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ABSTRACT OF THE DISSERTATION

Migrating Enterprise Storage Applications to the Cloud

by

Michael Daniel Vrable
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Cloud computing has emerged as a model for hosting computing infrastructure
and outsourcing management of that infrastructure. It offers the promise of simplified
provisioning and management, lower costs, and access to resources that scale up and
down with demand. Cloud computing has seen growing use for Web site hosting, large
batch processing jobs, and similar tasks. Despite potential advantages, however, cloud
computing is not much used for enterprise applications such as backup, shared file sys-
tems, and other internal systems. Many challenges need to be overcome to make cloud
suitable for these applications, among them cost, performance, security, and interface
mismatch.

In this dissertation, I investigate how cloud infrastructure can be used for internal
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services in an organization, with a focus on storage applications. I show how to design
systems to address the challenges of using the cloud by building two example systems.
The first, Cumulus, implements file system backup to a remote cloud storage provider.
With Cumulus I consider the constraints imposed by the interface to cloud storage, and
how to work within those constraints to minimize the cost. The second system, BlueSky,
is a shared network file server which is backed by cloud storage. BlueSky builds on ideas
from Cumulus to reduce system cost. It relies on cloud storage for data durability, but
provides good performance by caching data locally. I additionally study how file system
maintenance tasks can be offloaded to the cloud while protecting the confidentiality and
integrity of file system data. Together, these two systems demonstrate that, despite the

challenges, we can bring the benefits of the cloud to enterprise storage applications.

Xvi



Chapter 1
Introduction

Cloud computing has recently emerged as a new model for hosting computing
resources such as servers and storage. Cloud computing can be seen as one means for
outsourcing computer hardware, making it easier to build many new applications on top
of the outsourced resources.

Hardware outsourcing has been around for some time: since at least the rise of
the Web, Web hosting providers have offered servers for rent in managed data centers.
One feature distinguishing cloud computing from earlier hosting, however, is the granu-
larity at which resources are available and the responsiveness in acquiring resources. In
the traditional hosting model, a customer might sign a contract to rent a server or servers
for a month at a time. In the cloud computing model, servers are often billed by the hour
and can be requested and released in a matter of minutes—thus, customers can quickly
adjust the number of servers reserved to match demand.

To users, cloud computing offers a number of compelling advantages over build-
ing out and managing their own infrastructure. For one, it transforms large up-front pur-
chases of hardware into more steady ongoing costs to rent needed resources. It also frees
users from the concerns of managing hardware, including power, networking, cooling,
and dealing with hardware failures.

With traditional provisioning, the user must either provision for peak load on the
system—which wastes resources at less-busy times—or face periods when the system
is overloaded. The elastic nature of cloud resources—the ability to quickly increase or

decrease the storage and computational resources—means that, building on the cloud,



the user can allocate and pay for exactly the resources required at any point in time. This
makes the overall system potentially both cheaper and more scalable.

Cloud computing offers advantages for the provider as well. Providers can rent
spare capacity in their already-existing data centers to earn additional profit. Due to
economies of scale, large providers can also add additional capacity to their cloud oper-
ations; the result can be a net win for both the provider and the smaller customers (who
cannot build and operate the resources more cheaply than the large provider).

The term “Utility Computing” is sometimes used to refer to cloud computing, as
an analogy with traditional utilities such as electric companies. In both cases, the utility
makes a resource (electricity, computing) available to customers. Customers consume
resources as needed, and are billed based on the quantity consumed.

Cloud computing offerings fall along a spectrum defined by the level of abstrac-
tion at which resources are offered. At one extreme is Infrastructure as a Service (IaaS).
This is closest to the traditional hosting model: with IaaS users rent resources that are
very close to the underlying hardware. For example, Amazon’s Elastic Compute Cloud
(EC2) sells virtual machines (VMs) by the hour, and the Amazon Elastic Block Store
(EBS) offers virtual hard drives for these VMs. On top of these resources, customers
manage the VMs and install whatever software they require.

Platform as a Service (PaaS) operates at a slightly higher level of abstraction.
More management tasks may be handled by the provider—such as deployment of code
written by the customer, or management of the number of machines needed. Google’s
AppEngine [18] falls into this category; customers write Python code to handle requests
but Google manages all deployment. This simplifies the customer’s work but forces the
customer to write software using a specific framework, which limits flexibility.

Finally, Software as a Service (SaaS) operates at the highest level of abstraction.
Here, the provider sells pre-packaged applications rather than computational building
blocks. This maximizes ease-of-use: the provider handles all the details and manage-
ment of both the hardware and the software. Access to the application is often (though
not necessarily) through a Web browser so that client machines need no modifications
to access the software.

Offerings at higher levels of abstraction (SaaS) provide simpler deployment and



management for users. However, [aaS and PaaS offerings have numerous benefits as
well. They have far more flexibility, so customers can build whatever applications they
need rather than being limited to what the provider offers. Furthermore, there is much
less vendor lock-in at the lower levels: all laaS providers offer more or less the same
features, so it is much easier to move from one provider to another. A user of SaaS
products may have much less choice.

In my work, I focus on applications built on top of Infrastructure- and Platform-
as-a-Service offerings, both because those offer additional flexibility and because porta-
bility between providers (and the resulting competition) should result in lower costs for
TaaS/PaaS offerings.

Cloud infrastructure can also be categorized separately as public, private, or hy-
brid [4]. Public clouds are the model described earlier, where a large provider (Amazon,
Microsoft, etc.) makes the infrastructure available to the general public. With a private
cloud, a company uses its own internal systems to build a cloud; the company does not
get the benefits of hardware outsourcing but makes the same cloud APIs available to in-
ternal applications, so that internal applications can scale up and down on the company’s
infrastructure (though some people prefer not to use the term “cloud” to refer to these
smaller-size datacenters). A hybrid cloud combines aspects of public and private clouds:
a company may build a compute cloud own its own infrastructure, but applications can
allocate resources either internally or from a public provider, as needed—for example,
using internal resources most of the time but using a public provider to handle peaks in

demand.

1.1 Cloud Computing Applications

Many companies have built successful applications on top of cloud computing
infrastructure. Numerous Web startups have built on top of public cloud infrastructure
instead of managing all hardware themselves. Early examples include Animoto (video
rendering) and SmugMug (photo storage). Companies have also used cloud compute
infrastructure for running large batch computations, especially when those computations

are one-off jobs that do not justify investment in a large cluster that would see repeat



use. One early example was the New York Times, which used Amazon EC2 to process
scanned images from their newspaper archives. These examples have the characteristic
that the workloads are either very unpredictable (based on the popularity of a startup’s
product) or bursty (batch processing workloads that require a large amount of processing
power, but only for a short period of time).

The cloud has seen less use for other applications. One area where clouds are not
much used is what I refer to as “enterprise storage applications”. These are applications
primarily used internally in an organization, and not by the organization’s customers.
Examples of these are file system backup tools, shared network file systems, e-mail
systems, and internal business applications. Software-as-a-Service providers have made
some progress with e-mail and business applications, but for many others organizations
still mostly manage their own infrastructure.

The cloud has the potential to provide benefits for these storage applications.
Building on the cloud greatly reduces the need for ahead-of-time capacity planning:
the cloud can provide as much storage as is needed, when it is needed. The cloud
provides durability for data: data written to the cloud is replicated by a cloud provider
for reliability, so the chance of data loss can be much lower than with storage managed
in-house. Finally, eliminating the need to manage reliable and scalable hardware locally
can reduce hardware costs and ongoing management costs.

Yet the cloud has not seen much use, despite these benefits. There are many
possible reasons, including performance, cost, security concerns, and the need to support
legacy systems within the organization.

Performance can be an issue when migrating to the cloud. Services running in
an organization can be accessed over a fast local-area network. Access to data and ser-
vices in the cloud requires communication across the Internet which increases latency.
Depending on network connectivity, bandwidth may be limited as well. Achieving good
performance in spite of network conditions can require changes to the application.

When migrating applications to the cloud, cost is an important concern. The
cloud can transform large up-front capital costs into ongoing operating expenses, and
potentially leads to savings—but applications must be written with the cloud provider’s

cost schedule in mind or these savings can be lost. The cost optimizations needed for an



application running on the cloud might not be the same as the optimizations that would
be made for an application running locally.

Organizations are concerned about data security in the cloud. Data stored in in-
ternal applications is often quite sensitive. Cloud providers implement layers of security
to protect data from unauthorized access, and have an incentive to do so correctly to
protect their reputations. But for very sensitive data, an organization may want stronger
assurances than simply the provider’s word that data is kept safe from unauthorized
access and tampering.

Finally, organizations are often constrained by legacy computer systems that are
not easy to replace. When possible, migrating services to the cloud should not require

extensive reconfiguration of these older systems.

1.2 Contributions

In this dissertation I investigate how cloud infrastructure can be used for internal
services in an organization, with a focus on storage applications. I show how to design
systems to address the issues of cost, performance, security, and legacy systems. I look
at two particular instances of the more general problem of storage applications: file
system backup and shared network file systems.

Cumulus implements file system backup by storing a backup copy of file data
with a cloud storage provider. Because backup can run in the background, performance
is less of a concern but the issues of cost and security are critical. With Cumulus, I show
how to construct cost-effective backup to the cloud; the design used in Cumulus differs
from most other backup systems due to the unique constraints of the cloud. In particular,
I show that Cumulus can achieve a cost within a few percent of what could be achieved
even given complete freedom to redesign the cloud provider’s interface.

BlueSky, the second system, is a network file system backed by cloud storage.
My design for BlueSky builds on ideas from Cumulus, but a network file system brings
new challenges. The BlueSky design allows storage for a network file system to be
migrated to the cloud with a minimum of reconfiguration on legacy clients. Access

patterns for a file system are different from backup, and clients reading and writing



data in BlueSky care about file system performance. I show that BlueSky can achieve
performance competitive with local file servers in many cases, depending upon how
effectively data can be cached locally. As with Cumulus, I design BlueSky to reduce
costs charged by the cloud provider. BlueSky also allows file system maintenance tasks
to be run in the cloud, while protecting data security guarantees.

Taken together, these two systems demonstrate how enterprise storage appli-
cations can be migrated to the cloud in a way that maintains security, achieves good

performance, and minimizes cost.

1.3 Organization

The remainder of this dissertation is organized as follows:

Chapter 2 covers background material useful for understanding the remainder of
the dissertation and discusses related work.

Chapters 3 and 4 present the two systems which form the core of this work.
Chapter 3 describes Cumulus, which implements file system backup to a cloud storage
provider. After briefly describing the problem, I explain the design used in Cumulus to
solve it. Then, I describe the implementation of Cumulus in more detail and evaluate
the performance of Cumulus using simulations and the actual prototype. In Chapter 4
I describe BlueSky, which extends the ideas in Cumulus to build a complete network
file server. I first lay out the high-level architecture of BlueSky, which includes a local
proxy to cache file system data. Then, I explain the data layout in the cloud and the
design and implementation of the proxy in more detail. Following this, I measure and
present an evaluation of the performance of BlueSky before concluding.

Finally, Chapter 5 summarizes my work and discusses directions for future re-

search.



Chapter 2
Background

In this chapter I set the context for the remainder of the dissertation by providing
more detailed background information. First, I describe the functionality offered by
cloud service providers and discuss the two features on which my work builds—storage
and compute nodes—in more detail. Then, I discuss enterprise storage applications and

explain the functionality needed in backup and shared network file systems.

2.1 Cloud Providers

A number of infrastructure-as-a-service providers exist. Several of the largest are
Amazon Web Services [2], Microsoft Windows Azure [30], and Rackspace Cloud [37].
There are some minor differences between the interfaces and services provided by each,
but broadly speaking all offer the same basic services.

The basic services offered by all infrastructure providers include storage (struc-
tured as a key-value store) and compute nodes of some kind. Other common services in-
clude database-like services such as Amazon’s SimpleDB (suitable for storing data and
running simple queries, but not a full SQL database), job queueing services (for coordi-
nating jobs to execute in a failure-tolerant way), network load balancers, and monitoring
tools.

In my work, I focus almost entirely on cloud storage and raw computation ser-
vices, described in further detail below. These are sufficient for building the applications

I need, and most of the other services are useful primarily for scaling computation up,



which is not as necessary for simpler enterprise storage applications.

2.1.1 Cloud Storage

The cloud providers mentioned all provide a simple key/value storage interface
for storing arbitrary amounts of data. This storage interface does not behave like a
standard file system. The namespace is not hierarchical: names used for storage can
include a slash which appears to act like a directory separator, but the storage provider
does not in fact treat the slash specially. Only a small set of operations is supported, and
consistency guarantees are weaker than most normal file systems.

The base set of operations supported by cloud storage providers includes:

e put: Store a piece of data under a given key (name). The key can be any short
string. The value is any sequence of bytes, from only a few bytes up to several
gigabytes in size. Some providers allow for even larger files, but for maximum
portability users should assume a maximum file size of 2-4 GB. The put opera-
tion atomically writes the data to the specified key (meaning a client never see a
partially-written item); if an old value exists it is overwritten. Partial updates to
an object are not allowed: to change an item the value must be entirely rewritten.
Usually, additional metadata can be attached (key/value pairs that will be returned

with the object headers when fetching an object).

e get: Retrieve the data stored under a given name. A client can request just a
specific (contiguous) range of bytes rather than the entire object. Returns any

metadata stored with the object as well.

e list: Return a list of keys stored on the server. The client can request only keys
starting with a given prefix. If there are many matches, the provider will return
a subset of the matches and the client can request additional items in subsequent
requests. The client can ask for a specific character to be treated as a delimiter;
this allows the client to get a listing hierarchically as if keys were stored as files

grouped in directories.

e delete: Delete the specified object from the storage provider.



Some providers offer extensions to this basic interface. Windows Azure Blob
Storage, for example, allows objects to be uploaded in pieces which allows interrupted
uploads to be restarted and permits multiple parallel uploads of a single object. How-
ever, in my work I only rely on the above operations as doing so allows for maximum
portability between providers.

Most commonly, clients use a RESTful [15] interface—based on HTTP—to in-
teract with the storage provider. Read operations are simply HTTP GET operations;
one side effect of this interface is that Web browsers can transparently access publicly-
readable objects, so the cloud provider can be used to host static content. The other
operations map to HTTP operations of the same name.

Operations sent to the storage provider are authenticated with an additional
HTTP header containing a hash-based message authentication code based on a secret
shared between the client and provider. Authenticating a request as coming from a
client’s account allows for access control and appropriate billing. If the client wishes to
protect the privacy of data sent across the network, HTTPS can be used.

A simple example of interaction with a cloud provider (Amazon S3) is shown
in Figure 2.1. The first two lines of each request specify the key being acted on and
the account/container being accessed. Authentication for the message is included in the
“Authorization: AWS” header; this header includes both an account ID and a signature
computed over the other fields in the headers. A date header protects against replay
attacks, where an attacker could resubmit an operation at a later time. The “Content-
Type” header in the PUT request is stored as metadata with the object, and returned with
later GET requests. Amazon S3 overloads the meaning of the “ETag” header to store an
MDS5 message digest of the object contents.

While cloud providers offer good data durability guarantees they offer only weak
data consistency guarantees. Amazon provides eventual consistency [51]: the storage
system guarantees that if no new updates are made to the object eventually all accesses
will return the last updated value. Eventual consistency allows a number of visible
anomalies: if an object is overwritten, then for some period of time future reads might
return either the old data or the new data. For example, a write might be sent to one

data center while some reads might fetch the old value from a different data center.
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PUT /key HTTP/1.1

Host: mvrable-bluesky.s3.amazonaws.com

Authorization: AWS AKIAJ4RG3GWBMGEBRRXQ:WIfle+hyiHYpAR7JzseGVIEri58=
content-length: 6

content-type: binary/octet-stream

x—amz-date: Mon, 02 May 2011 03:58:12 +0000

value

HTTP/1.1 200 OK

Date: Mon, 02 May 2011 03:58:13 GMT
ETag: "756c412732c9e787£483d35d939b8ef2"
Content-Length: 0

Server: AmazonS3

GET /key HTTIP/1.1

Host: mvrable-bluesky.s3.amazonaws.com

Authorization: AWS AKIAJ4RG3GWBMGEBRRXQ:FftZUS5r33I+pvB5Z29gzMfhHC61I=
x—amz-date: Mon, 02 May 2011 03:58:19 +0000

HTTP/1.1 200 OK

Date: Mon, 02 May 2011 03:58:20 GMT
Last-Modified: Mon, 02 May 2011 03:58:13 GMT
ETag: "756c412732c9e787£483d35d939b8ef2"
Accept—-Ranges: bytes

Content-Type: binary/octet-stream
Content-Length: 6

Server: AmazonS3

value

DELETE /key HTTP/1.1

Host: mvrable-bluesky.s3.amazonaws.com

content-length: 0O

Authorization: AWS AKIAJ4RG3GWBMGEBRRXQ:K/0AhThbis+9NLLICw2eeOwPPzc=
x—amz-date: Mon, 02 May 2011 03:58:29 +0000

HTTP/1.1 204 No Content
Date: Mon, 02 May 2011 03:58:30 GMT
Server: AmazonS3

Figure 2.1: Example of communication with Amazon’s S3 storage service using the
RESTful API. A slightly simplified transcript of communication is shown. Requests
from the client are shown in normal text, with responses from the provider in bold.
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Table 2.1: Prices for cloud storage providers as of April 2011

Amazon Azure Rackspace

Storage ($/GB/month) 0.14  0.15 0.15
Bandwidth In ($/GB) 0.10  0.10 0.08
Bandwidth Out ($/GB) 0.15 0.15 0.18
Put Request ($/req) 107 1076 0*
Get Request ($/req) 107¢  10°° 0~

* Rackspace Cloud previously charged for requests over 250 KB in size, but in February
2011 eliminated all per-request charges.

Eventually the write will propagate to all data centers and reads will be consistent, but
this takes an indeterminate amount of time. In contrast, a client writing to disk or a file
system does not see these types of inconsistencies: once data has been synchronized to
disk, subsequent reads will not see stale data.

The simple interface offered by cloud storage providers and the weak consis-
tency guarantees let providers more easily build scalable storage systems. However,
these same properties make the cloud storage interface unsuitable for direct use as a
file system. Projects such as s3fs [38] do map cloud storage directly to a mountable
file system but cannot provide all file system semantics that clients expect. Operations
such as atomic renames of directory trees simply cannot be implemented, and eventual

consistency is very different from the stronger consistency of local file systems.

Pricing

Cloud providers all have well-defined cost structures for data storage. Table 2.1
shows the costs for three different storage providers (Amazon S3, Widows Azure Blob
Storage, and Rackspace Cloud Files). Costs are broken down into three main categories:
storage, bandwidth, and per-operation charges.

Storage costs are measured per gigabyte of storage consumed on a monthly basis
and are nearly identical across all providers. Amazon offers multiple pricing tiers based
on the quantity of storage used; the table only shows the costs for the first tier. For
Amazon S3, prices drop as low as $0.055/GB/month when storing 5 PB of data or more.

In my work, however, I use prices for the lowest usage tiers since these represent worst-
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case prices.

Network bandwidth charges cover the cost of transferring data to or from the
cloud provider. Different charges apply for inbound and outbound transfers. Transfer-
ring data to the cloud provider is, at least at present, cheaper than transferring data out.
(This might reflect the fact that, if the cloud provider is used for any type of hosting there
will be more traffic out of the cloud provider than in, and so the inbound bandwidth will
be less utilized and thus cheaper.) Unlike storage costs which are quite uniform across
providers, network transfer costs vary more widely.

Additionally, the customer’s Internet service provider may charge for bandwidth
used, though usually in a less direct fashion. If a customer is making heavy use of cloud
storage and transferring large amounts of data, the customer may need to pay more to
the ISP.

Finally, most cloud providers have some type of per-request charge for opera-
tions performed. In the case of Amazon S3 requests are broken down into two cat-
egories: cheap operations (GET requests) and expensive operations (PUT and LIST).
These per-operation charges create a lower bound on the cost of an operation, helping
to cover fixed costs at the provider (for example, the cost of a synchronous disk write
or wide-area replication costs needed for a write operation). Dividing the per-request
charge by the bandwidth charge gives a break-even point: the size at which equal parts
of the cost of an operation are for the per-operation cost and the network transfer cost.
For example, with Amazon S3 the PUT break-even point is around 100 KB. Writes
smaller than this are not very economical since the per-request charges add up quickly.
In contrast, costs are dominated by network transfers charges (and the per-operation
charges are negligible) when writing values larger than a few times the break-even size.
For reads, the break-even point is at 7 KB, so small reads are more cost-effective than

small writes.

2.1.2 Cloud Computation

Different cloud providers offer different mechanisms for offloading computation
to the cloud, at different levels of abstraction.

Several providers, including Amazon (with their Elastic Compute Cloud offer-
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ing, or “EC2”) and Rackspace Cloud (with Cloud Servers) build their cloud computation
offerings on top of Xen [5]. A customer receives a virtual machine that looks much like
renting a private server. Virtual machines are available in a variety of configurations: dif-
fering amounts of memory, disk space, and available CPU cycles. Providers offer some-
thing very much like unmanaged hosting: a variety of pre-built software configurations
are available, but all systems administration after the original setup is the responsibility
of the customer. This allows for the simplest migration to the cloud, since the customer
has full system administration privileges to configure the system. Most providers offer
both Linux and Windows as options (with Windows costing slightly more).

Windows Azure offers managed operating system instances for specific roles:
a “Web role” for responding to HTTP requests and a “Worker role” for background
processing tasks. These roles do allow additional software to be installed and permit
some customization. Some tasks, like operating system patching, are handled automati-
cally. Windows Azure also offers a VM role which is more similar to what Amazon and
Rackspace offer and allows for more customization if needed.

As with storage, providers have a published set of costs for cloud computation.
Providers charge for each hour that a virtual machine runs, with a rate based on the
hardware configuration. Network data transfer charges in and out of the data center are
typically at the same rate as for storage transfer costs. Computation running in the cloud
has the advantage that access to data in the cloud storage system does not have a data

transfer charge, since access is within the data center and not over the wide area.

2.2 Enterprise Storage Applications

There are many enterprise applications that could potentially be moved to the
cloud. These applications include e-mail and other communication tools, accounting,
various types of business analytics, databases and applications built on top of them,
and others. In this dissertation I focus on those applications that are storage-centric:
those involving the management or sharing of data and not primarily the processing of
that data. To explore this space, I design and build systems for file system backup and

shared network file systems. Before describing the systems I have built, it is useful to
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look at those types of systems more broadly.

2.2.1 File System Backup

The goal of file system backup is to store a backup copy of all data stored on a
computer system. These backups have multiple purposes. Backups are used to recover
from a catastrophic data loss in which all data on the primary computer system is lost.
A backup copy of data can also be used to recover old versions of selected files, for
example if a user accidentally deletes or corrupts an important file and wants to recover
the original data. The data loss may not be noticed immediately, so good backup systems
will store multiple versions of files at different points in time. Also, because catastrophic
data loss might be due to disasters that affect an entire data center (fire, natural disaster,
etc.), good backups require storing a copy of the data somewhere completely off-site for
safety.

Many traditional backup tools are designed to work well for tape backups. The
dump, cpio, and tar [35] utilities are common on Unix systems and will write a file
system backup as a single stream of data to tape. These backup utilities may create a
full backup of a file system, but also support incremental backups, which only contain
files which have changed since a previous backup (either full or another incremental).
Incremental backups are smaller and faster to create, but mostly useless without the
backups on which they are based. The backup tapes can be rotated to off-site storage
locations, though recovery can be complicated by the need to locate the correct tapes.

Organizations establish backup policies specifying at what granularity backups
are made and how long they are kept. These policies might then be implemented in
various ways. For tape backups, long-term backups may be full backups so they stand
alone; short-term daily backups may be incrementals for space efficiency. Tools such as
AMANDA build on dump or tar, automating the process of scheduling full and incre-
mental backups as well as collecting backups from a network of computers to write to
tape as a group.

The falling cost of disk relative to tape makes backup to disk more attractive,
especially since the random access permitted by disks enables new backup approaches

and makes restores much more convenient. Many recent backup tools take advantage
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of this trend. Even more recently, increasing network capacity has meant that the disk
or disks storing the backup data can be located at a remote site and accessed over a
network. Cumulus, the work presented in this dissertation, falls into this category: it is
a backup system that stores data over a network to disks located within a cloud storage

provider.

2.2.2 Shared Network File Systems

Many businesses use network file systems to store data that should be made
available to multiple computers and to give users a place to store data that is centrally-
managed and backed up.

NFS [42] and CIFS [19] are the two protocols most widely used for implement-
ing shared network file systems. NFS is widely used on Unix systems, while CIFS is

the protocol that underlies Windows file sharing.

NFS

NFS, initially developed by Sun, comes in multiple versions. NFS version 2 is
the earliest version that found widespread use; it is implemented on top of a remote
procedure call (RPC) layer, where clients make procedure calls to the server to perform
file system operations. By design, the server can be made almost entirely stateless. It
need not track per-client state or information about open files—in fact, the server has no
notion of files being “open” for access. When a client program opens and writes to a file,
the NFS client will issue lookup operations to obtain a filehandle on which operations
are made—but the filehandle merely identifies the file itself and tracks no per-client
information. There is no notion of “closing” a filehandle after use. Filehandles are
persistent, so that with a properly written NFS server, the server can crash and reboot
during operation and the client will simply re-issue any lost requests and continue to
function without any recovery code needed. For data durability even in the face of
crashes, the NFS specification mandates that the server not reply to any client write
operation until the updated data has been safely committed to disk.

The stateless design of the NFS server makes recovery from a server reboot

simple, but has other implications. For one, since there is no per-client state the server
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cannot manage cache consistency for the clients. If client A makes file system updates,
it must quickly flush those updates to the server. Otherwise, there is no way for client B
to learn of the updates. Similarly, client B must repeatedly poll the server for changes
to files. In practice, NFS clients will often cache file data but will revalidate this cached
data by querying the server for the files’ modification times. Clients usually implement
close-to-open consistency, which guarantees applications that if client A writes to file,
closes it, and client B then opens the file, then the changes will be visible: the first
client must flush changes to the server before the close operation succeeds, and the
second client must re-validate any cached data at each open request. Two clients that
open a file concurrently and issue reads and writes may see inconsistent data.

These behaviors have several key performance implications:

e The mandate that data mutation operations commit synchronously to disk means

that write-heavy workloads over NFS will often suffer from poor performance.

e Clients have frequent interactions with the server to maintain their (still limited)
cache coherence. Each open operation requires a call to the server to check meta-
data, and each close requires flushing all updates to the server. Limited caching is

possible across multiple accesses to the same file.

The NFS protocol version 3 makes a number of minor improvements and one
more significant one. All operations that update file metadata remain synchronous, but
the write operation is extended to allow uncommitted writes. In this case, a client can
issue a number of file write operations in sequence, not waiting for the data to reach disk,
and at a later point—though often when the file is closed—issue a commit operation to
ensure the updates are safely on disk. The client must keep all updates buffered during
this time, since if the server crashes before the commit the client must detect the crash
and reissue the write operations to guarantee data durability.

NFS version 4 [44] is a major rewrite of the NFS protocol that actually makes
it much more similar to CIFS. With NFSv4, the server does track file opens and closes,
and mechanisms known as leases and delegations allow the client to more effectively
cache data. NFSv4 has only recently been standardized, however, and is not very widely

adopted. NFSv3 and NFSv2 remain much more common.
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In my work on BlueSky described in this dissertation, I implement the NFS

protocol but only version 3, not version 4.

CIFS

CIFS [19], the Common Internet File System, is the current basis for Windows
filesharing. In contrast to NFS which (except for NFSv4) is a relatively simple protocol,
Windows file sharing is extremely complex. Windows file sharing has evolved over
time, with the result that there are multiple protocols and many dialects of each protocol
that can be used.

In CIFS file open and close operations are sent to the server and the server is
involved with locking and managing concurrent access to files. The need for the server
to track per-client state increases server complexity. However, it also allows clients to
achieve stronger file consistency guarantees.

Samba [41] is an open source implementation of CIFS (as well as other Mi-
crosoft networking protocols). Samba implements both client and server components
and can interoperate with Microsoft products. As such, it is often used by Linux and
MacOS computers to access Windows file shares, and as a way of setting up a Windows-
compatible file server without having to run a Windows server. Samba implements a
flexible architecture which makes it relatively easy to add a new storage backend for a
Samba server.

As with NFS, the protocol as implemented is chatty, with frequent requests sent
between client and server. While protocol chattiness is not a large issue in a local-
area network, when operating over a wide-area network the need for many round-trip
communications can cause large performance degradation. Thus, moving storage to the
cloud should use, at the very least, some protocol besides NFS or CIFS for wide-area

communication.

Chapter 2, in part, is a reprint of material as it appears in the article “Cumu-
lus: Filesystem Backup to the Cloud” by Michael Vrable, Stefan Savage, and Geoffrey
M. Voelker which appears in ACM Transactions on Storage, Volume 5, Issue 4 (De-

cember 2009). The dissertation author was the primary investigator and author of this

paper.



Chapter 3
Cumulus

As we have seen, there are a range of architectures that all fall under the umbrella
of the term “cloud computing”, ranging along a spectrum from highly integrated and fo-
cused (e.g., Software-as-a-Service offerings such as Salesforce.com) to decomposed and
abstract (e.g., Infrastructure-as-a-Service offerings such as Amazon’s EC2/S3). Towards
the former end of the spectrum, complex logic is bundled together with abstract re-
sources at a datacenter to provide a highly specific service—potentially offering greater
performance and efficiency through integration, but also reducing flexibility and increas-
ing the cost to switch providers. At the other end of the spectrum, datacenter-based
infrastructure providers offer minimal interfaces to very abstract resources (e.g., “‘store
file”), making portability and provider switching easy, but potentially incurring addi-
tional overheads from the lack of server-side application integration.

In this chapter, I begin to explore this trade-off between IaaS and SaaS (which
I also refer to as thin-cloud vs. thick-cloud) in the context of a very simple application:
file system backup.

Backup is a particularly attractive application for outsourcing to the cloud be-
cause it is relatively simple, the growth of disk capacity relative to tape capacity has
created an efficiency and cost inflection point, and the cloud offers easy off-site storage,
always a key concern for backup. For end users there are few backup solutions that are
both trivial and reliable (especially against disasters such as fire or flood), and ubiquitous
broadband now provides sufficient bandwidth resources to offload the application. For

small to mid-sized businesses, backup is rarely part of critical business processes and
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yet is sufficiently complex to “get right” that it can consume significant IT resources.
Finally, larger enterprises benefit from backing up to the cloud to provide a business
continuity hedge against site disasters.

However, to price cloud-based backup services attractively requires minimizing
the capital costs of data center storage and the operational bandwidth costs of shipping
the data there and back. To this end, most existing cloud-based backup services (e.g.,
Mozy, Carbonite, Symantec’s Protection Network) implement integrated solutions that
include backup-specific software hosted on both the client and at the data center (usu-
ally using servers owned by the provider). In principle, this approach allows greater
storage and bandwidth efficiency (server-side compression, cleaning, etc.) but also re-
duces portability—locking customers into a particular provider.

In this chapter I explore the other end of the design space—the “thin cloud”.
I describe a cloud-based backup system, called Cumulus, designed around a minimal
interface (get, put, list, delete) that is trivially portable to virtually any on-line storage
service. Thus, I assume that any application logic is implemented solely by the client. In
designing and evaluating this system I make several contributions. First, I show through
simulation that, through careful design, it is possible to build efficient network backup
on top of a generic storage service—competitive with integrated backup solutions, in
spite of having no specific backup support in the underlying storage service. Second,
I build a working prototype of this system using Amazon’s Simple Storage Service
(S3) and demonstrate its effectiveness on real end-user traces. Finally, I describe how
such systems can be tuned for cost instead of for bandwidth or storage, both using the
Amazon pricing model as well as for a range of storage to network cost ratios.

In the remainder of this chapter, I first describe prior work in backup, followed by
a design overview of Cumulus and an in-depth description of its implementation. I then
provide both simulation and experimental results of Cumulus performance, overhead,
and cost in trace-driven scenarios. I conclude with a discussion of the implications of

this work and how this research agenda might be further explored.
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3.1 Related Work

As discussed in Chapter 2, traditional backup tools are designed to write data to
magnetic tapes which can then be stored in an off-site location. Given the falling cost of
disk, however, many more recent backup tools write backup data to disk.

Two approaches for comparing these more recent systems are by the storage rep-
resentation on disk, and by the interface between the client and the storage—while the
disk could be directly attached to the client, often (especially with a desire to store back-
ups remotely) communication will be over a network and a variety of network protocols
can be used.

Rsync [49] efficiently mirrors a file system across a network using a specialized
network protocol to identify and transfer only those parts of files that have changed.
Both the client and storage server must have rsync installed. Users typically want back-
ups at multiple points in time, so rsnapshot and other wrappers around rsync exist that
will store multiple snapshots, each as a separate directory on the backup disk. Unmod-
ified files are hard-linked between the different snapshots, so storage is space-efficient
and snapshots are easy to delete.

The rdiff-backup [13] tool is similar to rsnapshot, but it changes the storage
representation. The most recent snapshot is a mirror of the files, but the rsync algorithm
creates compact deltas for reconstructing older versions—these reverse incrementals are
more space efficient than full copies of files as in rsnapshot.

Another modification to the storage format at the server is to store snapshots in a
content-addressable storage system. Venti [36] uses hashes of block contents to address
data blocks, rather than a block number on disk. Identical data between snapshots (or
even within a snapshot) is automatically coalesced into a single copy on disk—giving
the space benefits of incremental backups automatically. Data Domain [56] offers a
similar but more recent and efficient product; in addition to performance improvements,
it uses content-defined chunk boundaries so de-duplication can be performed even if
data is offset by less than the block size.

A limitation of these tools is that backup data must be stored unencrypted at the
server, so the server must be trusted. Box Backup [48] modifies the protocol and storage

representation to allow the client to encrypt data before sending, while still supporting
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rsync-style efficient network transfers.

Most of the previous tools use a specialized protocol to communicate between
the client and the storage server. An alternate approach is to target a more generic
interface, such as a that used by cloud storage provider. Cumulus tries to be network-
friendly like rsync-based tools, while using only a generic get/put storage interface.

Jungle Disk [24] can perform backups to Amazon S3. However, the design is
quite different from that of Cumulus. Jungle Disk is first a network file system with
Amazon S3 as the backing store. Jungle Disk can also be used for backups, keeping
copies of old versions of files instead of deleting them. But since it is optimized for ran-
dom access it is less efficient than Cumulus for pure backup—features like aggregation
in Cumulus can improve compression, but are at odds with efficient random access.

Duplicity [14] aggregates files together before storage for better compression
and to reduce per-file storage costs at the server. Incremental backups use space-efficient
rsync-style deltas to represent changes. However, because each incremental backup
depends on the previous, space cannot be reclaimed from old snapshots without another
full backup, with its associated large upload cost. Cumulus was inspired by duplicity,
but avoids this problem of long dependency chains of snapshots.

Brackup [16] has a design very similar to that of Cumulus. Both systems sepa-
rate file data from metadata: each snapshot contains a separate copy of file metadata as
of that snapshot, but file data is shared where possible. The split data/metadata design
allows old snapshots to be easily deleted. Cumulus differs from Brackup primarily in
that it places a greater emphasis on aggregating small files together for storage purposes,
and adds a segment cleaning mechanism to manage the inefficiency introduced by ag-
gregation. Additionally, Cumulus tries to efficiently represent small changes to all types
of large files and can share metadata where unchanged; both changes reduce the cost of
incremental backups.

Peer-to-peer systems may be used for storing backups. Pastiche [10] is one such
system, and focuses on the problem of identifying and sharing data between different
users. Pastiche uses content-based addressing for de-duplication. But if sharing is not
needed, Brackup and Cumulus could use peer-to-peer systems as well, simply treating

it as another storage interface offering get and put operations.
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Table 3.1: Comparison of features among selected tools that back up to networked
storage. Features considered are Multiple snapshots: Can store multiple versions of
files at different points in time; Simple server: Can back up almost anywhere; does not
require special software at the server; Incremental forever: Only initial backup must be
a full backup; Sub-file delta storage: Efficiently represents small differences between
files on storage; only relevant if storing multiple snapshots; Encryption: Data may be
encrypted for privacy before sending to storage server.
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rsync v N/A
rsnapshot v v
rdiff-backup v v Vv
Box Backup Vv v vV
Jungle Disk v v Vv v
duplicity v v v
Brackup v v Vv v
Cumulus v v v v v

While other interfaces to storage may be available—Antiquity [53] for example
provides a log append operation—a get/put interface likely still works best since it is
simpler and a single put is cheaper than multiple appends to write the same data.

Table 3.1 summarizes differences between some of the tools discussed above for
backup to networked storage. In relation to existing systems, Cumulus is most similar to
duplicity (without the need to occasionally re-upload a new full backup), and Brackup
(with an improved scheme for incremental backups including rsync-style deltas, and

improved reclamation of storage space).

3.2 Design

In this section we present the design of our approach for making backups to a

thin cloud remote storage service.
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3.2.1 Storage Server Interface

We assume only a very narrow interface between a client generating a backup
and a server responsible for storing the backup. Cumulus only relies on the standard set

of operations supported by all cloud storage providers, as described in Section 2.1.1:
Get: Given a pathname, retrieve the contents of a file from the server.

Put: Store a complete file on the server with the given pathname.

List: Get the names of files stored on the server.

Delete: Remove the given file from the server, reclaiming its space.

In Cumulus we only require operations that work on entire files; we do not depend
upon the ability to read or write arbitrary byte ranges within a file. Cumulus neither
requires nor uses support for reading and setting file attributes such as permissions and
timestamps. The interface is simple enough that in addition to all the cloud storage
providers, it can be implemented on top of any number of other protocols: FTP, SFTP,
WebDAV, or nearly any network file system.

Since the only way to modify a file in this narrow interface is to upload it again
in full, we adopt a write-once storage model, in which a file is never modified after
it is first stored, except to delete it to recover space. The write-once model provides
convenient failure guarantees: since files are never modified in place, a failed backup
run cannot corrupt old snapshots. At worst, it will leave a partially-written snapshot
which can garbage-collected. Because Cumulus does not modify files in place, we can
keep snapshots at multiple points in time simply by not deleting the files that make up

old snapshots.

3.2.2 Storage Segments

When storing a snapshot, Cumulus will often group data from many smaller
files together into larger units called segments. Segments become the unit of storage
on the server, with each segment stored as a single file. File systems typically contain

many small files (both our traces described later and others, such as [1], support this
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observation). Aggregation of data produces larger files for storage at the server, which
can be beneficial to:

Avoid inefficiencies associated with many small files: Storage servers may dis-
like storing many small files for various reasons—higher metadata costs, wasted space
from rounding up to block boundaries, and more seeks when reading. This preference
may be expressed in the cost model of the provider. Amazon S3, for example, has both
a per-request and a per-byte cost when storing a file that encourages using files greater
than 100 KB in size.

Avoid costs in network protocols: Small files result in relatively larger protocol
overhead, and may be slower over higher-latency connections. Pipelining (if supported)
or parallel connections may help, but larger segments make these less necessary. We
study one instance of this effect in more detail in Section 3.4.4.

Take advantage of inter-file redundancy with segment compression: Compres-
sion can be more effective when small files are grouped together. We examine this
effect in Section 3.4.4.

Provide additional privacy when encryption is used: Aggregation helps hide the
size as well as contents of individual files.

Finally, as discussed in Sections 3.2.4 and 3.3.3, changes to small parts of larger
files can be efficiently represented by effectively breaking those files into smaller pieces
during backup. For the reasons listed above, re-aggregating this data becomes even more

important when sub-file incremental backups are supported.

3.2.3 Snapshot Format

Figure 3.1 illustrates the basic format for backup snapshots. Cumulus snapshots
logically consist of two parts: a metadata log which lists all the files backed up, and
the file data itself. Both metadata and data are broken apart into blocks, or objects,
and these objects are then packed together into segments, compressed as a unit and
optionally encrypted, and stored on the server. Each segment has a unique name—we
use a randomly generated 128-bit UUID so that segment names can be assigned without
central coordination. Objects are numbered sequentially within a segment.

Segments are internally structured as a TAR file, with each file in the archive
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Snapshot Descriptors

Date: 2008-01-01 12:00:00 Date: 2008-01-02 12:00:00
Root: A/0 Root: C/0
Segments: A B QSegments: B C
Segment Store
Segment A Segment C

Segment B T_

A A A A
‘V

name: filel name: filel
owner: root owner: root
data: B/0 data: C/1
name: file2 name: file2
owner: root owner: root
data: B/1 B/2 data: B/1 B/2

Figure 3.1: Simplified schematic of the basic format for storing Cumulus snapshots on
a storage server. Two snapshots are shown, taken on successive days. Each snapshot
contains two files. £i1lel changes between the two snapshots, but the data for file2
is shared between the snapshots. For simplicity in this figure, segments are given letters
as names instead of the 128-bit UUIDs used in practice.
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corresponding to an object in the segment. Compression and encryption are provided
by filtering the raw segment data through gzip, bzip2, gpg, or other similar external
tools.

A snapshot can be decoded by traversing the tree (or, in the case of sharing,
DAG) of objects. The root object in the tree is the start of the metadata log. The metadata
log need not be stored as a flat object; it may contain pointers to objects containing other
pieces of the metadata log. For example, if many files have not changed, then a single
pointer to a portion of the metadata for an old snapshot may be written. The metadata
objects eventually contain entries for individual files, with pointers to the file data as the
leaves of the tree.

The metadata log entry for each individual file specifies properties such as modi-
fication time, ownership, and file permissions, and can be extended to include additional
information if needed. It includes a cryptographic hash so that file integrity can be ver-
ified after a restore. Finally, it includes a list of pointers to objects containing the file
data. Metadata is stored in a text, not binary, format to make it more transparent. Com-
pression applied to the segments containing the metadata, however, makes the format
space-efficient.

The one piece of data in each snapshot not stored in a segment is a snapshot
descriptor, which includes a timestamp and a pointer to the root object.

Starting with the root object stored in the snapshot descriptor and traversing
all pointers found, a list of all segments required by the snapshot can be constructed.
Since segments may be shared between multiple snapshots, a garbage collection pro-
cess deletes unreferenced segments when snapshots are removed. To simplify garbage-
collection, each snapshot descriptor includes (though it is redundant) a summary of
segments on which it depends.

Pointers within the metadata log include cryptographic hashes so that the in-
tegrity of all data can be validated starting from the snapshot descriptor, which can be
digitally signed. Additionally, Cumulus writes a summary file with checksums for all

segments so that it can quickly check snapshots for errors without a full restore.
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3.2.4 Sub-File Incrementals

If only a small portion of a large file changes between snapshots, only the
changed portion of the file should be stored. The design of the Cumulus format sup-
ports this. The contents of each file is specified as a list of objects, so new snapshots
can continue to point to old objects when data is unchanged. Additionally, pointers to
objects can include byte ranges to allow portions of old objects to be reused even if some
data has changed. We discuss how our implementation identifies data that is unchanged

in Section 3.3.3.

3.2.5 Segment Cleaning

When old snapshots are no longer needed, space is reclaimed by deleting the root
snapshot descriptors for those snapshots, then garbage collecting unreachable segments.
It may be, however, that some segments only contain a small fraction of useful data—the
remainder of these segments, data from deleted snapshots, is now wasted space. This
problem is similar to the problem of reclaiming space in the Log-Structured File System
(LFS) [39].

There are two approaches that can be taken to segment cleaning given that multi-
ple backup snapshots are involved. The first, in-place cleaning, is most like the cleaning
in LFS. It identifies segments with wasted space and rewrites the segments to keep just
the needed data.

This mode of operation has several disadvantages, however. It violates the write-
once storage model, in that the data on which a snapshot depends is changed after the
snapshot is written. It requires detailed bookkeeping to determine precisely which data
must be retained. Finally, it requires downloading and decrypting old segments—normal
backups only require an encryption key, but cleaning needs the decryption key as well.

The alternative to in-place cleaning is to never modify segments in old snapshots.
Instead, Cumulus avoids referring to data in inefficient old segments when creating a
new snapshot, and writes new copies of that data if needed. This approach avoids the
disadvantages listed earlier, but is less space-efficient. Dead space is not reclaimed until

snapshots depending on the old segments are deleted. Additionally, until then data is
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stored redundantly since old and new snapshots refer to different copies of the same
data.

We analyzed both approaches to cleaning in simulation. We found that the cost
benefits of in-place cleaning were not large enough to outweigh its disadvantages, and
so our Cumulus prototype does not clean in place.

The simplest policy for selecting segments to clean is to set a minimum segment
utilization threshold, «, that triggers cleaning of a segment. We define utilization as the
fraction of bytes within the segment which are referenced by a current snapshot. For
example, = (.8 will ensure that at least 80% of the bytes in segments are useful.
Setting o = 0 disables segment cleaning altogether. Cleaning thresholds closer to 1
will decrease storage overhead for a single snapshot, but this more aggressive cleaning
requires transferring more data.

More complex policies are possible as well, such as a cost-benefit evaluation
that favors repacking long-lived segments. Cleaning may be informed by snapshot re-
tention policies: cleaning is more beneficial immediately before creating a long-term
snapshot, and cleaning can also consider which other snapshots currently reference a
segment. Finally, segment cleaning may reorganize data, such as by age, when seg-
ments are repacked.

Though not currently implemented, Cumulus could use heuristics to group data
by expected lifetime when a backup is first written in an attempt to optimize segment

data for later cleaning (as in systems such as WOLF [52]).

3.2.6 Restoring from Backup

Restoring data from previous backups may take several forms. A complete re-
store extracts all files as they were on a given date. A partial restore recovers one or a
small number of files, as in recovering from an accidental deletion. As an enhancement
to a partial restore, all available versions of a file or set of files can be listed.

Cumulus is primarily optimized for the first form of restore—recovering all files,
such as in the event of the total loss of the original data. In this case, the restore pro-
cess will look up the root snapshot descriptor at the date to restore, then download all

segments referenced by that snapshot. Since segment cleaning seeks to avoid leaving
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much wasted space in the segments, the total amount of data downloaded should be only
slightly larger than the size of the data to restore.

For partial restores, Cumulus downloads those segments that contain metadata
for the snapshot to locate the files requested, then locates each of the segments con-
taining file data. This approach might require fetching many segments—for example,
if restoring a directory whose files were added incrementally over many days—but will
usually be quick.

Cumulus is not optimized for tracking the history of individual files. The only
way to determine the list of changes to a file or set of files is to download and process
the metadata logs for all snapshots. However, a client could keep a database of this

information to allow more efficient queries.

3.2.7 Limitations

Cumulus is not designed to replace all existing backup systems. As a result,
there are situations in which other systems will do a better job.

The approach embodied by Cumulus is for the client making a backup to do
most of the work, and leave the backup itself almost entirely opaque to the server. This
approach makes Cumulus portable to nearly any type of storage server. However, a spe-
cialized backup server could provide features such as automatically repacking backup
data when deleting old snapshots, eliminating the overhead of client-side segment clean-
ing.

Cumulus, as designed, does not offer coordination between multiple backup
clients, and so does not offer features such as de-duplication between backups from
different clients. While Cumulus could use convergent encryption [11] to allow de-
duplication even when data is first encrypted at the client, several issues prevent us from
doing so. Convergent encryption would not work well with the aggregation in Cumulus.
Additionally, server-side de-duplication is vulnerable to dictionary attacks to determine
what data clients are storing, and storage accounting for billing purposes is more diffi-
cult.

Finally, the design of Cumulus is predicated on the fact that backing up each

file on the client to a separate file on the server may introduce too much overhead, and
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so Cumulus groups data together into segments. If it is known that the storage server
and network protocol can efficiently deal with small files, however, then grouping data
into segments adds unnecessary complexity and overhead. Other disk-to-disk backup

programs may be a better match in this case.

3.3 Implementation

We discuss details of the implementation of the Cumulus prototype in this sec-
tion. Our implementation is relatively compact: only slightly over 3200 lines of C++
source code (as measured by SLOCCount [54]) implementing the core backup func-
tionality, along with another roughly 1000 lines of Python for tasks such as restores,

segment cleaning, and statistics gathering.

3.3.1 Local Client State

Each client stores on its local disk information about recent backups, primarily
so that it can detect which files have changed and properly reuse data from previous
snapshots. This information could be kept on the storage server. However, storing it
locally reduces network bandwidth and improves access times. We do not need this
information to recover data from a backup so its loss is not catastrophic, but this local
state does enable various performance optimizations during backups.

The client’s local state is divided into two parts: a local copy of the metadata log
and an SQLite database [45] containing all other needed information.

Cumulus uses the local copy of the previous metadata log to quickly detect and
skip over unchanged files based on modification time. Cumulus also uses it to delta-
encode the metadata log for new snapshots.

An SQLite database keeps a record of recent snapshots and all segments and
objects stored in them. The table of objects includes an index by content hash to support
data de-duplication. Enabling de-duplication leaves Cumulus vulnerable to corruption
from a hash collision [20], [21], but, as with other systems, we judge the risk to be small.
The hash algorithm (currently SHA-1) can be upgraded as weaknesses are found. In the

event that client data must be recovered from backup, the content indices can be rebuilt
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from segment data as it is downloaded during the restore.

Note that the Cumulus backup format does not specify the format of this infor-
mation stored locally. It is entirely possible to create a new and very different imple-
mentation which nonetheless produces backups conforming to the structure described

in Section 3.2.3 and readable by our Cumulus prototype.

3.3.2 Segment Cleaning

The Cumulus backup program, written in C++, does not directly implement seg-
ment cleaning heuristics. Instead, a separate Cumulus utility program, implemented in
Python, controls cleaning.

When writing a snapshot, Cumulus records in the local database a summary of
all segments used by that snapshot and the fraction of the data in each segment that
is actually referenced. The Cumulus utility program uses these summaries to identify
segments which are poorly-utilized and marks the selected segments as “expired” in
the local database. It also considers which snapshots refer to the segments, and how
long those snapshots are likely to be kept, during cleaning. On subsequent backups, the
Cumulus backup program re-uploads any data that is needed from expired segments.
Since the database contains information about the age of all data blocks, segment data
can be grouped by age when it is cleaned.

If local client state is lost, this age information will be lost. When the local client
state is rebuilt all data will appear to have the same age, so cleaning may not be optimal,

but can still be done.

3.3.3 Sub-File Incrementals

As discussed in Section 3.2.4, the Cumulus backup format supports efficiently
encoding differences between file versions. Our implementation detects changes by
dividing files into small chunks in a content-sensitive manner (using Rabin fingerprints)
and identifying chunks that are common, as in the Low-Bandwidth File System [31].

When a file is first backed up, Cumulus divides it into blocks of about a megabyte

in size which are stored individually in objects. In contrast, the chunks used for sub-file



32

incrementals are quite a bit smaller: the target size is 4 KB (though variable, with a 2 KB
minimum and 64 KB maximum). Before storing each megabyte block, Cumulus com-
putes a set of chunk signatures: it divides the data block into non-overlapping chunks
and computes a (20-byte SHA-1 signature, 2-byte length) tuple for each chunk. The
list of chunk signatures for each object is stored in the local database. These signatures
consume 22 bytes for every roughly 4 KB of original data, so the signatures are about
0.5% of the size of the data to back up.

Unlike LBFS, we do not create a global index of chunk hashes—to limit over-
head, we do not attempt to find common data between different files. When a file
changes, we limit the search for unmodified data to the chunks in the previous version
of the file. Cumulus computes chunk signatures for the new file data, and matches with
old chunks are written as a reference to the old data. New chunks are written out to a
new object. However, Cumulus could be extended to perform global data de-duplication

while maintaining backup format compatibility.

3.3.4 Segment Filtering and Storage

The core Cumulus backup implementation is only capable of writing segments
as uncompressed TAR files to local disk. Additional functionality is implemented by
calling out to external scripts.

When performing a backup, all segment data may be filtered through a specified
command before writing it. Specifying a program such as gzip can provide compres-
sion, or gpg can provide encryption.

Similarly, network protocols are implemented by calling out to external scripts.
Cumulus first writes segments to a temporary directory, then calls an upload script to
transfer them in the background while the main backup process continues. Slow uploads
will eventually throttle the backup process so that the required temporary storage space
is bounded. Upload scripts may be quite simple; a script for uploading to Amazon S3 is

merely 12 lines long in Python using the boto [7] library.
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3.3.5 Snapshot Restores

The Cumulus utility tool implements complete restore functionality. This tool
can automatically decompress and extract objects from segments, and can efficiently
extract just a subset of files from a snapshot.

To reduce disk space requirements, the restore tool only downloads segments
as needed instead of all at once at the start, and can delete downloaded segments as it
goes along. The restore tool downloads the snapshot descriptor first, followed by the
metadata. The backup tool segregates data and metadata into separate segments, so this
phase does not download any file data. Then, file contents are restored—based on the
metadata, as each segment is downloaded data from that segment is restored. For partial
restores, only the necessary segments are downloaded.

Currently, in the restore tool it is possible that a segment may be downloaded
multiple times if blocks for some files are spread across many segments. However, this
situation is merely an implementation issue and can be fixed by restoring data for these
files non-sequentially as it is downloaded.

Finally, Cumulus includes a FUSE [17] interface that allows a collection of
backup snapshots to be mounted as a virtual file system on Linux, thereby providing
random access with standard file system tools. This interface relies on the fact that file
metadata is stored in sorted order by filename, so a binary search can quickly locate any

specified file within the metadata log.

3.4 Evaluation

We use both trace-based simulation and a prototype implementation to evaluate
the use of thin cloud services for remote backup. Our goal is to answer three high-level

sets of questions:

e What is the penalty of using a thin cloud service with a very simple storage inter-

face compared to a more sophisticated service?

e What are the monetary costs for using remote backup for two typical usage sce-

narios? How should remote backup strategies adapt to minimize monetary costs
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as the ratio of network and storage prices varies?

e How does our prototype implementation compare with other backup systems?
What are the additional benefits (e.g., compression, sub-file incrementals) and
overheads (e.g., metadata) of an implementation not captured in simulation? What

is the performance of using an online service like Amazon S3 for backup?

The following evaluation sections answer these questions, beginning with a de-

scription of the trace workloads we use as inputs to the experiments.

3.4.1 Trace Workloads

We use two traces as workloads to drive our evaluations. A fileserver trace tracks
all files stored on our research group fileserver, and models the use of a cloud service for
remote backup in an enterprise setting. A user trace is taken from the Cumulus backups
of the home directory of one of the author’s personal computers, and models the use of
remote backup in a home setting. The traces contain a daily record of the metadata of all
files in each setting, including a hash of the file contents. The user trace further includes
complete backups of all file data, and enables evaluation of the effects of compression

and sub-file incrementals. Table 3.2 summarizes the key statistics of each trace.

3.4.2 Remote Backup to a Thin Cloud

First we explore the overhead of using remote backup to a thin cloud service that
has only a simple storage interface. We compare this thin service model to an “optimal”
model representing more sophisticated backup systems.

We use simulation for these experiments, and start by describing our simulator.
We then define our optimal baseline model and evaluate the overhead of using a simple

interface relative to a more sophisticated system.

Cumulus Simulator

The Cumulus simulator models the process of backing up collections of files

to a remote backup service. It uses traces of daily records of file metadata to perform
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Table 3.2: Key statistics of the two traces used in the Cumulus evaluations. File counts
and sizes are for the last day in the trace. “Entries” is files plus directories, symlinks,
etc.

Fileserver User
Duration (days) 157 223
Entries 26673083 122007
Files 24344167 116426
File Sizes
Median 0996 KB 4.4KB
Average 153 KB 21.4 KB
Maximum 54.1GB 169 MB
Total 347TB 2.37GB
Update Rates
New data/day 9.50GB 10.3 MB
Changed data/day 805 MB 29.9 MB
Total data/day 10.3GB 40.2 MB

backups by determining which files have changed, aggregating changed file data into
segments for storage on a remote service, and cleaning expired data as described in
Section 3.2. We use a simulator, rather than our prototype, because a parameter sweep
of the space of cleaning parameters on datasets as large as our traces is not feasible in a
reasonable amount of time.

The simulator tracks three overheads associated with performing backups. It
tracks storage overhead, or the total number of bytes to store a set of snapshots computed
as the sum of the size of each segment needed. Storage overhead includes both actual file
data as well as wasted space within segments. It tracks network overhead, the total data
that must be transferred over the network to accomplish a backup. On graphs, we show
this overhead as a cumulative value: the total data transferred from the beginning of the
simulation until the given day. Since remote backup services have per-file charges, the
simulator also tracks segment overhead as the number of segments created during the
process of making backups.

The simulator also models two snapshot scenarios. In the single snapshot sce-
nario, the simulator maintains only one snapshot remotely and it deletes all previous

snapshots. In the multiple snapshot scenario, the simulator retains snapshots accord-
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Figure 3.2: (a) Storage and network overhead for an optimal backup of the files from
the user trace. (b) Overheads with and without cleaning; segments are cleaned at 60%
utilization. Only storage overheads are shown for the no-cleaning case since there is no
network transfer overhead without cleaning.
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ing to a pre-determined backup schedule. In our experiments, we keep the most recent
seven daily snapshots, with additional weekly snapshots retained going back farther in
time so that a total of 12 snapshots are kept. This schedule emulates the backup policy
an enterprise might employ.

The simulator makes some simplifying assumptions that we explore later when
evaluating our implementation. The simulator detects changes to files in the traces using
a per-file hash. Thus, the simulator cannot detect changes to only a portion of a file, and
assumes that the entire file is changed. The simulator also does not model compression
or metadata. We account for sub-file changes, compression, and metadata overhead

when evaluating the prototype in Section 3.4.4.

Optimal Baseline

A simple storage interface for remote backup can incur an overhead penalty
relative to more sophisticated approaches. To quantify the overhead of this approach,
we use an idealized optimal backup as a basis of comparison.

For our simulations, the optimal backup is one in which no more data is stored
or transferred over the network than is needed. Since simulation is done at a file granu-
larity, the optimal backup will transfer the entire contents of a file if any part changes.
Optimal backup will, however, perform data de-duplication at a file level, storing only
one copy if multiple files have the same hash value. In the optimal backup, no space is
lost to fragmentation when deleting old snapshots. Cumulus could achieve this optimal
performance in this simulation by storing each file in a separate segment—that is, to
never bundle files together into larger segments. As discussed in Section 3.2.2 and as
our simulation results show, though, there are good reasons to use segments with sizes
larger than the average file.

As an example of these costs and how we measure them, Figure 3.2(a) shows
the optimal storage and upload overheads for daily backups of the 223 days of the user
trace. In this simulation, only a single snapshot is retained each day. Storage grows
slowly in proportion to the amount of data in a snapshot, and the cumulative network
transfer grows linearly over time.

Figure 3.2(b) shows the results of two simulations of Cumulus backing up the
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same data. The graph shows the overheads relative to optimal backup; a backup as good
as optimal would have 0% relative overhead. These results clearly demonstrate the need
for cleaning when using a simple storage interface for backup. When segments are not
cleaned (only deleting segments that by chance happen to be entirely no longer needed),
wasted storage space grows quickly with time—by the end of the simulation at day 223,
the size of a snapshot is nearly double the required size. In contrast, when segments are
marked for cleaning at the 60% utilization threshold, storage overhead quickly stabilizes

below 10%. The overhead in extra network transfers is similarly modest.

Cleaning Policies

Cleaning is clearly necessary for efficient backup, but it is also parameterized
by two metrics: the size of the segments used for aggregation, transfer, and storage
(Section 3.2.2), and the threshold at which segments will be cleaned (Section 3.2.5). In
our next set of experiments, we explore the parameter space to quantify the impact of
these two metrics on backup performance.

Figures 3.3 and 3.4 show the simulated overheads of backup with Cumulus using
the fileserver and user traces, respectively. The figures show both relative overheads to
optimal backup (left y-axis) as well as the absolute overheads (right y-axis). We use the
backup policy of multiple daily and weekly snapshots as described in Section 3.4.2. The
figures show cleaning overhead for a range of cleaning thresholds and segment sizes.
Each figure has three graphs corresponding to the three overheads of remote backup
to an online service. Average daily storage shows the average storage requirements
per day over the duration of the simulation; this value is the total storage needed for
tracking multiple backup snapshots, not just the size of a single snapshot. Similarly,
average daily upload is the average of the data transferred each day of the simulation,
excluding the first; we exclude the first day since any backup approach must transfer the
entire initial file system. Finally, average segments per day tracks the number of new
segments uploaded each day to account for per-file upload and storage costs.

Storage and upload overheads improve with decreasing segment size, but at
small segment sizes (< 1 MB) backups require very large numbers of segments and limit

the benefits of aggregating file data (Section 3.2.2). As expected, increasing the clean-
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ing threshold increases the network upload overhead. Storage overhead with multiple
snapshots, however, has an optimum cleaning threshold value. Increasing the threshold
initially decreases storage overhead, but high thresholds increase it again; we explore
this behavior further below.

Both the fileserver and user workloads exhibit similar sensitivities to cleaning
thresholds and segment sizes. The user workload has higher overheads relative to opti-
mal due to smaller average files and more churn in the file data, but overall the overhead
penalties remain low.

Figures 3.3(a) and 3.4(a) show that there is a cleaning threshold that minimizes
storage overheads. Increasing the cleaning threshold intuitively reduces storage over-
head relative to optimal since the more aggressive cleaning at higher thresholds will
delete wasted space in segments and thereby reduce storage requirements.

Figure 3.5 explains why storage overhead increases again at higher cleaning
thresholds. It shows three curves, the 16 MB segment size curve from Figure 3.3(a)
and two curves that decompose the storage overhead into individual components (Sec-
tion 3.2.5). One is overhead due to duplicate copies of data stored over time in the
cleaning process; cleaning at lower thresholds reduces this component. The other is due
to wasted space in segments which have not been cleaned; cleaning at higher thresholds
reduces this component. A cleaning threshold near the middle, however, minimizes the

sum of both of these overheads.

3.4.3 Paying for Remote Backup

The evaluation in the previous section measured the overhead of Cumulus in
terms of storage, network, and segment resource usage. Remote backup as a service,
however, comes at a price. In this section, we calculate monetary costs for our two
workload models, evaluate cleaning threshold and segment size in terms of costs instead
of resource usage, and explore how cleaning should adapt to minimize costs as the ratio
of network and storage prices varies. While similar, there are differences between this
problem and the typical evaluation of cleaning policies for a typical log-structured file
system: instead of a fixed disk size and a goal to minimize 1I/O, we have no fixed limits

but want to minimize monetary cost.
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for the fileserver workload

We use the prices for Amazon S3 as an initial point in the pricing space. In this

evaluation we use the prices as of August 2009, which were (in US dollars):
Storage: $0.15 per GB - month
Upload: $0.10 per GB
Segment: $0.01 per 1000 files uploaded
With this pricing model, the segment cost for uploading an empty file is equiva-

lent to the upload cost for uploading approximately 100 KB of data, i.e., when uploading
100 KB files, half of the cost is for the bandwidth and half for the upload request itself.
As the file size increases, the per-request component becomes an increasingly smaller
part of the total cost.

Table 3.3 shows the monthly storage and upload costs for each of the two traces,
neglecting for the moment the segment upload costs. Storage costs dominate ongoing
costs. They account for about 95% and 78% of the monthly costs for the fileserver
and user traces, respectively. Thus, changes to the storage efficiency will have a more
substantial effect on total cost than changes in bandwidth efficiency. We also note that
the absolute costs for the home backup scenario are very low, indicating that Amazon’s
pricing model is potentially quite reasonable for consumers: even for home users with

an order of magnitude more data to backup than our user workload, yearly ongoing costs
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Table 3.3: Costs for backups in US dollars, if performed optimally, for the fileserver
and user traces using current prices for Amazon S3

Fileserver Amount Cost

Initial upload 3563 GB $356.30
Upload 303 GB/month  $30.30/month
Storage 3858 GB $578.70/month
User Amount Cost

Initial upload 1.82 GB $0.27

Upload 1.11 GB/month  $0.11/month
Storage 2.68 GB $0.40/month

are roughly $50.

Whereas Figure 3.3 explored the parameter space of cleaning thresholds and
segment sizes in terms of resource overhead, Figure 3.6 shows results in terms of overall
cost for backing up the fileserver trace. These results show that using a simple storage
interface for remote backup also incurs very low additional monetary cost than optimal
backup, from 0.5-2% for the fileserver trace depending on the parameters, and as low
as about 5% in the user trace.

When evaluated in terms of monetary costs, though, the choices of cleaning
parameters change compared to the parameters in terms of resource usage. The cleaning
threshold providing the minimum cost is smaller and less aggressive (threshold = 0.4)
than in terms of resource usage (threshold = 0.6). However, since overhead is not overly
sensitive to the cleaning threshold, Cumulus still provides good performance even if the
cleaning threshold is not tuned optimally. Furthermore, in contrast to resource usage,
decreasing segment size does not always decrease overall cost. At some point—in this
case between 1-4 MB—decreasing segment size increases overall cost due to the per-
file pricing. We do not evaluate segment sizes less than 1 MB for the fileserver trace
since, by 1 MB, smaller segments are already a loss. The results for the user workload,
although not shown, are qualitatively similar, with a segment size of 0.5 MB to 1 MB

best.
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Figure 3.6: Costs in US dollars for backups in the fileserver assuming Amazon S3 prices
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Figure 3.7: Sensitivity of the optimal cleaning threshold to the relative cost of storage
vs. network. Amazon S3 currently has a storage/network cost ratio of 1.5, shown by a
vertical line.

The pricing model of Amazon S3 is only one point in the pricing space. As a
final cost experiment, we explore how cleaning should adapt to changes in the relative
price of storage versus network. Figure 3.7 shows the optimal cleaning threshold for
the fileserver and user workloads as a function of the ratio of storage to network cost.
The storage to network ratio measures the relative cost of storing a gigabyte of data for
a month and uploading a gigabyte of data. Amazon S3 has a ratio of 1.5. In general, as
the cost of storage increases, it becomes advantageous to clean more aggressively (the
optimal cleaning threshold increases). The ideal threshold stabilizes around 0.5-0.6
when storage is at least ten times more expensive than network upload, since cleaning

too aggressively will tend to increase storage costs.

3.4.4 Prototype Evaluation

In our final set of experiments, we evaluate the performance of the complete Cu-
mulus prototype. We compare the overhead of the Cumulus prototype implementation

with other backup systems, both more traditional and those targeting cloud storage. We
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also evaluate the sensitivity of compression on segment size, the overhead of metadata
in the implementation, the performance of sub-file incrementals and restores, and the

time it takes to upload data to a remote service like Amazon S3.

System Comparisons: Non-Cloud Systems

First we provide results from running our Cumulus prototype and compare with
two existing backup tools which, though not designed for cloud storage, provide a base-
line for comparison. We use the complete file contents included in the user trace to
accurately measure the behavior of our full Cumulus prototype and other real backup
systems. For each day in the first two months of the user trace, we extract a full snapshot
of all files, then back up these files with several backup tools:

Incremental tar: Backups using GNU tar and the ——1isted-incremental
option. This option produces incremental backups at a file-level granularity.

Duplicity: Backups using duplicity, with encryption disabled. These backups
are much like the incremental tar backups, except that the rsync algorithm efficiently
captures small changes to files.

Cumulus: Our full prototype implementation, with and without sub-file incre-
mentals.

In all tests, data is compressed using gzip at the maximum compression level.

Neither Duplicity nor tar can reclaim space from older backups without making
another full backup snapshot, while Cumulus can. But since none of these systems
upload extra data unnecessarily, they provide a good baseline for the optimal network
uploads.

Figure 3.8 shows the storage costs for the three systems, taking a single full
backup at the start and then incrementals each following day; in the case of Cumulus,
all snapshots are retained. This cumulative size is thus equivalent to total network up-
loads. The initial cost of a full backup in all three systems is comparable, since all
are effectively storing a copy of each file compressed with gzip. Cumulus uses slightly
less space since it performs deduplication at a coarse level (fixed 1-MB blocks), and
identifies a small amount of duplicate data. Second, the rate of growth of Cumulus and

incremental tar backups are comparable. This result is not too surprising since, in this
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Figure 3.8: Cumulative storage costs for actual runs of multiple backup systems

mode of operation, on each successive day Cumulus backs up most data in all changed
files. Duplicity performs better than the other two schemes by taking advantage of sub-
file incrementals. Finally, when sub-file incremental backups are enabled in Cumulus,
its daily upload rate falls so that it almost exactly matches that of duplicity.

Initial full backups for all tools are comparable: around 1150 MB for all. Cumu-
lus saves about 20 MB due to data de-duplication not performed by the other systems.
More interesting are the sizes of the incremental backups. Over a two month period,
tar uploads 1355 MB in incrementals and duplicity uploads 971 MB. For comparison,
Cumulus uploads 1287 MB without sub-file incrementals, and 1048 MB with sub-file
incrementals. Using duplicity as a proxy for near-optimal backups with sub-file incre-
mentals, the network upload overhead of Cumulus is under 8%. And, for this slight

additional cost, Cumulus can reclaim storage space used by old snapshots.

System Comparisons: Cloud Systems

Next, we provide some results from running our Cumulus prototype and com-
pare with two existing backup tools that also target Amazon S3: Jungle Disk and
Brackup. Unlike in the previous comparison, here all systems can easily delete old

snapshots to reclaim space.
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Table 3.4: Cost comparison for backups based on replaying actual file changes in the
user trace over a three month period. Costs for Cumulus are lower than those shown in
Table 3.3 since that evaluation ignored the possible benefits of compression and sub-file
incrementals, which are captured here. Values are listed on a per-month basis.

System Storage  Upload Operations

Jungle Disk ~2 GB 1.26 GB 30000
$0.30 $0.126 $0.30
Brackup 1.340 GB 0.760 GB 9027
(default) $0.201 $0.076 $0.090
Brackup 1.353GB 0.713 GB 1403
(aggregated) $0.203 $0.071 $0.014
Cumulus 1.264 GB 0.465GB 419
$0.190 $0.047 $0.004

As before, we use the complete file contents included in the user trace, this time
over a three month period. We compute the average cost, per month, broken down into
storage, upload bandwidth, and operation count (files created or modified).

We configured Cumulus to clean segments with less then 60% utilization on
a weekly basis. We evaluate Brackup with two different settings. The first uses the
merge_files_under=1kB option to only aggregate files if those files are under
1 KB in size (this setting is recommended). Since this setting still results in many
small files (many of the small files are still larger than 1 KB), a “high aggregation”
run sets merge_files_under=16kB to capture most of the small files and further
reduce the operation count. Brackup includes the digest database in the files backed
up, which serves a role similar to the database Cumulus stores locally. For fairness in
the comparison, we subtract the size of the digest database from the sizes reported for
Brackup.

Both Brackup and Cumulus use gpg to encrypt data in the test; gpg compresses
the data with gzip prior to encryption. Encryption is enabled in Jungle Disk, but no
compression is available.

In principle, we would expect backups with Jungle Disk to be near optimal in
terms of storage and upload since no space is wasted due to aggregation. But, as a

tradeoff, Jungle Disk will have a much higher operation count. In practice, Jungle Disk
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will also suffer from a lack of de-duplication, sub-file incrementals, and compression.
Table 3.4 compares the estimated backup costs for Cumulus with Jungle Disk

and Brackup. Several key points stand out in the comparison:

e Storage and upload requirements for Jungle Disk are larger, owing primarily to

the lack of compression.

e Except in the high aggregation case, both Brackup and Jungle Disk incur a large
cost due to the many small files stored to S3. The per-file cost for uploads is larger

than the per-byte cost, and for Jungle Disk significantly so.

e Brackup stores a complete copy of all file metadata with each snapshot, which in
total accounts for 150-200 MB/month of the upload cost. The cost in Cumulus is

lower since Cumulus can re-use metadata.

Comparing storage requirements of Cumulus with the average size of a full
backup with the venerable tar utility, both are within 1%: storage overhead in Cu-
mulus is roughly balanced out by gains achieved from de-duplication. Using duplicity
as a proxy for near-optimal incremental backups, in a test with two months from the
user trace Cumulus uploads only about 8% more data than is needed. Without sub-file
incrementals in Cumulus, the figure is closer to 33%.

The Cumulus prototype thus shows that a service with a simple storage interface
can achieve low overhead, and that Cumulus can achieve a lower total cost than other
existing backup tools targeting S3.

While perhaps none of the systems are yet optimized for speed, initial full back-
ups in Brackup and Jungle Disk were both notably slow. In the tests, the initial Jungle
Disk backup took over six hours, Brackup (to local disk, not S3) took slightly over two
hours, and Cumulus (to S3) approximately 15 minutes. For comparison, simply archiv-
ing all files with tar to local disk took approximately 10 minutes.

For incremental backups, elapsed times for the tools were much more compara-
ble. Jungle Disk averaged 248 seconds per run archiving to S3. Brackup averaged 115
seconds per run and Cumulus 167 seconds, but in these tests each were storing snapshots

to local disk rather than to Amazon S3.
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Segment Compression

Next we isolate the effectiveness of compression at reducing the size of the data
to back up, particularly as a function of segment size and related settings. We used as a
sample the full data contained in the first day of the user trace: the uncompressed size
is 1916 MB, the compressed tar size is 1152 MB (factor of 1.66), and files individually
compressed total 1219 MB (1.57x), 5.8% larger than whole-snapshot compression.

Figure 3.9 shows the observed compression ratios from packing together groups
of smaller files in the user trace. These observed compression ratios are higher than
those observed for the entire trace since the sample of files taken excludes very large
files (often not very compressible). It shows the dependence of compression on seg-
ment size: larger segments give compression algorithms more data across which to find
commonality.

When aggregating data together into segments, larger input segment sizes yield
better compression, up to about 300 KB when using gzip and 1-2 MB for bzip?2

where compression ratios level off.
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Metadata

The Cumulus prototype stores metadata for each file in a backup snapshot in a
text format, but after compression the format is still quite efficient. In the full tests on
the user trace, the metadata for a full backup takes roughly 46 bytes per item backed up.
Since most items include a 20-byte hash value which is unlikely to be compressible, the
non-checksum components of the metadata average under 30 bytes per file.

Metadata logs can be stored incrementally: new snapshots can reference the
portions of old metadata logs that are not modified. In the full user trace replay, a
full metadata log was written to a snapshot weekly. On days where only differences
were written out, though, the average metadata log delta was under 2% of the size of a
full metadata log. Overall, across all the snapshots taken, the data written out for file

metadata was approximately 5% of the total size of the file data itself.

Sub-File Incrementals

The effectiveness of sub-file incrementals depends greatly on the workload. In
the fileserver trace, data in new files dominates changes to existing files, so the possible
gains from accurate sub-file incrementals are small. In the user trace, more data is
modified in-place and so the possible additional gains from sub-file incrementals are
greater, as Section 3.4.4 showed.

To better understand the sub-file incrementals in Cumulus we use a microbench-
mark. We identify and extract several files from the user trace that are frequently mod-
ified in place. The files are taken from a 30-day period at the start of the trace. File A
is a frequently-updated Bayesian spam filtering database, about 90% of which changes
daily. File B records the state for a file-synchronization tool (unison), of which an av-
erage of 5% changes each day—however, unchanged content may still shift to different
byte offsets within the file. While these samples do not capture all behavior, they do
represent two distinct and notable classes of sub-file updates.

To provide a point of comparison, we use rdi f £ [27] to generate an rsync-style
delta between consecutive file versions. Table 3.5 summarizes the results.

The size overhead measures the storage cost of sub-file incrementals in Cumulus.

To reconstruct the latest version of a file, Cumulus might need to read data from many
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Table 3.5: Comparison of Cumulus sub-file incrementals with an idealized system based
on rdiff, evaluated on two sample files from the user trace

File A File B

File size 4.860 MB 5.890 MB
Compressed size 1.547 MB 2.396 MB
Cumulus size 5.190 MB 3.081 MB
Size overhead 235% 29%

rdiff delta 1421 MB 122 KB
Cumulus delta 1.527 MB 181 KB
Delta overhead 7% 48%

past versions, though cleaning will try to keep this bounded. This overhead compares
the average size of a daily snapshot (“Cumulus size”) against the average compressed
size of the file backed up. As file churn increases overhead tends to increase.

The delta overhead compares the data that must be uploaded daily by Cumulus
(“Cumulus delta”) against the average size of patches generated by rdiff (“rdiff delta”).
When only a small portion of the file changes each day (File B), rdiff is more efficient
than Cumulus in representing the changes. However, sub-file incrementals are still a
large win for Cumulus, as the size of the incrementals is still much smaller than a full
copy of the file. When large parts of the file change daily (File A), the efficiency of
Cumulus approaches that of rdiff.

Upload Time

Next, we consider the time to upload to a remote storage service. Our Cumulus
prototype is capable of uploading snapshot data directly to Amazon S3. To simplify
matters, we evaluate upload time in isolation, rather than as part of a full backup, to pro-
vide a more controlled environment. Cumulus uses the boto Python library to interface
with S3.

As our measurements are from one experiment from a single computer (on a
university campus network) and at a single point in time, in early 2008, they should
not be taken as a good measure of the overall performance of S3 (in fact, our own

measurements later show that performance has improved since then). Figure 3.10 shows
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Figure 3.10: Measured upload rates for Amazon S3 as a function of file size. The
measurements are fit to a curve where each upload consists of a fixed delay (for connec-
tion establishment and receiving a status code after the transfer) along with a fixed-rate
upload.

the measured upload rate as a function of the size of the file uploaded. The time for an
upload is measured from the start of the HTTP request until receipt of the final response.
For large files—a megabyte or larger—uploads proceed at a maximum rate of about
800 KB/s. According to our results there is an overhead equivalent to a latency of
roughly 100 ms per upload, and for small files this dominates the actual time for data
transfer. More recent tests indicate that rates may have improved; however, the basic
lesson—that file size matters—is still valid.

The S3 protocol, based on HTTP, does not support pipelining multiple upload
requests. Multiple uploads in parallel could reduce overhead somewhat. Still, it remains
beneficial to perform uploads in larger units.

For perspective, assuming the maximum transfer rates above, ongoing backups
for the fileserver and user workloads will take on average 3.75 hours and under a minute,
respectively. Overheads from cleaning will increase these times, but since network over-
heads from cleaning are generally small, these upload times will not change by much.

For these two workloads, backup times are very reasonable for daily snapshots.
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Restore Time

To completely restore all data from one of the user snapshots takes approxi-
mately 11 minutes, comparable to but slighly faster than the time required for an initial
full backup.

When restoring individual files from the user dataset, almost all time is spent
extracting and parsing metadata—there is a fixed cost of approximately 24 seconds to
parse the metadata to locate requested files. Extracting requested files is relatively quick,
under a second for small files.

Both restore tests were done from local disk; restoring from S3 will be slower

by the time needed to download the data.

3.5 Conclusions

It is fairly clear that the market for Internet-hosted backup service is growing.
However, it remains unclear what form of this service will dominate. On one hand, it
is in the natural interest of service providers to package backup as an integrated service
since that will both create a “stickier” relationship with the customer and allow higher
fees to be charged as a result. On the other hand, given our results, the customer’s
interest may be maximized via an open market for commodity storage services (such
as S3), increasing competition due to the low barrier to switching providers, and thus
driving down prices. Indeed, even today integrated backup providers charge between $5
and $10 per month per user while the S3 charges for backing up our test user using the
Cumulus system was only $0.24 per month.

Moreover, a thin-cloud approach to backup allows one to easily hedge against
provider failures by backing up to multiple providers. This strategy may be particularly
critical for guarding against business risk—a lesson that has been learned the hard way
by customers whose hosting companies have gone out of business. Providing the same
hedge using the integrated approach would require running multiple backup systems
in parallel on each desktop or server, incurring redundant overheads (e.g., scanning,
compression, etc.) that will only increase as disk capacities grow.

Finally, while this chapter has focused on an admittedly simple application, I
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believe it identifies a key research agenda influencing the future of cloud computing:
can one build a competitive product economy around a cloud of abstract commodity
resources, or do underlying technical reasons ultimately favor an integrated service-
oriented infrastructure? In this chapter I have shown that, at least for backup, a basic
interface to commodity resources is sufficient. In the next chapter, I consider an even

richer application: a full-fledged network file system.

Chapter 3, in part, is a reprint of material as it appears in the article “Cumu-
lus: Filesystem Backup to the Cloud” by Michael Vrable, Stefan Savage, and Geoffrey
M. Voelker which appears in ACM Transactions on Storage, Volume 5, Issue 4 (De-

cember 2009). The dissertation author was the primary investigator and author of this

paper.



Chapter 4

BlueSky

In the previous chapter, I showed how a very simple interface to cloud storage
can be used to build efficient file system backup to the cloud. In this chapter, I advance
that work to an application beyond backup.

The promise of third-party “cloud computing” services is a trifecta of reduced
cost, dynamic scalability, and high availability. While there remains debate about the
precise nature and limit of these properties, it is difficult to deny that cloud services
offer real utility—evident by the large numbers of production systems now being cloud-
hosted via services such as Amazon’s AWS and Microsoft’s Azure. However, thus far,
services hosted in the cloud have largely fallen into two categories: consumer-facing
Web applications (e.g., Netflix customer Web site and streaming control) and large-scale
data crunching (e.g., Netflix media encoding pipeline).

Little of this activity, however, has driven widespread outsourcing of enterprise
computing and storage applications. The reasons for this are many and varied, but they
largely reflect the substantial inertia of existing client-server deployments. Enterprises
have large capital and operational investments in client software and depend on the
familiar performance, availability and security characteristics of traditional server plat-
forms. In essence, cloud computing it is not currently a transparent “drop in” replace-
ment for existing services.

There are also substantive technical challenges to overcome, as the design points
for traditional client-server applications (e.g., file systems, databases, directory servers,

etc.) frequently do not mesh well with the services offered by cloud providers. In partic-

56
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ular, many such applications are designed to be bandwidth hungry and latency sensitive
(a reasonable design in a LAN environment), while the remote nature of cloud service
offerings naturally increases latency and the cost of bandwidth. Moreover, while cloud
services typically export simple interfaces to abstract resources (e.g., “put file” for Ama-
zon’s S3), traditional server protocols can encapsulate significantly more functionality.
Thus, until such applications are redesigned, much of the latent potential for outsourc-
ing computing and storage services remains untapped. Indeed, at $115B/year, small and
medium business (SMB) expenditures for servers and storage represent an enormous
market should these issues be resolved [23].

In this chapter, we explore an approach for bridging these domains for one partic-
ular application: network file service. In particular, we are concerned with the extent to
which traditional network file service can be replaced with commodity cloud services.
However, our design is purposely constrained by the tremendous investment (both in
capital and training) in established file system client software; we take as a given that
end-system software will be unchanged. Consequently, we focus on a proxy-based so-
lution, one in which a dedicated proxy server provides the illusion of a traditional file
server, while translating these requests into appropriate cloud storage API calls over the
Internet.

We explore this approach through a prototype system, called BlueSky, that sup-
ports both NFS and CIFS network file system protocols and includes drivers for both the
Amazon EC2/S3 environment and Microsoft’s Azure. The engineering of such a system
faces a number of design challenges, the most obvious of which revolve around per-
formance (i.e., caching, hiding latency and maximizing the use of Internet bandwidth),
but less intuitively also interact strongly with cost. In particular, as we will show, the
interaction between the storage interfaces and fee schedule provided by current cloud
service providers conspire to favor large segment-based layout designs (as well as cloud-
based file system cleaners). We demonstrate that ignoring these issues can dramatically
inflate costs (as much as 30 in our benchmarks) without significantly improving per-
formance. Finally across a series of benchmarks we demonstrate that, when using such
a design, commodity cloud-based storage services can provide performance competi-

tive with large dedicated file servers for the capacity and working sets demanded by
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enterprise workloads, while still accruing the scalability and cost benefits offered by

third-party cloud infrastructures.

4.1 Related Work

Network storage systems have engendered a vast literature, much of it focused
on the design and performance of traditional client server systems such as NFS, AFS,
CIFS [19, 22, 42]. Recently, a range of efforts have considered other structures, in-
cluding those based on peer-to-peer storage [32] among distributed sets of untrusted
servers [26, 28] which have indirectly informed subsequent cloud-based designs.

Cloud storage is a newer topic, driven by the availability of commodity services
from Amazon’s S3. Perhaps the closest academic work to our own is SafeStore [25],
which stripes erasure-coded data objects across multiple storage providers, ultimately
exploring access via an NFS interface. However, SafeStore is focused clearly on avail-
ability, rather than performance or cost and thus its design decisions are quite different.
A similar, albeit more complex system, is DepSky [6], which also focuses strongly on
availability, proposing a “cloud of clouds” model to replicate across providers.

At a more abstract level, Chen and Sion create an economic framework for evalu-
ating cloud storage costs and conclude that the computational costs of the cryptographic
operations needed to ensure privacy can overwhelm other economic benefits [8]. How-
ever, this paper was written before the introduction of Intel’s AES-NI architecture ex-
tension (present since the Westmere and Sandy Bridge processor generations) which
significantly accelerates data encryption operations.

There have also been a range of non-academic attempts to provide traditional file
system interfaces for the key-value storage systems offered by services like Amazon’s
S3. Most of these install new per-client file system drivers. Exemplars include s3fs [38],
which tries to map the file system directly on to S3’s storage model (which both changes
file system semantics, but also can dramatically increase costs) and ElasticDrive [12],
which exports a block-level interface (potentially surrendering optimizations that use
file-level knowledge such as prefetching).

However, the systems closest to our own are “cloud storage gateways”, a new
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class of storage server that has emerged in the last year (contemporaneous with our
effort). These systems, exemplified by companies such as Nasuni, Cirtas, TwinStrata,
StorSimple and Panzura, provide caching network file system proxies (or “gateways”)
that are, at least on the surface, very similar to our design. Pricing schedules for these
systems generally reflect a 2x premium over raw cloud storage costs). While few details
of these systems are public, in general they validate the design point we have chosen.

Of commercial cloud storage gateways, Nasuni [33] is perhaps most similar to
BlueSky. Nasuni provides a “virtual NAS appliance” (or “filer”), software packaged as a
virtual machine which the customer runs on their own hardware—this is very much like
the BlueSky proxy software that we build. The Nasuni filer acts as a cache and writes
data durably to the cloud. Because Nasuni does not publish implementation details it is
not possible to know precisely how similar Nasuni is to BlueSky, though there are some
differences. In terms of cost, Nasuni charges a price based simply on the quantity of
disk space consumed (around $0.30/GB/month, depending on the cloud provider)—and
not at all a function of data transferred or operations performed. Presumably, Nasuni
optimizes their system to reduce the network and per-operation overheads—otherwise
those would eat into their profits—but the details of how they do so are unclear, other
than by employing caching.

Cirtas [9] builds a cloud gateway as well but sells it in appliance form: Cirtas’s
Bluejet is a rack-mounted computer which integrates software to cache file system data
with storage hardware in a single package. Cirtas thus has a higher up-front cost than
Nasuni’s product, but is easier to deploy. Panzura [34] provides yet another CIFS/NFS
gateway to cloud storage. Unlike the others, Panzura allows multiple customer sites to
each run a cloud gateway. Each of these gateways accesses the same underlying file
system, so Panzura is particularly appropriate for teams sharing data over a wide area.
But again, implementation details are not provided.

TwinStrata [50] offers a cloud gateway that presents an iSCSI [43] interface to
storage—thus, TwinStrata appears like a disk array instead of a network file system to
clients. This provides flexibility: any type of file server can be used in front of Twin-
Strata’s appliance, and it will work well for hosting virtual machine disk images as well.

However, by operating at the block level instead of the file system level, TwinStrata’s
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appliance misses semantic knowledge of the data being accessed which could lead to
poorer caching. TwinStrata offers both physical appliances (like Cirtas) and virtual
appliances (like Nasuni). StorSimple [47] is yet another company, offering a product

similar to a TwinStrata appliance—iSCSI-accessible block storage backed by the cloud.

4.2 Architecture

BlueSky provides service to clients in an enterprise using a transparent proxy-
based architecture that stores data persistently on cloud storage providers (Figure 4.1).
This section discusses the role of the proxy and cloud provider components, as well as
the security model supported by BlueSky. Sections 4.3 and 4.4 then describe the layout
and operation of the BlueSky file system and the BlueSky proxy, respectively.

4.2.1 Local Proxy

The central component of BlueSky is a proxy situated between clients and cloud
providers. The proxy communicates with clients in an enterprise using a standard net-
work file system protocol, and communicates with cloud providers using a cloud stor-
age protocol. Our prototype supports both the NFS (version 3) and CIFS protocols for
clients, and the RESTful protocols for the Amazon S3 and Windows Azure cloud ser-
vices. Ideally, the proxy runs in the same enterprise network as the clients to minimize
latency to them. The proxy caches data locally and manages sharing of data among
clients without requiring an expensive round-trip to the cloud.

Clients do not require modification since they continue to use standard file-
sharing protocols. They mount BlueSky file systems exported by the proxy just as if
they were exported from an NFS or CIFS server. Further, the same BlueSky file system
can be mounted by any type of client with shared semantics equivalent to Samba.

As described in more detail later, BlueSky lowers cost and improves perfor-
mance by adopting a log-structured data layout for the file system stored on the cloud
provider. File system objects are packed together into larger log segments which are
then written to cloud storage. A cleaner reclaims storage space by garbage-collecting

old log segments which do not contain any live objects, and processing almost-empty
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Figure 4.1: BlueSky architecture. A proxy running on-site mediates all access to the
file system and provides local caching. Clients communicate with the proxy via NFS or
CIFS. The proxy stores all data to a cloud provider eventually, using any of a number
of possible backends. A log cleaner may execute in the cloud. The bottom half of the
figure shows the internal organization of the proxy. File system operations are translated
by a frontend and passed to the BlueSky core. Operations are initially performed on
in-memory representations of inodes, but updates are quickly serialized into cloud log
items. These log items are journaled to local disk for crash-recovery, and are aggregated
together into log segments to be stored in the cloud. Log segments pass through a
cryptographic layer to encrypt and add authentication data, then to a storage backend
driver which communicates with the cloud. Cloud log items are fetched back from the
cloud later if needed, and fetched items are cached on disk at the proxy.
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segments by copying live data out of old segments into new segments.

As a write-back cache, the BlueSky proxy can fully satisfy client write requests
with local network file system performance by writing to its local disk—as long as its
cache capacity can absorb periods of write bursts as constrained by the bandwidth the
proxy has to the cloud provider (Section 4.5.5). For read requests, the proxy can provide
local performance to the extent that the proxy can cache the working set of the client
read workload (Section 4.5.4). In both cases we argue that a proxy architecture like

BlueSky can achieve both goals effectively for enterprise workloads.

4.2.2 Cloud Provider

So that BlueSky can potentially use any cloud provider for persistent storage
service, it makes minimal assumptions of the provider; in our experiments, we use both
Amazon S3 and the Windows Azure blob service as cloud storage providers. BlueSky
assumes a basic interface supporting get, put, 1ist, and delete operations. Using
just that interface, BlueSky constructs and maintains a log-structured file system on the
provider. If the cloud provider also supports a hosting service, BlueSky can co-locate

the file system cleaner at the provider to reduce cost and improve cleaning performance.

4.2.3 Security

Security becomes a key concern with outsourcing critical functionality such as
data storage. In designing BlueSky, our goal is to provide high assurances of data con-
fidentiality and integrity. The proxy encrypts all client data before sending it over the
network, so the provider cannot read private data. Data stored at the provider also in-
cludes integrity checks so that any tampering by the storage provider can be detected.

However, some trust in the cloud provider is unavoidable, particularly for data
availability. The provider could always delete or corrupt stored data, rendering it un-
available. These actions could be intentional—e. g., if the provider is malicious—or ac-
cidental, for instance due to insufficient redundancy in the face of correlated hardware
failures from disasters. Ultimately, the best guard against such problems is through au-

diting and the use of multiple independent providers [25, 6]. BlueSky could readily
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incorporate such functionality, such as maintaining redundant versions of a file system
on multiple cloud providers, but doing so remains outside the scope of our current work.

A buggy or malicious storage provider could also serve stale data—instead of
returning the most recent data, it could return an old copy of a data object that nonethe-
less has a valid signature (because it was written by the client at an earlier time). By
authenticating pointers between objects starting at the root, however, BlueSky prevents a
provider from selectively rolling back file data. A provider can only roll back the entire
file system to an earlier state, which is likely to be detected.

BlueSky can also take advantage of computation in the cloud for running the file
system cleaner. As with storage, we do not want to completely trust the computational
service, yet doing so provides a tension in the design. To maintain confidentiality, data
encryption keys should not be available on cloud compute nodes. Yet, if cloud compute
nodes are used for file system maintenance tasks, the compute nodes must be able to
read and manipulate file system data structures. For BlueSky, we make the tradeoff of
encrypting file data while leaving the metadata necessary for cleaning the file system
unencrypted. As a result, storage providers can understand the layout of the file system
and potentially corrupt data, but the data still remains confidential and the proxy can still
validate its integrity.

In summary, BlueSky attempts to provide strong confidentiality guarantees and
slightly weaker integrity guarantees (some data rollback attacks might be possible but

are largely prevented), but must rely on the provider for availability.

4.3 BlueSky File System

This section describes the BlueSKky file system layout. We present the object data
structures maintained in the file system and their organization in a log-structured format.
We also describe how BlueSky cleans the logs comprising the file system, and how the
design conveniently lends itself to providing versioned backups of the data stored in the
file system. Subsequently in Section 4.4 we describe how the BlueSky proxy provides

file system service to clients.
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4.3.1 Object Types

BlueSky uses four types of objects for representing data and metadata in its log-
structured file system [39] format: data blocks, inodes, inode maps, and checkpoints.
These objects are aggregated into log segments for storage. Figure 4.2 illustrates their
relationship in the layout of the file system.

Data blocks store file data. Files are broken apart into fixed-size blocks (except
for the last block in a file which may be short). BlueSky uses 32 KB blocks instead
of typical disk file system sizes like 4 KB to reduce overhead: block pointers as well
as extra header information impose a higher per-block overhead in BlueSky than in an
on-disk file system. We briefly discuss the effects of varying the size later. Nothing
fundamental prevents BlueSky from using variable-size blocks optimized for the access
patterns of each file, but we have not implemented this.

Inodes for all file types include basic metadata (ownership and access control,
timestamps, etc.). For regular files, the inode includes a list of pointers to data blocks
with the file contents. Directory entries are stored within the directory inode itself to
reduce the overhead of making path traversals. BlueSky currently does not use indirect
blocks for locating file data—inodes directly contain pointers to all data blocks (easy to
do since inodes are not fixed-size).

Inode maps list the locations in the log of the most recent version of each inode.
Since inodes are not stored at fixed locations, inode maps provide the necessary level of
indirection for locating inodes.

A checkpoint object determines the root of a file system snapshot. A checkpoint
contains pointers to the locations of the current inode map objects. When first reading a
file system, the proxy locates the most recent checkpoint simply by scanning backwards
in the log, since the checkpoint is always one of the last objects written. Checkpoints
are useful for maintaining file system integrity in the face of proxy failures, for de-
coupling cleaning and file service (Section 4.3.3), and for providing versioned backup
(Section 4.3.4).
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Figure 4.2: BlueSky filesystem layout. The top portion shows the logical organization,
with checkpoints pointing to inode maps pointing to inodes pointing to data blocks.
Object pointers are shown with solid arrows, and include both the unique identifier of
the object and the physical location. Shaded objects are stored in encrypted form in
the cloud for privacy; checkpoints and inode maps are unencrypted so that an in-cloud
cleaner can read them. Object pointers are always unencrypted. The bottom half of the
figure shows the physical layout, where log items are packed into segments and stored
in the cloud. Dashed lines indicate the physical placement of objects. Note that pointers
between log directories are permitted: for example, an inode in one directory pointing
at a data block in another. Also note that the checkpoint object falls at the very end of
the log, allowing the proxy to find it on startup.
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4.3.2 Cloud Log

For each file system stored at a cloud service, BlueSky maintains a separate
log for each writer to the file system. Typically, each file system has two writers: the
proxy managing the file system on behalf of a set of clients and a cleaner that garbage
collects overwritten data. Each writer stores its log segments to a separate directory,
and as a result each writer can make updates to a file system independently and without
coordination.

File system logs consist of a logical list of log segments. Log segments aggregate
objects into large, approximately fixed-size containers for storage and transfer. In the
current implementation segments are up to about four megabytes in size, large enough to
avoid the overhead of dealing with many small objects. Writing large segments instead
of many small objects substantially reduces the per-operation cost and makes better use
of the network bandwidth between the proxy and the cloud service. Though the storage
interface requires that each log segment be written in a single operation, typically cloud
providers allow partial reads of objects (using HTTP byte-range requests). As a result,
data can be read at the granularity at which it is requested, which is independent of the
size of a segment. Section 4.5.6 quantifies the performance benefits of grouping data
into segments and of selective reads, and Section 4.5.7 quantifies their cost benefits.

A monotonically-increasing sequence number identifies each log segment within
a directory. Since each log segment may contain many objects, a byte offset identifies
the specific object in the segment. Additionally, while not required a location pointer
will usually include the size of the object as a hint for how much data to fetch to read the
object. Together, the triple (directory, sequence number, offset) describes the physical
location of each object.

BlueSky generates a unique identifier (UID) for each object when that object is
written into a segment in the log. This unique identifier remains unchanged if the object
is simply relocated (without change) during the cleaning process.

An object can contain pointers to other objects (for example, an inode pointing
to data blocks), and the pointer lists both the UID and the physical location of the object.
The UID is integrity-protected but the location is not. Thus, a cleaner can reorganize

data items and update the location pointers without needing any secret keys, but the



67

Object type
Unique identifier (UID)

Authenticated: Inode number

Encrypted: {Object payload

Object pointers: UIDs

Unauthenticated:  Object pointers: Physical locations

Figure 4.3: Data fields included in most objects stored in the cloud

proxy can still verify the identity of the relocated object using the UID.

Data blocks list the inode number of the inode to which the data belongs. While
not needed in normal operation, this backpointer can be used by a log cleaner to locate
the possible owner of the data block and determine whether the data is still in fact in
use.

In support of BlueSky’s security goals (Section 4.2.3), file system objects are
individually encrypted (with AES) and protected with a keyed message authentication
code (HMAC-SHA-256) by the proxy before uploading to the cloud service. Each object
can contain data with a mix of protections: some data is encrypted and authenticated,
some data is authenticated plain-text, and some data is unauthenticated. The keys for
encryption and authentication are not shared with the cloud, though we assume that a
safe backup of these keys (which do not change) is kept for disaster recovery. Figure 4.3

summarizes the fields included in most objects.

4.3.3 Cleaner

As with any log-structured file system, BlueSky requires a file system cleaner to
garbage collect data that has been overwritten. Unlike traditional disk-based systems,
though, the completely elastic nature of cloud storage means that the file system will not
run out of space, and so it is not necessary to run the cleaner to make progress writing

out new data. Running the cleaner periodically will reclaim space to reduce ongoing
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storage costs, and can defragment data for more efficient access later.

We designed the BlueSky cleaner so that it can run either remotely at the proxy,
or locally on a compute instance within the cloud provider where it has faster, cheaper
access to the storage. For example, when running the cleaner in Amazon EC2 and
accessing storage in Amazon S3, Amazon does not charge for data transfers (though
it still charges for operations). We have also specifically designed the BlueSky file
system so that a cleaner running in the cloud does not need to be fully trusted—it will
need permission to read and write cloud storage, but does not require the file system
encryption and authentication keys.

The cleaner runs online with no synchronous interactions with the proxy: clients
can continue to access and modify the file system through the proxy even while the
cleaner is running. The proxy and cleaner write to separate log directories in the cloud
so that neither overwrites the log data of the other.

There may be concurrent updates to the same object—for example, the proxy
may write to an inode while the cleaner relocates its data. In cases like these, the diver-
gent inode versions in each log must be merged together. In BlueSky, the proxy takes

all responsibility for merging divergent files together (Section 4.4.3).

4.3.4 Backups

The log-structured design allows BlueSky to integrate file system snapshots for
backup purposes easily. In fact, so long as a cleaner is never run, any checkpoint record
ever written to the cloud can be used to reconstruct the state of the file system at that
point in time. Though not implemented in our prototype, the cleaner or a snapshot tool
could record a list of checkpoints to retain and protect all required log segments from
deletion. Alternatively, those segments could be archived elsewhere for safekeeping.

Because all file system data is already stored in the cloud, creating a backup
snapshot in this way is a quick operation that does not require uploading all the data

from the client site.
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4.4 BlueSky Proxy

In this section we describe the design and implementation of the BlueSky proxy,
including its approach to managing its data cache on disk, its network connections to

the cloud, and how it indirectly cooperates with the cleaner.

4.4.1 Cache Management

The proxy uses its local disk storage to implement a write-back cache. The proxy
logs file system write requests from clients (both data and metadata) to a journal on local
disk. The proxy ensures that data is safely on disk before replying to clients that data
has been committed. The proxy sends these updates to the cloud asynchronously in the
background. Physically, the journal is broken apart into sequentially-numbered files on
disk (journal segments) of a few megabytes each.

This write-back caching at the proxy does mean that in the event of a catastrophic
failure of the proxy—if the proxy’s storage is lost—that some data may not have been
written to the cloud and will be lost. In the event of an ordinary crash in which local
storage is intact, no data will be lost as the proxy will replay the changes recorded in
the journal to reconstruct file system state. Periodically, the proxy takes a snapshot of
the file system state, as it has been committed to the journal, collects new file system
objects and any inode map updates into a number of log segments, and uploads those log
segments to cloud storage. If a very large amount of data has changed, the changes are
uploaded as several segments. (Our prototype proxy implementation does not currently
perform deduplication, which we would likely do at the file level [29] but leave for
future work for evaluating its tradeoffs.)

There are tradeoffs in choosing how quickly to flush data to the cloud. Writing
data to the cloud quickly minimizes the window for data loss. However, a longer timeout
has advantages as well. First, it enables large log segment sizes. Each log segment in
the cloud must be written in a single upload, so the proxy must be able to group updates
together; a longer delay allows more writes to be batched together into a single log
segment. It also enables overlapping writes to be combined, minimizing the data that

must be uploaded. In the extreme case of short-lived temporary files, no data need be
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uploaded to the cloud. Currently the BlueSky proxy commits data as frequently as once
every five seconds. BlueSky does not start writing a new checkpoint until the previous
one completes, so under a heavy write load checkpoints may commit less frequently.

The proxy maintains a cache on disk of file system data to satisfy many read
requests without going to the cloud. This cache consists of old journal segments and
log segments downloaded from cloud storage. Cloud log segments may be downloaded
partially, and in this case are stored as sparse files so they take up only approximately as
much space on disk as the data downloaded.

The proxy uses a unified LRU policy to manage the cache, both journal segments
and log segments from the cloud. The proxy tracks the most recent access to each journal
and cloud log segment, and deletes the least-recently accessed segment to maintain the
target cache size. The one exception to LRU is that journal segments containing data
not yet flushed to the cloud are kept pinned until data is in the cloud. The proxy allows
at most half of the disk cache to be pinned in this way.

When reading data from its disk cache, the BlueSky proxy will memory-map the
file data. Doing so avoids double-caching of file data, with one copy in the operating
system’s page cache and another copy in the memory of the BlueSky proxy, and gives
the operating system full control over memory cache replacement.

The proxy also keeps in memory an index for locating file system data in the
journal and cache. While data flushed to the cloud is indexed for random access, the
journal contents are not indexed and so the proxy must maintain this index information
in memory at least until data is written to the cloud. (On a system crash and restart, the
index of data in the journal is rebuilt via journal replay.)

The BlueSky proxy uses partial reads (HTTP range requests) to decrease the
latency and cost to selectively read data objects. When possible, if there are multiple
objects to fetch from a single log segment the proxy will download them using a single

larger range request.

4.4.2 Connection Management

The BlueSky storage backends keep and reuse HTTP connections when sending

and receiving data from the cloud; the CURL library handles the details of this connec-
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tion pooling. Each upload or download is performed in a separate thread. BlueSky limits
uploads to no more than 32 segments concurrently, both to limit contention among TCP
sessions and to limit memory usage in the proxy (since each segment is buffered entirely

in memory when it is sent).

4.4.3 Merging System State

As discussed in Section 4.3.3, the proxy and the cleaner operate independently of
each other. When the cleaner begins execution, it begins working from the most recent
checkpoint written by the proxy. The cleaner only ever accesses data relative to this file
system snapshot, even if the proxy writes additional updates to the cloud. As a result,
the proxy and cleaner each may make updates to the same objects (e.g., inodes) in the
file system. Since reconciling the updates requires unencrypted access to the objects,
the proxy assumes responsibility for merging file system state.

When the cleaner finishes execution, it writes an updated checkpoint record to
its log; this checkpoint record identifies the snapshot on which the cleaning was based.
When the proxy sees a new checkpoint record from the cleaner, it begins merging up-
dates made by the cleaner with its own updates.

The general case of merging file system state from multiple writers is a difficult
one which we leave for future work. But the case of a single proxy and cleaner is
particularly straightforward since only the proxy is making logical changes to the file
system—the cleaner merely performs a physical reorganization. In the worst case, if the
proxy has difficulty merging changes by the cleaner it can simply discard the cleaner’s
changes.

The persistent UIDs for objects can optimize the check for whether merging is
needed. If both the proxy and cleaner logs use the same UID for an object, the cleaner’s
version may be used. The UIDs will differ if the proxy has made any changes to the
object, in which case the objects must be merged or the proxy’s version used. For data
blocks, the proxy’s version is always used. For inodes, file data is merged block-by-

block.
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4.4.4 Implementation

Our BlueSky prototype is implemented primarily in C, with small amounts of
C++ and Python. The core BlueSky library which implements the file system but not any
of the front-ends to it consists of 8500 lines of code (including comments and whites-
pace). BlueSky uses GLib for data structures and utility functions, libgcrypt for crypto-
graphic primitives, and libs3 and libcurl for interaction with Amazon S3 and Windows
Azure.

Our NFS server consists of another 3000 lines of code, not counting code en-
tirely generated by the rpcgen RPC protocol compiler. The CIFS server builds on top
of Samba 4, adding approximately 1800 lines of code as a new backend. These inter-
faces do not fully implement all file system features such as security and permissions
handling, but are sufficient to evaluate the performance of the system.

The prototype in-cloud file system cleaner is implemented in just 600 lines of

portable Python code and does not depend on the BlueSky core library.

4.5 Evaluation

In this section we evaluate the BlueSky proxy prototype implementation. We
explore performance from the proxy to the cloud, the effect of various design choices
on both performance and cost, and how BlueSky performance varies as a function of its
ability to cache client working sets for reads and absorb bursts of client writes.

We start with a description of our experimental configuration.

4.5.1 Experimental Setup

We ran experiments on Dell PowerEdge R200 servers with 2.13 GHz Intel Xeon
X3210 processors (four processor cores), a 7200 RPM 80 GB SATA hard drive, and
gigabit network connectivity (between the servers and to the Internet). One machine,
with 4 GB of RAM, is used as a load generator. The second machine, with 8 GB of
RAM and an additional 1.5 TB 7200 RPM disk drive, acts as a standard NFS/CIFS

server or a BlueSky proxy. Both servers run Debian testing; the load generator machine
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is a 32-bit install (required for SPECsfs) while the proxy machine uses a 64-bit operating
system.

We focused our efforts on two providers: Amazon’s Simple Storage Service
(S3) [3] and Windows Azure storage [30]. For Amazon S3, we looked at both the
standard US region (East Coast) as well as S3’s West Coast (Northern California) region.

We use the SPECsfs2008 [46] benchmark in many of our performance evalua-
tions. SPECsfs can generate both NFSv3 and CIFS workloads patterned after real-world
traces. In these experiments, SPECsfs subjects the server to increasing loads (measured
in operations per second) while simultaneously increasing the size of the working set
of files accessed. Our use of SPECsfs for research purposes does not follow all rules
for fully-compliant benchmark results, but should allow for relative comparisons. Sys-
tem load on the load generator machine remains low, and the load generator is not the
bottleneck. Most tests use the NFSv3 protocol, though we also test with CIFS.

In several of the benchmarks, the load generator mounts the BlueSky file system
with the standard Linux NFS client. In the read benchmarking in Section 4.5.4, we use
a synthetic load generator which directly generates NFS read requests (bypassing the

kernel NFS client) to provider better control.

4.5.2 Cloud Provider Bandwidth

To understand the performance bounds on any implementation and to guide our
specific design, we measured the performance our proxy is able to achieve writing data
to Amazon S3. Figure 4.4 shows that the BlueSky proxy has the potential to fully utilize
its gigabit link to S3 if it uses large request sizes and parallel TCP connections. The
graphs shows the total rate at which the proxy could upload data to S3 for a variety of
request sizes and number of parallel connections. Round-trip time from the proxy to
the standard S3 region, shown in the graph, is around 30 ms. We use non-pipelined
requests—we wait for confirmation for each object on a connection before sending an-
other one—and so when uploading small objects each connection is mostly idle. Larger
objects better utilize the network, but objects of one to a few megabytes are sufficient to
capture most gains. A single connection utilizes only a fraction of the total bandwidth,

so to fully make use of the network we need multiple parallel TCP connections. These
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Figure 4.4: Measured aggregate upload performance to Amazon S3, as a function of the
size of the objects uploaded (z-axis) and number of parallel connections made (various
curves). A gigabit network link is available. Full use of the link requires parallel uploads
of large objects.

measurements helped inform the choice of 4 MB log segments (Section 4.3.1) and a
pool size of 32 connections (Section 4.4.2).

We also measured the latency to the S3 US-West location is and found it to be
lower, around 12 ms. The network round trip time to Azure in our testing was higher,
around 85 ms. Network bandwidth was not a bottleneck in either case, with the achiev-
able bandwidth again approaching 1 Gbps. In later benchmarks, we focus primarily

upon the Amazon US-West region.

4.5.3 Impact of Cloud Latency

To underscore the impact latency can have on file system performance, we first
run a simple, time-honored benchmark of unpacking and compiling a kernel source
tree. We measure the time for three steps: (1) extract the sources for version 2.6.37
of the Linux kernel (a write-only workload); the sources consist of roughly 35000 files
and 400 MB; (2) checksum the contents of all files in the extracted sources (a read-only
workload); (3) build a 1386 kernel using the default kernel configuration and the - j4 flag

to permit up to four files to be compiled in parallel (a mixed read/write workload). For a
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Table 4.1: Kernel compilation benchmark times for various file server configurations.
Steps are (1) unpack sources, (2) checksum sources, (3) build kernel. Times are given in
minutes:seconds. Cache flushing and prefetching are only relevant in steps (2) and (3).

Unpack Check Compile

Local file system
warm client cache 0:30 0:02 3:05
cold client cache 0:27
Local NFS server
warm server cache 10:50 0:26 4:23
cold server cache 0:49
NEFS server in EC2
warm server cache 65:39 26:26 74:11
BlueSky/S3-West
warm proxy cache  5:10  0:33 5:50

cold proxy cache 26:12 7:10

full segment 1:49 6:45
BlueSky/S3-East

warm proxy 5:08  0:35 5:53

cold proxy cache 57:26 8:35

full segment 3:50 8:07
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range of comparisons, we repeat this experiment on a number of system configurations.
In all cases with a remote file server, we flushed the client’s cache by unmounting and
remounting the file system in between steps.

Table 4.1 shows the timing results of the benchmark steps for the various system
configurations. Recall that the network links client<»proxy and proxy<+S3, are both
1 Gbps—the only difference is latency (12 ms from the proxy to BlueSky/S3-West and
30 ms to BlueSky/S3-East). Using a network file system, even locally, adds considerably
to the execution time of the benchmark compared to a local disk. However, running an
NFS server in EC2 compared to running it locally increases execution times by a factor
of 6-30x due to the high latency between the client and server and a workload with
operations on many small files.

The substantial impact latency can have on workload performance motivates the
need for a proxy architecture. Since clients interact with the BlueSky proxy with low
latency, BlueSky with a warm disk cache is able to achieve performance similar to a
local NES server. (In this case, BlueSky performs slightly better than NFS because
its log-structured design is better-optimized for some write-heavy workloads.) With a
cold cache, it has to read small files from S3, incurring the latency penalty of reading
from the cloud. Incidental prefetching from fetching full 4 MB log segments when a
client requests data in any part of the segment greatly improves performance (since in
this particular benchmark there is a great deal of locality—Ilater on we will see that in
workloads with little locality, full fetches hurt performance), but execution times are still
multiples of BlueSky with a warm cache. The differences in latencies between S3-West
and S3-East for the cold cache and full segment cases again underscores the sensitivity
to cloud latency.

In summary, greatly masking the high latency to cloud storage—even with high-
bandwidth connectivity to the storage service—requires a local proxy to minimize la-
tency to clients, while fully masking high cloud latency further requires an effective

proxy cache.
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Figure 4.5: Read performance as a function of working set captured by proxy. Both
the average latency to respond to the requests and the effective total read bandwidth are
shown. Results shown are from a single benchmark run.
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4.5.4 Caching the Working Set

The BlueSky proxy can mask the high latency overhead of accessing data on a
cloud service by caching data close to clients. The more effective the cache, the closer
the performance (as perceived by clients) to that of a local network file server.

For what kinds of file systems can such a proxy be an effective cache? Ideally,
the proxy needs to cache the working set across all clients using the file system to max-
imize the number of requests that the proxy can satisfy locally. Although a number of
factors can make generalizing difficult, previous studies have estimated that clients of a
shared network file system typically have a combined working set that is roughly 10%
of the entire file system in a day, and less at smaller time scales [40, 55]. For BlueSky to
provide acceptable performance, it must have the capacity to hold this working set. As
a rough back-of-the-envelope using this conservative daily estimate, a proxy with one
commodity 3 TB disk of local storage could capture the daily working set for a 30 TB
file system, and five such disks raises the file system size to 150 TB. Many enterprise
storage needs fall well within this envelope, so a BlueSky proxy can comfortably capture
working sets for such scenarios.

In practice, of course, workloads are dynamic. Even if proxy cache capacity
is not an issue, clients shift their workloads over time and some fraction of the client
workload to the proxy cannot be satisfied by the cache. To evaluate what happens in
these cases, we use synthetic read and write workloads—and do so separately because
they interact with the cache in different ways.

We start with read workloads. Reads that hit in the cache achieve local perfor-
mance, while reads that miss in the cache incur the full latency of accessing data in
the cloud, stalling the clients accessing the data (unless BlueSky incorporates aggres-
sive prefetching, which we leave as future work). The ratio of read hits and misses in
the workload determines overall read performance, and fundamentally depends on how
well the cache capacity is able to capture the file system working set across all clients in
steady state.

We populate a BlueSky file system on S3 with 32 GB of data using 16 MB
files. We then generate a steady stream of fixed-size NFS read requests to random

files through the BlueSky proxy. We vary the size of the proxy disk cache to represent
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different working set scenarios. In the best case, the capacity of the proxy cache is large
enough to hold the entire working set: all read requests hit in the cache in steady state,
minimizing latency. In the worst case, the cache capacity is zero, no part of the working
set fits in the cache, and all requests go to the cloud service. In practice, a real workload
falls in between these extremes.

In this experiment, we make uniform random requests to any of the files, so the
working set is effectively equivalent to the size of the entire file system. The experiment
measures the steady-state performance of client read requests. We also vary the size
of client requests: larger requests benefit clients by taking better advantage of network
bandwidth.

Figure 4.5 shows that BlueSky with S3 provides good latency even when it is
able to cache only 50% of the working set: with a local NFS latency of 21 ms for
32 KB requests, BlueSky is able to keep latency within 2x that value. Given that cache
capacity is not an issue, this situation corresponds to clients dramatically changing the
data they are accessing such that 50% of their requests are to new data objects not cached
at the proxy. Larger requests have larger absolute latencies, but take better advantage of
bandwidth: 1024 KB requests are 32 x larger than the 32 KB requests, but have latencies

only 4 x longer.

4.5.5 Absorbing Writes

The BlueSky proxy represents a classic write-back cache scenario in the context
of a cache for a wide-area storage backend. In contrast to reads, the BlueSky proxy
can absorb bursts of write traffic entirely with local performance since it implements
a write-back cache. Two factors determine the proxy’s ability to absorb write bursts:
the capacity of the cache, which determines the instantaneous size of a burst the proxy
can absorb; and the network bandwidth between the proxy and the cloud service, which
determines the rate at which the proxy can clear the cache by writing back data. As long
as the write workload from clients falls within these constraints, the BlueSky proxy can
entirely mask the high latency to the cloud service for writes. However, if clients instan-
taneously burst more data than can fit in the cache, or if the steady-state write workload

is higher than the proxy<>cloud service bandwidth, client writes start to experience de-
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Latency vs. Write Rate with Constrained Upload
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Figure 4.6: Write latencies when the proxy is uploading over a constrained (= 100
Mbps) uplink to S3 as a function of the write rate of the client and the size of the write
cache to temporarily absorb writes. The y-axis shows the average latency of each of a
series of 1 MB write operations for write bursts two minutes in duration, and error bars
show the standard deviation over three benchmark runs.

lays that depend on the performance of the cloud service.

We populate a BlueSky file system on S3 with 1 MB files and generate a steady
stream of fixed-size 1 MB NFS write requests to random files in the file system. The
client bursts writes at different rates for two minutes and then stops. So that we can
overload the network between the BlueSky proxy and S3, we rate limit traffic to S3 at
100 Mbps while keeping the client«+proxy link unlimited at 1 Gbps. We start with a
rate of write requests well below the traffic limit to S3, and then steadily increase the
rate until the offered load is well above the limit.

Figure 4.6 shows the average latency of the 1 MB write requests as a function of
offered load. At low write rates the latency is determined by the time to commit writes
to the proxy’s disk. The proxy can upload at up to about 12 MB/s to the cloud (due
to the rate limiting), so beyond this point latency increases as the proxy must throttle
writes by the client when the write buffer fills. With a 1 GB write-back cache the proxy

can temporarily sustain write rates beyond the upload capacity.



81

4.5.6 More Elaborate Workloads

Using the SPECsfs2008 benchmark we next examine the performance of Blue-
Sky under more elaborate workload scenarios, both to subject BlueSky to more inter-
esting workload mixes as well as to highlight the impact of different design decisions in
BlueSky. We evaluate a number of different system configurations, including a native
Linux nfsd in the local network (Local NFS) as well as BlueSky communicating with
both Amazon S3’s US-West region and Windows Azure’s blob store. Unless otherwise
noted, BlueSky evaluation results are for communication with Amazon S3. In addition
to the base BlueSky setup we test a number of variants: disabling the log-structured
design to store each object individually to the cloud (noseg), disabling range requests on
reads so that full segments must be downloaded (norange), and using 4 KB file system
blocks instead of the default 32 KB (4K).

We run the SPECsfs benchmark in two different scenarios, modeling the case
where there is a both a low degree of client parallelism and a high degree of parallelism.
In the low-parallelism case, 4 client processes make requests to the server, each with
at most 2 outstanding reads or writes. In the high-parallelism case, there are 16 client
processes each making up to 8 reads or writes.

Figure 4.7 shows several SPECsfs runs under under the low-parallelism case. In
these experiments, the BlueSky proxy was configured to use an 8 GB disk cache. The
top graph shows the delivered throughput (in operations per second) against the load
offered by the load generator, and the bottom graph shows the corresponding average
latency for the operations. At a low requested load, the file servers can easily keep up
with the requests and so the achieved operations per second are equal to the requested
load. At some point, the server becomes saturated and the achieved performance levels
off.

The solid curve in the graphs shows the performance of an NFS server running
locally, using one of the disks of the proxy machine for storage. This machine can sus-
tain a rate of up to 420 operations/second, at which point the disk is the performance
bottleneck. The BlueSky server achieves a low latency—comparable to the local server
case—at low loads since many operations hit in the proxy’s cache and avoid wide-area

network communication. At higher loads, performance degrades as the working set size
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Figure 4.7: Comparison of various file server configurations subjected to the SPECsfs
benchmark, with a low degree of parallelism (4 client processes). In these experiments
cryptography is enabled for all BlueSky runs, and most tests use the Amazon US-West
region. “4K” tests using 4 KB file system blocks instead of the default of 32 KB. “noseg”
disables the log-structured design and uses a cloud file per object. “norange” disables
range read requests and fetches complete segments from the cloud. “Azure” is just like
the standard BlueSky test, but using Azure blob storage instead.
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Figure 4.8: Comparison of various file server configurations subjected to the SPECsfs
benchmark, with a high degree of parallelism (16 client processes). Each of the tests be-
low “BlueSky” evaluates a single variation from the base BlueSky configuration. Most
tests have cryptography disabled, but the “+crypto” test re-enables it. The “noseg” test
disables the log-structured design and uses a cloud file per object. “norange” disables

range read requests, requiring complete segments to be fetched from the cloud.
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increases. In write-heavy workloads, BlueSky performs better than the native Linux
NFS server with local disk, since BlueSky commits operations to disk in a single jour-
nal and can make better use of disk bandwidth. Fundamentally, though, we consider this
approach to using cloud storage successful as long as it provides performance commen-
surate with standard local network file systems.

BlueSky’s aggregation of written data into log segments, and partial retrieval of
data with byte-range requests, are important to achieving good performance and low
cost with cloud storage providers. As discussed in Section 4.5.2, transferring data as
larger objects is important for fully utilizing available bandwidth. As we show below,
from a cost perspective as well larger objects are better since small objects require more
costly operations to store and retrieve an equal quantity of data.

In this experiment we also used BlueSky with Amazon S3 as the cloud storage
provider and with Windows Azure as the cloud provider. Although Azure performed
noticeably worse than S3, we attribute the difference primarily to the higher latency
(85 ms RTT) to Azure from our proxy.

Figure 4.8 shows similar experiments but this time with a high degree of client
parallelism. In these experiments, the proxy is configured with a 32 GB cache. To
simulate the case in which cryptographic operations are better-accelerated, cryptography
is disabled in most experiments but re-enabled in the “+crypto” experimental run.

Results in these experimental runs are similar to the low-parallelism case. The
servers achieve a higher total throughput when there are more concurrent requests from
clients. In the high-parallelism case, both BlueSky and the local NFS server provide
comparable performance. In testing with cryptography enabled versus disabled, again
there is very little difference, so cryptographic operations are not the bottleneck in per-

formance.

4.5.7 Monetary Cost

We are accustomed to optimizing systems to maximize performance or mini-
mize resource usage, but offloading file service to the cloud introduces monetary cost as
another dimension for optimization.

Figure 4.7 showed the relative performance of different variants of BlueSky,
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Table 4.2: Cost breakdown and comparison of various BlueSky configurations for us-
ing cloud storage. Costs are normalized to the cost per one million NFS operations in
SPECsfs. Breakdowns include traffic costs for uploading data to S3 (Up), downloading
data (Down), operation costs (Op), and their sum (Total).

Up Down Op Total

Baseline $0.56 $0.22 $0.09 $0.87
4 KB blocks 047 0.11 0.07 0.65
Full segments 1.00 31.39 0.09 3248

using data from the low-parallelism SPECsfs benchmark runs. Table 4.2 shows the
cost breakdown of each of the variants, normalized per SPECsfs operation (since the
benchmark self-scales, different experiments have different numbers of operations). We
use the March 2011 prices (in US Dollars) from Amazon S3 as the basis for the cost
analysis: $0.14/GB stored per month, $0.10/GB transferred in, $0.15/GB out, and $0.01
per 10,000 get or 1,000 put operations. S3 also offers cheaper price tiers for higher use,
but we use the base prices as a worst case. Overall prices are similar for other providers.

Unlike the performance comparison, Table 4.2 shows that comparing by cost
changes the relative ordering of the different system variants. Using 4 KB blocks had
very poor performance, but using them has the lowest cost since they effectively transfer
only data that clients request. The BlueSky baseline uses 32 KB blocks, requiring more
data transfers and higher costs overall. If a client makes a 4 KB request, the proxy
will download the full 32 KB block; many times downloading the full block will satisfy
future client requests with spatial locality, but not always. Finally, the range request
optimization is essential in reducing cost. When the proxy downloads an entire 4 MB
segment when a client requests any data in the segment, the cost for downloading data
increases by 150x. If providers did not support range requests, BlueSky would have to
use smaller segments in its file system layout.

Although 4 KB blocks have the lowest cost, we argue that using 32 KB blocks
has the best cost-performance tradeoff. The costs with 32 KB clocks are 34% higher,
but the performance of 4 KB blocks is far too low for a system architecture that relies

upon wide-area transfers to cloud storage.
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4.5.8 Cleaning

As with other file systems that do not overwrite in place, BlueSky must clean
the file system to garbage collect overwritten data—although less to recover critical
storage space, and more to save on the cost of storing data unnecessarily at the cloud
service. Recall that we designed the BlueSky cleaner to operate in one of two locations:
remote from the cloud, running on the BlueSky proxy, or local to the cloud, running on
a compute instance in the cloud service. Cleaning locally has compelling advantages: it
is faster since it is closer to the data and does not compete with the proxy for network
bandwidth, and it is cheaper since cloud services like S3 and Azure do not charge for
network traffic when accessing data locally.

The overhead of cleaning fundamentally depends on the workload. The amount
of data that needs to be read and written back depends on the rate at which existing data
is overwritten and the fraction of live data in cleaned segments, and the time it takes to
clean depends on both. Rather than hypothesize a range of workloads, we describe the
results of a simple experiment as a sense for how the cleaner operates.

We populate a 1 GB BlueSky file system on S3 with 1 MB files. The initial file
system is written to the cloud as 267 log segments totalling 1028 MB in size. We then
dirty the file system by overwriting 25% files chosen uniformly randomly. This writes
another 70 log files totalling 257 MB. However, as only 1 GB of data is actually live in
the file system, some of the segments now contain dead data.

We then launch an instance of the cleaner in EC2. The cleaner must read in
information about all inodes, which requires reading from essentially all segments. The
cleaner identifies and selects 76 segments with a low utilization (< 60%) for cleaning,
and writes back 126 MB of compacted data in 34 segments.

After the cleaner has written this new data to the cloud, the proxy notices the
log segments written by the cleaner and merges the updates made by the cleaner. The
proxy downloads 4 of the segments written by the cleaner (4.3 MB) and uploads another
0.25 MB to complete the merge. Once this is complete, any subsequent runs of the
cleaner will be able to delete the now-unused segments (277 MB in 78 segments).

Cleaning does induce additional data transfers at the proxy, but these are small

compared with the total workload and add negligibly to the total cost. When the cleaner
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Figure 4.9: Latencies for read operations in SPECsfs as a function of aggregate opera-
tions per second (for all operations) and working set size. Both CIFS and NFS protocols
are shown, using both the standard implementations as well as the BlueSky variants.

executes in the cloud, the quantity of data transferred has no effect on the cost since data
transfers are free. The cloud provider still charges a per-operation cost for access from
the cloud, but here at least the log-structured format is helpful: the cleaner can use a
single operation to fetch a segment which may contain many inodes. By contrast, a file
system integrity checker or other similar tool would have to access many more objects

in a non-log-structured design, raising the total cost.

4.5.9 Client Protocols: NFS and CIFS

Finally, we use the SPECsfs benchmark to confirm that the performance of the
BlueSky proxy is independent of the client protocol (NFS or CFS) that clients use. The
experiments performed above use NFS for convenience, but the results hold for clients
using CIFS as well.

Figure 4.9 shows the latency of the read operations in the benchmark as a func-
tion of aggregate operations per second (for all operations) and working set size. Be-
cause SPECsfs uses different operation mixes for its NFS and CIFS workloads, we fo-
cus on the latency of just the read operations for a common point of comparison. We

show results for NFS and CIFS on the BlueSky proxy (Section 4.4.4) as well as stan-
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dard implementations of both protocols (Linux NFS and Samba for CIFS, on which our
implementation is based). For the BlueSky proxy and standard implementations, the
performance of NFS and CIFS are broadly similar as the benchmark scales, and Blue-
Sky mirrors any differences in the underlying standard implementations. Since SPECsfs
uses a working set much larger than the BlueSky proxy cache capacity in this experi-
ment, BlueSky has noticeably higher latencies than the standard implementations due to

having to read data from cloud storage rather than local disk.

4.6 Conclusion

The promise of “the cloud” is that computation and storage will one day be seam-
lessly outsourced on an on-demand basis to massive data centers distributed around the
globe, while individual clients will effectively become transient access portals. This
model of the future (ironically similar to the old “big iron” mainframe model of the
1960’s and 70’s) may come to pass at some point, but today there are many hundreds of
billions of dollars invested in the last disruptive computing model: client/server. Thus,
in the interstitial years between now and a potential future built around cloud infrastruc-
ture, there will be a need to bridge the gap from one regime to the other.

In this chapter, I have explored a solution to one such challenge: network file
systems. Using a caching proxy architecture I demonstrate that LAN-oriented worksta-
tion file system clients can be transparently served by cloud-based storage services with
good performance. However, I show that exploiting the benefits of this arrangement
requires that design choices (even low-level choices such as storage layout) are directly
and carefully informed by the pricing models exported by cloud providers (this coupling
ultimately favoring a log-structured layout with in-cloud cleaning). We describe the de-
sign, implementation and performance of a prototype system, BlueSky, that implements
this architecture and supports both NFS and CIFS file systems, as well as S3 and Azure
storage infrastructures. Finally, based on a variety of benchmark results, I project that a

wide range of enterprise workloads are likely to perform well in this regime.

Chapter 4, in part, has been submitted for publication as “BlueSky: A Cloud-
Backed Filesystem for the Enterprise” by Michael Vrable, Stefan Savage, and Geoffrey
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M. Voelker. The dissertation author was the primary investigator and author of this

material.



Chapter 5

Conclusion

In this chapter I discuss several possible directions that new researchers could

explore, then summarize my contributions.

5.1 Future Work

There are several directions for research that builds on my work in this disserta-
tion. These include both improving and broadening the set of applications built on the
cloud as well as exploring changes to the cloud itself.

In this dissertation I have built applications on top of and within the constraints
of existing cloud infrastructure. It is worth investigating the interface to cloud storage
more closely—if the infrastructure itself can be changed, how can the applications be
improved? I have shown that a simple storage interface is sufficient to capture almost all
the benefits in a system like Cumulus, but perhaps a more expressive storage interface
could still simplify application-building or allow additional features. If so, how should
the cloud interface be changed? Should the storage interface be made more expressive,
for example to allow simple instructions for data manipulation to be executed in the
cloud? Is the VM model the right one to use for cloud computation, or is some other
platform better for offloading tasks to the cloud?

In my work, data stored in the cloud is kept private by protecting encryption
keys—the cloud provider cannot read or corrupt data because it lacks the necessary keys.

Doing so, however, limits computation that can be performed in the cloud. With Blue-

90
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Sky I show that some tasks—such as log cleaning and garbage collection—can be safely
run in the cloud. I have not fully explored all possible trade-offs between outsourcing
to the cloud and data security. Depending on what security guarantees are needed, how
much computation can be shifted to the cloud? If security guarantees are loosened, how
much can efficiency be improved, or what other features can be implemented? Can the
way that encryption is done be reworked to provide better guarantees?

Finally, of course, I have investigated two particular applications: backup and
shared file systems. There are other possible enterprise storage applications as well,
such as databases and database applications. While many of the ideas discussed in this

dissertation are likely applicable to other systems, new challenges might arise.

5.2 Contributions

Cloud computing has seen tremendous growth in recent years. Software as a Ser-
vice offerings continue to thrive. Infrastructure providers continue to roll out additional
capacity and capabilities. Many companies have found cloud provider offerings an ex-
cellent fit for their needs, and have built many applications on the cloud. Yet despite
this, many types of applications have been ignored in the push for the cloud.

Enterprise storage is one area where the cloud has not replaced traditional solu-
tions. The thesis of this dissertation is that the cloud can effectively be used for enter-
prise storage applications. There are numerous challenges in doing so—security, per-
formance, cost, and dealing with legacy systems—but in this dissertation I have shown
that these challenges are surmountable by presenting two systems which do so.

In Chapter 3, I described Cumulus, a tool file system backup to the cloud. In
this work with Cumulus, I explore the constraints of current cloud storage interfaces
and demonstrate how to build on cloud storage while minimizing cost. In Chapter 4, I
build on ideas from Cumulus to implement BlueSky, a network file system backed by
cloud storage. BlueSky can be easily deployed in an organization, without changes to
legacy clients. In addition to the challenges in Cumulus, BlueSky addresses performance
concerns and considers security concerns in more depth.

Cloud computing has already led to many improvements in computing, and in
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the future seems likely to continue to grow in prevalence. Together, the two systems
I have presented demonstrate how the challenges of the cloud can be overcome for
enterprise storage applications and provide guidance for future systems—expanding the

range of services that can be built on the cloud.
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