figure 3: A simplified illustration based on Figure 2. VSS has

decided to use f1 and f5 and is considering using f3 starting
at the red-highlighted frame.However, f3 cannot be decoded
without transitively decoding its dependencies shown by

directed edges (labeled ∆).

sets a threshold τ = 40dB, which is considered to be lossless. See

Section 3.2 for details. VSS also returns an error for reads extending

outside of the temporal interval ofm0.

Second, when the selected physical videos temporally overlap,

VSS must resolve which physical video fragments to use in

producing the answer in a way that minimizes the total conversion

cost of the selected set of video fragments. This problem is similar

to materialized view selection [15]. Fortunately, a VSS read is

far simpler than a general database query, and in particular is

constrained to a small number of parameters with point- or range-

based predicates.

We motivate our solution by continuing our example from

Figure 2(a). First, observe that the collective start and end points of

the physical videos form a set of transition points where VSS can
switch to an alternate physical video. In Figure 2(a), the transition

times include those in the set {30, 60, 70}, and we illustrate them

in Figure 2(b) by partitioning the set of cached materialized views

at each transition point. VSS ignores fragments that are outside

the read’s temporal range, since they do not provide information

relevant to the read operation.

Between each consecutive pair of transition points, VSS must

choose exactly one physical video fragment. In Figure 2(b), we

highlight one such set of choices that covers the read interval.

Each choice of a fragment comes with a cost (e.g., f1 has cost 32),
derived using a cost formula given by ct (f , P, S) = α(fS , fP , S, P) ·
| f |. This cost is proportional to the total number of pixels | f | in
fragment f scaled by α(S, P, S ′, P ′), which is the normalized cost

of transcoding a single pixel from spatial and physical format (S, P)
into format (S ′, P ′). For example, using fragmentm1 in Figure 2

requires transcoding from physical format P = hevc to P ′ = h264

with no change in spatiotemporal format (i.e., S = S ′).
During installation, VSS computes the domain of α by executing

the vbench benchmark [31] on the installation hardware, which

produces per-pixel transcode costs for a variety of resolutions and

codecs. For resolutions not evaluated by vbench, VSS approximates

α by piecewise linear interpolation of the benchmarked resolutions.

VSS must also consider the data dependencies between frames.

Consider the illustration in Figure 3, which shows the frames within

a physical video with their data dependencies indicated by directed

edges. If VSS wishes to use a fragment at the frame highlighted

in red, it must first decode all of the red frame’s dependent frames,
denoted by the set ∆ in Figure 3. This implies that the cost of

transcoding a frame depends on where within the video it occurs,

and whether its dependent frames are also transcoded.

To model this, we introduce a look-back cost cl (Ω, f ) that gives
the cost of decoding the set of frames ∆ on which fragment f
depends if they have not already been decoded, meaning that they

are not in the set of previously selected frames Ω. As illustrated
in Figure 3, these dependencies come in two forms: independent

frames A ⊆ ∆ (i.e., frames with out-degree zero in our graphical

representation) which are larger in size but less expensive to decode,

and the remaining dependent frames ∆ − A (those with outgoing

edges) which are highly compressed but have more expensive

decoding dependencies between frames. We approximate these

per-frame costs using estimates from Costa et al. [10], which

empirically concludes that dependent frames are approximately

45% more expensive than their independent counterparts. We

therefore fix η = 1.45 and formalize look-back cost as cl (Ω, f ) =
|A − Ω | + η · |(∆ − A) − Ω |.

To conclude our example, observe that our goal is to choose a set

of physical video fragments that cover the queried spatiotemporal

range, do not temporally overlap, and minimize the decode and

look-back cost of selected fragments. In Figure 2(b), of all the

possible paths, the one highlighted in gray minimizes this cost.

These characteristics collectively meet the requirements identified

at the beginning of this section.

Generating a minimum-cost solution using this formulation

requires jointly optimizing both look-back cost cl and transcode

cost ct , where each fragment choice affects the dependencies

(and hence costs) of future choices. These dependencies make the

problem not solvable in polynomial time, and VSS employs an

SMT solver [12] to generate an optimal solution. Our embedding

constrains frames in overlapping fragments so that only one is

chosen, selects combinations of regions of interest (ROI) that spatially

combine to cover the queried ROI, and uses information about the

locations of independent and dependent frames in each physical

video to compute the cumulative decoding cost due to both transcode

and look-back for any set of selected fragments. We compare this

algorithm to a dependency-naïve greedy baseline in Section 6.1.

3.2 Quality Model

Besides efficiency, VSS must also ensure that the quality of a result

has sufficient fidelity. For example, using a heavily downsampled
(e.g., 32 × 32 pixels) or compressed (e.g., at a 1Kbps bitrate)

physical video to answer a read requesting 4k video is likely to be

unsatisfactory. VSS tracks quality loss from both sources using a

quality model u(f0, f ) that gives the expected quality loss of using

a fragment f in a read operation relative to using the originally-

written video f0. When considering using a fragment f in a read,

VSSwill reject it if the expected quality loss is below a user-specified

cutoff: u(f0, f ) < ϵ . The user optionally specifies this cutoff in

the read’s physical parameters (see Figure 1); otherwise, a default

threshold is used (ϵ = 40dB in our prototype).

The range of u is a non-negative peak signal-to-noise ratio

(PSNR), a common measure of quality variation based on mean-

squared error [22]. Values ≥40dB are considered to be lossless

qualities, and ≥30dB near-lossless. PSNR is itself defined in terms

of the mean-squared error (MSE) of the pixels in a frame relative to

the corresponding pixels in a reference frame, normalized by the

maximum pixel value.



As described previously, error in a fragment accumulates through

two mechanisms—resampling and compression—and VSS uses the

sum of both sources when computing u. We next examine how VSS

computes error from each source.

Resampling error. First, for downsampled error produced

through a resolution or frame rate change applied to f0, computing

MSE(f , f0) is straightforward. However, VSS may transitively apply

these transformations to a sequence of fragments. For example, f0
might be downsampled to create f1, and f1 later used to produce f2.
In this case, when computingMSE(f0, f2), VSS no longer has access
to the uncompressed representation of f0. Rather than expensively

re-decompressing f0, VSS instead bounds MSE(f0, fn ) in terms

of MSE(f0, f1), ...,MSE(fn−1, fn ), which are a single real-valued

aggregates stored as metadata. We show a proof in [17].

Compression error. Unlike resampling error, tracking quality

loss due to lossy compression error is challenging because it cannot

be calculated without decompressing—an expensive operation—

and comparing the recovered version to the original input. Instead,

VSS estimates compression error in terms of mean bits per

pixel per second (MBPP/S), which is a metric reported during

(re)compression. VSS then estimates quality by mapping MBPP/S to

the PSNR reported by the vbench benchmark [31], a benchmark for

evaluating video transcode performance in the cloud. To improve

on this estimate, VSS periodically samples regions of compressed

video, computes exact PSNR, and updates its estimate.

4 DATA CACHING IN VSS

We now describe how VSS decides which physical videos to

maintain, and which to evict under low disk space conditions. This

involves making two interrelated decisions:

• When executing a read, should VSS admit the result as a new

physical video for use in answering future reads?

• When disk space grows scarce, which existing physical

video(s) should VSS discard?

To aid both decisions, VSS maintains a video-specific storage budget
that limits the total size of the physical videos associated with each

logical video. The storage budget is set when a video is created in

VSS (see Figure 1) and may be specified as a multiple of the size of

the initially written physical video or a fixed ceiling in bytes. This

value is initially set to an administrator-specified default (10× the

size of the initially-written physical video in our prototype). As

described below, VSS ensures a sufficiently-high quality version

of the original video can always be reproduced. It does so by

maintaining a cover of fragments with sufficiently high quality

(PSNR ≥ 40dB in our prototype, which is considered to be lossless)

relative to the originally ingested video.

The key idea behind VSS’s cache is to logically break physical

videos into “pages.” That is, rather than treating each physical video as

a monolithic cache entry, VSS targets the individual GOPs within each
physical video. Using GOPs as cache pages greatly homogenizes the

sizes of the entries that VSS must consider. VSS’s ability to evict GOP

pageswithin a physical video differs from other variable-sized caching

efforts such as those used by content delivery networks (CDNs), which

make decisions on large, indivisible, and opaque entries (a far more

challenging problem space with limited solutions [7]).

However, there are key differences between GOPs and pages. In

particular, GOPs are related to each other; i.e., (i) one GOP might be

a higher-quality version of another, and (ii) consecutive GOPs form a

contiguous video fragment. These correlations make typical eviction

policies like least-recently used (LRU) inefficient. In particular, naïve

LRU might evict every other GOP in a physical video, decomposing

it into many small fragments and increasing the cost of reads (which

have exponential complexity in the number of fragments).

Additionally, given multiple, redundant GOPs that are all

variations of one another, ordinary LRU would treat eviction of

a redundant GOP the same as any other GOP. However, our

intuition is that it is desirable to treat redundant GOPs different

than singleton GOPs without such redundancy.

Given this intuition, VSS employs a modified LRU policy

(LRUV SS ) that associates each fragment with a nonnegative

sequence number computed using ordinary LRU offset by:

• Position (p). To reduce fragmentation, VSS increases the

sequence number of fragments near the middle of a physical

video, relative to the beginning or end. For a video with

n fragments arranged in ascending temporal order, VSS

increases the sequence number of fragment fi by p(fi ) =
min(i,n − i).

• Redundancy (r ). VSS decreases the sequence number of

fragments that have redundant or higher-quality variants.

To do so, using the quality cost model u, VSS generates a

u-ordering of each fragment fi and all other fragments that

are a spatiotemporal cover of fi . VSS decreases the sequence
number of fi by its rank r (fi ) : Z

0+
in this order (i.e., r (fi ) = 0

for a fragment with no higher-quality alternatives, while

r (fi ) = n for a fragment with n higher-quality variants).

• Baseline quality (b). VSS never evicts a fragment if it

is the only fragment with quality equal to the quality of

the corresponding fragment m0 in the originally-written

physical video. To ensure this, given a set of fragments F in a

video, VSS increases the sequence number of each fragment

by (our prototype sets τ = 40):

b(fi ) =

{
+∞ if �fj ∈ F \ fi .u(m0, fj ) ≥ τ

0 otherwise

Using the offsets described above, VSS computes the sequence

number of each candidate fragment fi as LRU vss(fi ) = LRU (fi ) +
γ · p(fi ) − ζ · r (fi ) + b(fi ). Here weights γ and ζ balance between

position and redundancy, and our prototype weights the former

(γ = 2) more heavily than the latter (ζ = 1). It would be a

straightforward extension to expose these as parameters tunable

for specific workloads.

5 DATA COMPRESSION IN VSS

VSS employs two compression-oriented optimizations and one

optimization that reduces the number of physical video fragments.

Specifically, VSS (i) jointly compresses redundant data across

multiple physical videos (Section 5.1); (ii) lazily compresses blocks

of uncompressed, infrequently-accessed GOPs (Section 5.2); and (iii)

improves the read performance by compacting temporally-adjacent

video (Section 5.3).
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5.1 Joint Physical Video Compression

Increasingly large amounts of video content is produced from

cameras that are spatially proximate with similar orientations.

For example, a bank of traffic cameras mounted on a pole will

each capture video of the same intersection from similar angles.

Although the amount of “overlapping video” being produced is

difficult to quantify, it broadly includes traffic cameras (7.5PB per

day in the United Kingdom [9]), body-worn cameras (>1TB per

day [55]), autonomous vehicles (>15TB per vehicle per hour [21]),

along with videos of tourist locations, concerts, and political events.

Despite the redundant information that mutually exists in these

video streams, most applications treat these video streams as

distinct and persist them separately to disk.

VSS optimizes the storage of these videos by reducing the

redundancy between pairs of highly-similar video streams. It

applies this joint compression optimization to pairs of GOPs in

different logical videos. VSS first finds candidate GOPs to jointly

compress. Then, given a pair of overlapping GOP candidates, VSS

recompresses them frame-by-frame (we describe this process in

Section 5.1.1). For static cameras, once VSS compresses the first

frame in a GOP, it can reuse the information it has computed to

easily compress subsequent frames in the same GOP. We describe

joint compression for dynamic cameras in Section 5.1.2. We finally

describe the search process for overlapping GOPs in Section 5.1.3.

5.1.1 Joint frame compression. Figure 4 illustrates the joint

compression process for two frames taken from a synthetic dataset

(Visual Road-1K-50%, described in Section 6). Figures 4(a) and 4(b)

respectively show the two frames with the overlap highlighted.

Figure 4(c) shows the combined regions.

Because these frames were captured at different orientations,

combining them is non-trivial and requires more than an

isomorphic translation or rotation (e.g., the angle of the horizontal

sidewalk is not aligned). Instead, VSS estimates a homography

between the two frames and a projection is used to transform

between the two spaces. As shown in Figure 4(c), VSS transforms

the right frame, causing its right side to bulge vertically. However,

after it is overlaid onto the left frame, the two align near-perfectly.

Joint projection proceeds as follows (see [17] for formalization).

First, VSS estimates a homography between two frames in the GOPs

being compressed. Next, it applies a feature detection algorithm [32]

that identifies features that co-occur in both frames. Using these

features, it estimates the homography matrix used to transform

between frame spaces.

With a homography estimated, VSS projects the right frame into

the space of the left frame. This results in three distinct regions: (i)

a non-overlapping “left” region of the left frame, (ii) an overlapping

region, and (iii) a “right” region of the right frame that does not

overlap with the left. VSS splits these into three distinct regions

and uses an ordinary video codec to encode each region separately

and write it to disk.

When constructing the overlapping region, VSS applies a

merge function that transforms overlapping pixels from each

overlapping region and outputs a merged, overlapping frame. An

unprojected merge favors the unprojected frame (i.e., the left frame

in Figure 4(c)), while a mean merge averages the pixels from both

input frames. During reads, VSS reverses this process to produce the

original frames. We show representative recovered frames in [17].

Some frames stored in VSS may be exact duplicates, however, for

which the projection process described above introduces unnecessary

computational overhead. VSS detects this case by checking whether

the homography matrix would make a near-identity transform

(specifically by checking | |H − I|| ≤ ϵ , where ϵ = 1

10
in our

prototype). When this condition is met, VSS instead replaces the

redundant GOP with a pointer to its near-identical counterpart.

5.1.2 Dynamic & mixed resolution cameras. For stationary and

static cameras, the originally-computed homography is sufficient

to jointly compress all frames in a GOP. For dynamic cameras,

however, the homography quickly becomes outdated and, in the

worst case, the cameras may no longer overlap. To guard against

this, for each jointly compressed frame, VSS inverts the projection

process and recovers the original frame. It then compares the

recovered variant against the original using its quality model (see

Section 3.2). If quality is too low (<24dB in our prototype), VSS

re-estimates the homography and reattempts joint compression,

and aborts if the reattempt is also of low quality.

For both static and dynamic cameras, VSS may occasionally

poorly estimate the homography between two otherwise-

compatible frames. The recovery process described above also

identifies these cases. When detected (and if re-estimation is

unsuccessful), VSS aborts joint compression for that pair of GOPs.

We show an example of recovered frames where VSS produced an

incorrect homography in an extended version of this paper [17].

VSS may also identify joint compression candidates that are at

dissimilar resolutions. To handle this case, VSS first upscales the

lower resolution fragment to that of the higher. It then applies joint

compression as usual.
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5.1.3 Selecting GOPs for joint compression. Thus far we have

discussed how VSS applies joint compression to a pair of GOPs, but

not how the pairs are selected. Since the brute force approach of

evaluating all O(n2) pairs is prohibitively expensive, VSS instead

uses the multi-step process illustrated in Figure 5. First, to reduce

the search space, VSS clusters all video fragments using their

color histograms. Videos with highly distinct color histograms

are unlikely to benefit from joint compression. The VSS prototype

implementation uses the BIRCH clustering algorithm [57], which

is memory efficient, scales to many data points, and allows VSS to

incrementally update its clusters as new GOPs arrive.

Once VSS has clustered the ingested GOPs, it selects the

cluster with the smallest radius and considers its constituents for

joint compression. To do so, VSS applies a modified form of the

homography computation described above. It begins by applying

the feature detection algorithm [32] from Section 5.1.1. Each feature

is a spatial histogram characterizing an “interesting region” in the

frame (i.e., a keypoint). VSS next looks for other GOPs in the cluster

that share a large number of interesting regions. Thus, for each GOP,

VSS iteratively searches for similar features (i.e., within distance

d) located in other GOPs within the cluster. A correspondence,

however, may be ambiguous (e.g., if a feature in GOP 1 matches to

multiple, nearby features in GOP 2). VSS rejects such matches.

When VSS finds m or more nearby, unambiguous

correspondences, it considers the pair of GOPs to be sufficiently

related. It then applies joint compression to the GOP pair as

described above. Note that the algorithm described in Section 5.1.1

will abort if joint compressing the GOPs does not produce a

sufficiently high-quality result. Our prototype setsm = 20, requires

features to be within d = 400 (using a Euclidean metric), and

disambiguates using Lowe’s ratio [33].

5.2 Deferred Compression

Most video-oriented applications operate over decoded video data

(e.g., rgb) that is vastly larger than its compressed counterpart

(e.g., the VisualRoad-4K-30% dataset we describe in Section 6 is

5.2TB uncompressed as 8-bit rgb). Caching this uncompressed

video quickly exhausts the storage budget.

To mitigate this, VSS adopts the following approach. When

a video’s cache size exceeds a threshold (25% in our prototype),

VSS activates its deferred compression mode. Thereafter when an

uncompressed read occurs, VSS orders the video’s uncompressed

cache entries by eviction order. It then losslessly compresses the

last entry (i.e., the one least likely to be evicted). It then executes

the read as usual.

Our prototype uses Zstandard for lossless compression, which

emphasizes speed over compression ratio (relative to more

expensive codecs such as PNG or HEVC) [13].

VSS performs two additional optimizations. First, Zstandard

comes with a “compression level” setting in the range [1..19],

with the lowest setting having the fastest speed but the lowest

compression ratio (and vice versa). VSS linearly scales this

compression level with the remaining storage budget, trading

off decreased size for increased throughput. Second, VSS also

compresses cache entries in a background thread when no other

requests are being executed.

5.3 Physical Video Compaction

While caching, VSS persists pairs of cached videos with contiguous

time and the same spatial and physical configurations. (e.g., entries

at time [0, 90] and [90, 120]). Deferred compression may also create

contiguous entries.

To reduce the number of videos that need to be considered during

a read, VSS periodically and non-quiescently compacts pairs of

contiguous cached videos and substitutes a unified representation.

It does so by periodically examining pairs of cached videos and, for

each contiguous pair, creating hard links from the second into the

first. It then removes the second copy.

6 EVALUATION

We have implemented a prototype of VSS in Python and C
++

using CUDA [40], NVENCODE [39], OpenCV [41], FFmpeg [6],

and SQLite [45]. Our prototype adopts a no-overwrite policy and

disallows updates. We plan on supporting both features in the

future. Finally, VSS does not guarantee writes are visible until the

file being written is closed.

Baseline systems. We compare against VStore [54], a recent

storage system for video workloads, and direct use of the local file

system. We build VStore with GPU support. VStore intermittently

failed when operating on >2, 000 frames and so we limit all VStore

experiments to this size.

Experimental configuration. We perform all experiments

using a single-node system equipped with an Intel i7 processor,

32GB RAM, and a Nvidia P5000 GPU.

Datasets. We evaluate using both real and synthetic video

datasets (see Table 1). We use the former to measure VSS

performance under real-world inputs, and the latter to test on

a variety of carefully-controlled configurations. The “Robotcar”

dataset consists of two highly-overlapping videos from vehicle-

mounted stereo cameras [36]. The dataset is provided as 7,494 PNG-

compressed frames at 30 FPS (as is common for datasets that target

machine learning). We cropped and transcoded these frames into a

h264 video with one-second GOPs.



Table 1: Datasets used to evaluate VSS

Dataset Resolution # Frames

Compressed

Size (MB)

Robotcar 1280×960 7,494 120

Waymo 1920×1280 398 7

VisualRoad 1K-30% 960×540 108k 224

VisualRoad 1K-50% 960×540 108k 232

VisualRoad 1K-75% 960×540 108k 226

VisualRoad 2K-30% 1920×1080 108k 818

VisualRoad 4K-30% 3840×2160 108k 5,500
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The “Waymo” dataset is an autonomous driving dataset [51]. We

selected one segment (∼20s) captured using two vehicle-mounted

cameras. Unlike the Robotcar dataset, we estimate that Waymo

videos overlap by ∼15%.

Finally, the various “VisualRoad” datasets consist of synthetic

video generated using a recent video analytics benchmark designed

to evaluate the performance of video-oriented data management

systems [20]. To generate each dataset, we execute a one-hour

simulation and produce video data at 1K, 2K, and 4K resolutions.

We modify the field of view of each panoramic camera in the

simulation so that we could vary the horizontal overlap of the

resulting videos. We repeat this process to produce five distinct

datasets; for example, “VisualRoad-1K-75%” has two 1K videos with

75% horizontal overlap.

Because the size of the uncompressed 4K Visual Road dataset

(∼ 5TB) exceeds our storage capacity, we do not show results that

require fully persisting this dataset uncompressed on disk.

6.1 Data Retrieval Performance

Long Read Performance.We first explore VSS performance for

large reads at various cache sizes. We repeatedly execute queries

of the form read(VRoad-4K-30%, 4k, [t1, t2], P), with parameters

drawn at random. We assume an infinite budget and iterate until

VSS has cached a given number of videos.

We then execute a maximal hevc read (t=[0–3600]), which is

different from the originally-written physical video (h264). This

allows VSS to leverage its materialized fragments.

Figure 6 shows performance of this read. Since none of the other

baseline systems support automatic conversion from h264 to hevc,

we do not show their runtimes for this experiment.
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As we see in Figure 6, even a small cache improves read

performance substantially—28% at 100 entries and up to a

maximum improvement of 54%. Further, because VSS decodes fewer

dependent frames, VSS’s solver-based fragment selection algorithm

outperforms both reading the original video and a naïve baseline

that greedily selects fragments.

Short Read Performance. We next examine VSS performance

when reading small, one-second regions of video (e.g., to apply

license plate detection only to regions of video that contain

automobiles). In this experiment, we begin with the VSS state

generated by the previous experiment and execute many short

reads of the form read(VisualRoad-4K-30%,R, [t1, t2], P), where
0 ≤ t1 < 3600 and t2 = t1 + 1 (i.e., random 1 second sequences). R
and P are as in the previous experiment.

Figure 8 shows the result for VSS (“VSS (All Optimizations)”)

versus reading from the original video from the local file system

(“Local FS”). For this experiment, VSS is able to offer improved

performance due to its ability to serve from a cache of lower-cost

fragments, rather than transcoding the source video. We discuss

the other optimizations in this plot in Section 6.3.

Read Format Flexibility.Our next experiment evaluates VSS’s

ability to read video data in a variety of formats. To evaluate, we

write the VRoad-1K-30% dataset to each system in both compressed

(224MB) and uncompressed form (∼328GB). We then read video

from each system in various formats and measure throughput.

Figure 10 shows read results for the same (10(a)) and different (10(b))

formats. Because the local file system does not support automatic
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transcoding (e.g., h264 to rgb), we do not show results for these

cases. Additionally, VStore does not support reading some formats;

we we omit these cases.

We find that read performance without a format conversion

from VSS is modestly slower than the local file system, due in

part to the local file system being able to execute entirely without

kernel transitions and VSS’s need to concatenate many individual

GOPs. However, VSS can adapt to reads in any format, a benefit

not available when using the local file system.

We also find that VSS outperforms VStore when reading

uncompressed video and is similar when transcoding h264.

Additionally, VSS offers flexible IO format options and does not

require a workload to be specified in advance.

6.2 Data Persistence & Caching

Write Throughput. We next evaluate VSS write performance

by writing each dataset to each system in both compressed

and uncompressed form. For uncompressed writes, we measure

throughput and show results in Figure 11(a).

For uncompressed datasets that fit on local storage, all systems

perform similarly. On the other hand, no other systems have

the capacity to store the larger uncompressed datasets (e.g.,

VisualRoad-4K-30% is >5TB uncompressed). However, VSS’s

deferred compression allows it to store datasets no other system

can handle (though with decreased throughput).

Figure 11(b) shows results for writing the compressed datasets

to each store. Here all perform similarly; VSS and VStore exhibit

minor overhead relative to the local file system.

Cache Performance. To evaluate the VSS cache eviction policy,

we begin by executing 5,000 random reads to populate the cache,

using the same parameters as in Section 6.1. In this experiment,

instead of using an infinite storage budget, we limit it to multiples of

the input size and apply either the least-recently used (LRU) or VSS

eviction policy. This limits the number of physical videos available

for reads. With the cache populated, we execute a final read for the

entire video. Figure 12 plots runtimes for each policy and storage

budget. This shows that VSS reduces read time relative to LRU.
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Table 2: Joint compression recovered quality

Dataset

Quality (PSNR) Fragments

Unprojected Mean Admitted (%)

Left/Right Left/Right Unprojected / Mean

Robotcar 350 / 24 30 / 27 36 / 64

Waymo 352 / 29 32 / 30 39 / 68

VRoad-1K-30% 359 / 30 31 / 30 46 / 80

VRoad-1K-50% 358 / 28 29 / 29 41 / 72

VRoad-1K-75% 348 / 24 30 / 28 44 / 68

VRoad-2K-30% 352 / 30 30 / 30 52 / 82

VRoad-4K-30% 360 / 30 29 / 30 54 / 78

6.3 Compression Performance

Joint Compression Quality. We first examine the recovered

quality of jointly-compressed physical videos. For this experiment we

write various overlapping Visual Road datasets to VSS. We then read

each video back fromVSS and compare its quality—using peak signal-

to-noise ratio (PSNR)—against its originally-written counterpart.

Table 2 gives the PSNR for recovered data compared against the

written videos. Recall that a PSNR of ≥40 is considered to be lossless,

and ≥30 near-lossless [22]. When applying the unprojected merge

function during joint compression, VSS achieves almost perfect

recovery for the left input (with PSNR values exceeding 300dB)

and near-lossless quality for the right input. Loss in fidelity occurs

when inverting the merge, i.e., performing the inverse projection on

the right frame using left-frame pixels decreases the quality of the

recovered frame. This merge function also leads to VSS rejecting

approximately half of the fragments due to their falling below the

minimum quality threshold. We conclude this merge function is

useful for reducing storage size in video data that must maintain at

least one perspective in high fidelity.

On the other hand, VSS attains balanced, near-lossless quality

for both the left and right frames when applying the mean merge

function during joint compression. Additionally, the number of

fragments admitted by the quality model is substantially higher

under this merge function. Accordingly, the mean merge function

is appropriate for scenarios where storage size is paramount and

near-lossless degradation is acceptable.

Joint Compression Throughput. We next examine read

throughput with and without the joint compression optimization.

First, we write the VisualRoad-1K-30% dataset to VSS, once with joint

compression enabled and separately with it disabled. We then read
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in various physical configurations over the full duration. Figure 14(a)

shows the throughput for reads using each configuration. Our results

indicate that read overhead when using joint compression is modest

but similar to reads that are not co-compressed.

Joint compression requires several nontrivial operations, and

we next evaluate this overhead by writing 1k, 2k, and 4k

video and measuring throughput. Figure 14(b) shows the results.

Joint writes are similar to writing each video stream separately.

This speedup is due to VSS’s encoding the lower-resolution

streams in parallel. Additionally, the overhead in feature detection

and generating the homography is low. Figure 15 decomposes

joint compression overhead into these subcomponents. First,

Figure 15(a) measures joint compression overhead by resolution,

where compression costs dominate for all resolutions. Figure 15(b)

further shows VSS performance under three additional scenarios: a

static camera, a slowly rotating camera that requires homography

reestimation every fifteen frames, and a rapidly rotating camera

that requires reestimation every five frames. In these scenarios

non-compression costs scale with the reestimation period, and

compression performance is loosely correlated since a keyframe is

needed after every homography change.

We next evaluate VSS’s joint compression selection algorithm.

Using VisualRoad-1K-30%, we count joint compression candidates

using (i) VSS’s algorithm, (ii) an oracle, and (iii) random selection.

Figure 7 shows performance of each strategy. VSS identifies 80% of

the applicable pairs in time similar to the oracle and outperforms

random sampling.

Joint Compression Storage. To show the storage benefit of

VSS’s joint compression optimization, we separately apply the

optimization to each of the Visual Road videos. We then measure

the final on-disk size of the videos against their separately-encoded
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variants. Figure 13 shows the result of this experiment. These

results show joint compression substantially reduces the storage

requirements of overlapping video.

Deferred Compression Performance. We next evaluate

deferred compression for uncompressed writes by storing 3600

frames of the VisualRoad-1K-30% dataset in VSS, leaving budget

and deferred compression at their defaults.

The results are listed in Figure 9. The figure shows storage used

as a percentage of the budget, throughput relative to writing without

deferred compression activated, and compression level. Storage used

exceeds the deferred compression threshold early in the write, and a

slope change shows that deferred compression is moderating write

size. Compression level scales linearly with storage cost. Throughput

drops substantially as compression is activated, recovers considerably,

and then slowly degrades as the level is increased.

Similarly, Figure 16 shows throughput for reading fragments

of raw video compressed at various levels. Though these reads

have decreased performance and increased variance relative to

uncompressed reads, at all levels ZStandard decompression remains

much faster than using traditional video codecs.

Finally, Figure 8 explores the trade-offs between deferred

compression performance and VSS’s cache eviction policy. In this

experiment we variously disable deferred compression (“VSS (No

Deferred Compression)”) and modify VSS to use ordinary LRU

(“VSS (Ordinary LRU)”). The results show that VSS benefits from

its eviction policy for small numbers of fragments (when deferred

compression is off or at a low level) but offers increasingly large

benefits as the cache grows. At large cache sizes as the storage

budget is exhausted, deferred compression is increasingly important

to mitigate eviction of fragments that are subsequently useful.

6.4 End-to-End Application Performance

Our final experiment evaluates the performance of the end-to-end

application described in Section 2. In this scenario, VSS serves as

the storage manager for an application monitoring an intersection

for automobiles. It involves three steps: (i) an indexing phase that
identifies video frames containing automobiles using a machine

learning algorithm, (ii) a search phase that, given an alert for a

missing vehicle, uses the index built in the previous step to query

video frames containing vehicles with matching colors, and (iii) a

streaming content retrieval phase that uses the search phase results

to retrieve video clips containing vehicles of a given color.



We implement this application using VSS and a variant that reads

video data using OpenCV and the local file system. For indexing, the

application identifies automobiles using YOLOv4 [8] (both variants

use OpenCV to perform inference using this model). For the search

task, vehicle color is identified by computing a color histogram

of the region inside the bounding box. We consider a successful

detection to occur when the Euclidean distance between the largest

bin and the search color is ≤ 50. In the content retrieval phase, the

application generates n video clips by retrieving contiguous frames

containing automobiles of the search color.

We use as input four extended two-hour variants of the Visual

Road 2k dataset. To simulate execution by multiple clients, we

launch a separate process for each client. Both variants index

automobiles every ten frames (i.e., three times a second). All steps

exhaust all CPU resources at > 4 clients, and so we limit concurrent

requests to this maximum.

Figure 17 shows the performance of each application step. The

indexing step is a CPU-intensive operation that necessitates both

video decoding and model inference, and because VSS introduces

low overhead for reads, both variants perform similarly. Conversely,

VSS excels at executing the search step, which requires retrieving

raw, uncompressed frames that were cached during the indexing

step. As such, it substantially outperforms the OpenCV variant.

Finally, VSS’s ability to efficiently identify the lowest-cost transcode

solution enables it to execute the streaming content retrieval

step significantly faster than the OpenCV variant. We conclude

that VSS’s performance greatly improves end-to-end application

performance for queries that depend on cached video in multiple

formats, and scales better with multiple clients.

7 RELATEDWORK

Increased interest in machine learning and computer vision has

led to the development of a number of systems that target

video analytics, including LightDB [19], VisualWorldDB [18],

Optasia [34], Chameleon [25], Panorama [58], Vaas [4], SurvQ [46],

and Scanner [43]. These systems can be modified to leverage a

storage manager like VSS. Video accelerators such as BlazeIt [27],

VideoStorm [56], Focus [23], NoScope [28], Odin [47], SQV [53],

MIRIS [3], Tahoma[2], and Deluceva [50] can also benefit from VSS

for training and inference.

Few recent storage systems target video analytics (although

others have highlighted this need [14, 26]). VStore [54] targets

machine learning workloads by staging video in pre-specified

formats. However, VStore requires a priori knowledge of the

workload and only makes preselected materializations available.

By contrast, quFiles exploits data independence at the granularity

of entire videos [49]. Others have explored on-disk layout of video

for scalable streaming [30], and systems such as Haystack [5], AWS

Serverless Image Handler [1], and VDMS [44] emphasize image

and metadata operations.

Techniques similar to VSS’s joint compression optimization have

been explored in the image and signal processing communities.

For example, Melloni et al. develop a pipeline that identifies and

aligns near-duplicate videos [38], and Pinheiro et al. introduce

a fingerprinting method to identify correlations among near-

duplicate videos [42]. However, unlike VSS, these techniques

assume that sets of near-duplicate videos are known a priori

and they do not exploit redundancies to improve compression or

read/write performance. Finally, the multiview extension to HEVC

(MV-HEVC; similar extensions exist for other codecs) attempts to

exploit spatial similarity in similar videos to improve compression

performance [16]. These extensions are complementary to VSS,

which could incorporate them as an additional compression codec

for jointly-compressed video.

Finally, as in VSS, the database community has long

exploited data independence to improve performance. Orthogonal

optimizations could further improve VSS performance (e.g.,

perceptual compression [37] or homomorphic operators [19]).

8 CONCLUSION

We presented VSS, a video storage system that improves the

performance of video-oriented applications. VSS decouples high-

level operations (e.g., machine learning) from the low-level

plumbing to read and write data in a suitable format. VSS

automatically identifies the most efficient method to persist and

retrieve video data. VSS reduces read time by up to 54%, and

decreases the cost of persisting video by up to 45%.

As future work, we plan on extending VSS’s joint compression

optimization to support more intelligent techniques for merging

overlapping pixels. For example, VSS might intelligently detect

occlusions and persist both pixels in these areas. This is important

for cases where video must be maintained in its (near-)original

form (e.g., for legal reasons).
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