
Nanodegree Program Syllabus

Cloud Native Application
Architecture

I N D I V I D U A L L E A R N E R S

S C H O O L O F C L O U D C O M P U T I N G

Cloud Native Application Architecture 2

Overview

In this program, students will learn to run and manage scalable applications in a cloud native environment, using open source

tools and projects like ArgoCD, gRPC, and Grafana. Students will learn to identify the best application architecture solutions

for an organization’s needs, design a microservice architecture by leveraging cloud native tools and patterns, implement best

practices in Kubernetes security, and use dashboards to diagnose, troubleshoot, and improve site reliability.

Built in collaboration with:

Program information

4 months at 10hrs/week*

Estimated Time

Intermediate

Skill Level

*The length of this program is an estimation of total hours the average student may take to complete all required

coursework, including lecture and project time. If you spend about 5-10 hours per week working through the program, you

should finish within the time provided. Actual hours may vary.

Cloud Native Application Architecture 3

A well-prepared learner should:

•	 Understand the basics of http

•	 Understand basic Python (data types, functions, REST requests, web development)

•	 Have the ability to use Git, Linux machines, and Linux command line

•	 Be familiar with web application development in any language

•	 Be familiar with Docker (exposure to a CI/CD pipeline can be helpful, but isn’t required)

There are no software and version requirements to complete this Nanodegree program. All coursework and projects can be

completed via Student Workspaces in the Udacity online classroom.

Prerequisites

Required Hardware/Software

Cloud Native Application Architecture 4

Course 1

Cloud Native Fundamentals
Throughout this course, students will learn how to structure, package, and release an application to a Kubernetes cluster, while

using an automated CI/CD pipeline. They will start by applying a suite of good development practices within an application,

package it with Docker, and distribute it through DockerHub. This will transition to the exploration of Kubernetes resources

and how these can be used to deploy an application. At this stage, learners will be comfortable using k3s to bootstrap a

lightweight and functional Kubernetes cluster. Next, they will examine template configuration managers, such as Helm, to

implement the parameterization of Kubernetes declarative manifests. Towards the end of the course, students will learn the

fundamentals of continuous integration and continuous delivery (CI/CD) with GitHub Actions and ArgoCD and completely

automate the release process for an application.

TechTrends

TechTrends is an online website used as a news sharing platform that enables users to access the latest

news within the cloud-native ecosystem. Learners will need to extend the project to export and visualize the

logs, metrics and status of the application. They will apply their acquired knowledge to package, store, and

distribute the code as a Docker image. In its turn, the artifact (or Docker image) will be deployed to a cluster

using Kubernetes resources, such as deployments and services. By the end of the project, learners will use

Helm to template the Kubernetes manifests, and automate the TechTrends project release using GitHub

Actions and ArgoCD.

Course Project

Lesson 1

Welcome to Cloud Native
Fundamentals

•	 Evaluate the cloud native ecosystem.

•	 Explore CNCF (Cloud Native Computing Foundation) and cloud native tooling.

Cloud Native Application Architecture 5

Lesson 2

Architecture Consideration
for Cloud Native Applications

•	 Choose monolith or microservice based-architecture for an application.

•	 Consider and evaluate the involved tradeoffs for monoliths and microservices.

•	 Apply good development practices to an application.

Lesson 3

Container Orchestration
with Kubernetes

•	 Use Docker to package an application and distribute it via DockerHub.

•	 Bootstrap a Kubernetes cluster using k3s.

•	 Explore Kubernetes resources for an application deployment.

•	 Differentiate between declarative and imperative Kubernetes management

techniques.

Lesson 4

Open Source PaaS

•	 Understand the usage and abstracted components while using a Platform as a

Service (PaaS) solution.

•	 Explore application deployment with Cloud Foundry.

Lesson 5

CI/CD with Cloud
Native Tooling

•	 Explain CI/CD and its benefits.

•	 Apply continuous integration fundamentals using GitHub Actions.

•	 Apply continuous delivery fundamentals using ArgoCD.

•	 Use Helm, as a configuration template manager, to parametrize declarative

Kubernetes manifests.

•	 Deploy an application using ArgoCD and a Helm chart.

Cloud Native Application Architecture 6

Lesson 1

Introduction to
Message Passing

•	 Define message passing.

•	 Understand historical context of how and why message passing is used.

Refactor UdaConnect

In this project, learners will refactor UdaConnect, an existing application that facilitates professional

networking at conference and trade shows. UdaConnect ingests and uses location data to find connections

between individuals who have been near one another at an event. The current version of the application

is built as a proof-of-concept with a monolith architecture. The task is to apply strategies from the course

to refactor this application into a microservice architecture and implement message passing strategies to

improve its design.

Course Project

Message Passing
In this course, students will learn how to refactor microservice capabilities from a monolithic architecture, and employ

different forms of message passing in microservices. To begin, learners will create a migration strategy to refactor a service

from a monolith to its own microservice and implement the migration. Next, they will be introduced to industry standard best

practices for message passing in a service architecture and will focus on design decisions and the implementations of different

forms of message passing in development and production systems.

Course 2

Cloud Native Application Architecture 7

Lesson 2

Refactoring From a Monolith

•	 Analyze and identify the first service or capability to decompose a monolith.

•	 Create a dependency map in order to prioritize how to refactor a service

(based on business logic).

•	 Determine the appropriate migration strategy.

•	 Migrate a service from a monolith into its own microservice.

•	 Apply the strangler pattern for migrating a monolith architecture.

Lesson 3

Types of Message Passing

•	 Identify use cases and implement best practices of REST.

•	 Identify use cases of gRPC.

•	 Identify use cases and implement best practices of message queues.

Lesson 4

Implementing
Message Passing

•	 Use and apply REST.

•	 Use and apply gRPC.

•	 Use and apply Kafka.

Lesson 5

Message Passing
in Production

•	 Identify use cases of communication protocol in conjunction with one another.

•	 Use OpenAPI.

•	 Manage the lifecycle of communication protocol.

Observability
This course covers the fundamentals of observability in distributed systems. Today, Kubernetes has become the de facto

standard for cloud native applications and is widely used for distributed systems. To be effective as an observability expert, it

is critical to understand how to monitor and respond to the health and performance of both your Kubernetes clusters and the

applications hosted on them. This course will teach learners how to collect system performance data using Prometheus, collect

application tracing data using Jaeger, and visualize the results in a dashboard using Grafana.

Course 3

Cloud Native Application Architecture 8

Building a Metrics Dashboard

In this project, learners will install and use the basic tools required to perform application tracing and

performance monitoring, including Jaeger and Prometheus. They will then learn how to deploy and

use Grafana to create dashboards and graphs to visualize performance and trace data collected in the

Kubernetes cluster. Finally, learners will practice the day-to-day operations of a reliability engineer, such as

planning SLIs and filing tickets.

Course Project

Lesson 1

Introduction to Cloud
Observability

•	 Distinguish between black box and white box monitoring.

•	 Identify the stakeholders involved in observability.

•	 Identify the key tools needed to run a kubernetes cluster.

Lesson 2

Observability Tools

•	 Recognize the distinct roles that Prometheus, Grafana, and Jaeger play in

observability.

•	 Successfully install Prometheus, Grafana, and Jaeger on a Kubernetes cluster.

Lesson 3

SLOs, SLIs & Error Budgets

•	 Identify the role observability plays in modern applications.

•	 Recognize why we use SLOs and SLIs as metrics.

•	 Use error budgets to make observability decisions.

Lesson 4

Tracing

•	 Distinguish tracing from logging and identify the benefits tracing provides

beyond standard logging.

•	 Identify the basics of how a span is used when tracing applications.

•	 Identify the basics of how Jaeger helps manage a trace.

Cloud Native Application Architecture 9

Lesson 5

Building Dashboards

•	 Navigate Grafana and set up data sources.

•	 Create dashboards and panels with various metrics.

Microservices Security
Learn how to harden a Docker and Kubernetes microservices architecture. To begin, students will learn STRIDE to threat

model and reason about microservice security. Next, they will dig deep to explore the Docker and Kubernetes attack surface

and be introduced to industry open-source tools such as Docker-bench and Kube-bench to evaluate and harden Docker and

Kubernetes weaknesses. Students will then learn about software composition analysis with Trivy and Grype to evaluate image

layers and common application security vulnerabilities and provide remediation. Finally, they will deploy runtime security

monitoring to introspect running microservices for security signals and learn how to respond to a security incident.

Hardened Microservices Environment

In this project, learners will be presented with a real-life scenario to threat-model and harden a Kubernetes

environment in response to security concerns brought to them by their company’s CTO. They will use an

openSUSE base image to create a hardened Docker container and deploy it to a Docker Hub image registry.

They will then use it to deploy a Kubernetes cluster with a pre-configured Falco DaemonSet and harden the

cluster using what we learned from the course. Learners will introduce a security incident intentionally, then

work on identifying the payload, remediating it, and conducting a post-mortem. They will create alerting for

this payload, review lessons learned, and write an incident response report.

Course Project

Course 4

Cloud Native Application Architecture 10

Lesson 1

Introduction to
Microservices Security

•	 Define microservices security.

•	 Understand the difference between microservices security and traditional

infrastructure security.

Lesson 2

Threat Modeling with STRIDE

•	 Examine the STRIDE methodology for threat modeling as part of the software

development lifecycle (SDLC).

•	 Apply the STRIDE methodology to the primary Docker components.

•	 Apply the STRIDE methodology to the primary Kubernetes components.

Lesson 3

Docker Attack Surface
Analysis & Hardening

•	 Apply Docker security properties in-depth, including client, host, and registry,

evaluating threat models.

•	 Implement CIS benchmarks to harden docker images via docker-bench.

•	 Implement image signing using Docker content trust to verify the integrity of

the image.

Lesson 4

Kubernetes Attack Surface
Analysis & Hardening

•	 Examine Kubernetes security properties in-depth, including cloud-controller-

manager, etcd, kube-apiserver, kubecontroller-manager, kube-proxy, and

kube-scheduler.

•	 Evaluate findings against CIS benchmarks and apply a methodology for

hardening and testing changes.

Lesson 5

Software Composition
Analysis

•	 Examine examples of supply chain tampering with recent Solarwinds incidents

and why software analysis composition is vital to security.

•	 Examine common application security vulnerabilities and provide remediation.

•	 Examine and remediate common vulnerable libraries and application security

vulnerabilities in a Flask application.

Lesson 6

Runtime Monitoring &
Incident Response

•	 Examine security considerations for dangerous commands and ongoing

runtime security.

•	 Implement Sysdig Falco as a DaemonSet with a basic rule set to monitor node

processes and send to Grafana for visualization and alerting.

•	 Define a security response playbook to triage and respond to alerts.

Cloud Native Application Architecture 11

Meet your instructors.

Katie Gamanji

Ecosystem Advocate for Cloud Native Computing Foundation

Katie’s focus is to foster the growth and visibility of the end user community while bridging the

gap with other ecosystem units. In past roles, Katie contributed to the build-out of platforms that

gravitate towards cloud-native principles and open-source tooling.

Justin Lee

Data Platform Engineer at Stitch Fix

Justin is an engineer specializing in designing modern data platforms and scalable systems. He

has been a consultant for Fortune 500 companies and has traveled the world to work with his

clients. He provides mentorship through Codementor and has a BS in computer science from

UCLA.

Meet your instructors.

Nick Reva

Technical Manager, Engineering Security at Snapchat

Nick has 14+ years experience in security engineering. He currently leads teams that build highly

scalable security services in cloud native environments at companies such as SpaceX and Snapchat.

Jay Smith

App Modernization Specialist at Google Cloud

Jay has over 15 years experience in technology and open source solutions. Currently Jay helps

Google Cloud customers modernize their application platforms using best practices in cloud native

technologies.

Cloud Native Application Architecture 12

Udacity’s learning
experience

Knowledge

Find answers to your questions with Knowledge,

our proprietary wiki. Search questions asked by

other students, connect with technical mentors,

and discover how to solve the challenges that

you encounter.

Workspaces

See your code in action. Check the output and

quality of your code by running it on interactive

workspaces that are integrated into the platform.

Quizzes

Auto-graded quizzes strengthen comprehension.

Learners can return to lessons at any time during

the course to refresh concepts.

Custom Study Plans

Create a personalized study plan that fits your

individual needs. Utilize this plan to keep track of

movement toward your overall goal.

Progress Tracker

Take advantage of milestone reminders to stay

on schedule and complete your program.

Hands-on Projects

Open-ended, experiential projects are designed

to reflect actual workplace challenges. They aren’t

just multiple choice questions or step-by-step

guides, but instead require critical thinking.

Cloud Native Application Architecture 13

Our proven approach for building
job-ready digital skills.

Personal Career Services

Empower job-readiness.
•	 Access to a Github portfolio review that can give you an edge by highlighting your

strengths, and demonstrating your value to employers.*

•	 Get help optimizing your LinkedIn and establishing your personal brand so your profile
ranks higher in searches by recruiters and hiring managers.

Experienced Project Reviewers

Verify skills mastery.
•	 Personalized project feedback and critique includes line-by-line code review from

skilled practitioners with an average turnaround time of 1.1 hours.

•	 Project review cycle creates a feedback loop with multiple opportunities for
improvement—until the concept is mastered.

•	 Project reviewers leverage industry best practices and provide pro tips.

Technical Mentor Support

24/7 support unblocks learning.
•	 Learning accelerates as skilled mentors identify areas of achievement and potential

for growth.

•	 Unlimited access to mentors means help arrives when it’s needed most.

•	 2 hr or less average question response time assures that skills development stays on track.

Mentor Network

Highly vetted for effectiveness.
•	 Mentors must complete a 5-step hiring process to join Udacity’s selective network.

•	 After passing an objective and situational assessment, mentors must demonstrate
communication and behavioral fit for a mentorship role.

•	 Mentors work across more than 30 different industries and often complete a Nanodegree
program themselves.

*Applies to select Nanodegree programs only.

Learn more at

www.udacity.com/online-learning-for-individuals →

01.06.22 | V1.0

http://www.udacity.com/online-learning-for-individuals

