
CRAN Repository Policy
Version $Revision: 6286 $

CRAN Repository Maintainers

1

Preamble

This document describes the policies in place for the R (https://www.R-project.org/
) package repository hosted by the Comprehensive R Archive Network (https://CRAN.
R-project.org/). In what follows, this CRAN package repository (https://CRAN.
R-project.org/web/packages/) will be referred to as “CRAN”.

CRAN is maintained by the efforts of volunteers (the “CRAN team”) and the resources
of the R Foundation (https://www.R-project.org/foundation/index.html) and the em-
ployers of those volunteers (WU Wien, TU Dortmund, U Oxford, U Auckland). Having
a package distributed by CRAN is subject to a set of policies, and submitting a package
(including an update) to CRAN indicates agreement to these policies.

CRAN hosts packages of publication quality and is not a development platform. A
package’s contribution has to be non-trivial.

Distributing code or documentation is subject to legal requirements, and CRAN operates
in many jurisdictions. One of the aims of these policies is to ensure that the distributors
meet their legal obligations of diligence without excessive work.

The time of the volunteers is CRAN’s most precious resource, and they reserve the right
to remove or modify packages on CRAN without notice or explanation (although notification
will usually be given).

All correspondence with CRAN must be sent to CRAN-submissions@R-project.org (for
submissions) or CRAN@R-project.org (for published packages) and not to members of the
team, in plain text ASCII and not HTML.

https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://CRAN.R-project.org/web/packages/
https://CRAN.R-project.org/web/packages/
https://www.R-project.org/foundation/index.html

2

Source packages

• The ownership of copyright and intellectual property rights of all components of the
package must be clear and unambiguous (including from the authors specification in
the DESCRIPTION file). Where code is copied (or derived) from the work of others
(including from R itself), care must be taken that any copyright/license statements are
preserved and authorship is not misrepresented.

Preferably, an ‘Authors@R’ field would be used with ‘ctb’ roles for the authors of such
code. Alternatively, the ‘Author’ field should list these authors as contributors.

Where copyrights are held by an entity other than the package authors, this should
preferably be indicated via ‘cph’ roles in the ‘Authors@R’ field, or using a ‘Copyright’
field (if necessary referring to an inst/COPYRIGHTS file).

Trademarks must be respected.

(’All components’ includes any downloaded at installation or during use.)

• The package’s DESCRIPTION file must show both the name and email address of a
single designated maintainer (a person, not a mailing list). That contact address must
be kept up to date, and be usable for information mailed by the CRAN team without
any form of filtering, confirmation Forwarding mail from the maintainer address
increasingly results in confusing non-delivery notifications to the original sender, so is
best avoided.

The maintainer warrants that (s)he is acting on behalf of all credited authors and has
their agreement to use their material in the way it is included in the package (or if this
is not possible, warrants that it is used in accordance with the license granted by the
original author).

Additional DESCRIPTION fields could be used for providing email addresses for con-
tacting the package authors/developers (e.g., ‘Contact’), or a URL for submitting bug
reports (e.g., ‘BugReports’).

Citations in the ‘Description’ field of the DESCRIPTION file should be in author-year
style, followed by a DOI or ISBN for published materials, or a URL otherwise. Prefer-
ably, the year and identifier would be enclosed, respectively, in parentheses and angle
brackets.

• Source packages may not contain any form of binary executable code.

• Source packages under an Open Source license must provide source or something which
can easily be converted back to source (e.g., .rda files) for all components of the package
(including for example PDF documentation, configure files produced by autoconf). For
Java .class and .jar files, the sources should be in a top-level java directory in the
source package (or that directory should explain how they can be obtained).

Such packages are not permitted to require (e.g., by specifying in ‘Depends’, ‘Imports’
or ‘LinkingTo’ fields) directly or indirectly a package or external software which re-
stricts users or usage.

The package’s license must give the right for CRAN to distribute the package in per-
petuity. Any change to a package’s license must be highlighted when an update is
submitted (for there have been instances of an undocumented license change removing
even the right of CRAN to distribute the package).

Source packages 3

Packages with licenses not listed at https://svn.r-project.org/R/trunk/share/

licenses/license.db will generally not be accepted.

• Package authors should make all reasonable efforts to provide cross-platform portable
code. Packages will not normally be accepted that do not run on at least two of the
major R platforms. Cases for Windows-only packages will be considered, but CRAN
may not be the most appropriate place to host them.

• Packages should be named in a way that does not conflict (irrespective of case) with
any current or past CRAN package (the Archive area (https://CRAN.R-project.org/
src/contrib/Archive/) can be consulted), nor any current Bioconductor (https://
www.bioconductor.org/) package. Package maintainers give the right to use that
package name to CRAN when they submit, so the CRAN team may orphan a package
and allow another maintainer to take it over. Package names on CRAN are persistent
and in general it is not permitted to change a package’s name.

When a new maintainer wishes to take over a package, this should be accompanied by
the written agreement of the previous maintainer (unless the package has been formally
orphaned).

• Packages on which a CRAN package depends should be available from a mainstream
repository: if any mentioned in ‘Suggests’ or ‘Enhances’ fields are not from
such a repository, where to obtain them at a repository should be specified in an
‘Additional_repositories’ field of the DESCRIPTION file (as a comma-separated list
of repository URLs) or for other means of access, described in the ‘Description’ field.

A package listed in ‘Suggests’ or ‘Enhances’ should be used conditionally in examples
or tests if it cannot straightforwardly be installed on the major R platforms. (‘Writing
R Extensions’ recommends that they are always used conditionally.)

Orphaned CRAN packages should not be strict requirements (in the ‘Depends’,
‘Imports’ or ‘LinkingTo’ fields, including indirectly). They are allowed in ‘Suggests’
if used conditionally, although this is discouraged.

• CRAN versions of packages should work with the current CRAN and Bioconductor
releases of packages they depend on and not anticipate nor recommend development
versions of such packages (or themselves) on other repositories.

• Packages will not normally be removed from CRAN: however, they may be archived,
including at the maintainer’s request.

Packages for which R CMD check gives an ‘ERROR’ when a new R x.y.0 version is released
will be archived (or in exceptional circumstances updated by the CRAN team) unless
the maintainer has set a firm deadline for an upcoming update (and keeps to it).

Maintainers will be asked to update packages which show any warnings or significant
notes, especially at around the time of a new x.y.0 release. Packages which are not
updated are liable to be archived.

• Packages should be of the minimum necessary size. Reasonable compression should be
used for data (not just .rda files) and PDF documentation: CRAN will if necessary
pass the latter through qpdf.

As a general rule, neither data nor documentation should exceed 5MB (which covers
several books). A CRAN package is not an appropriate way to distribute course notes,
and authors will be asked to trim their documentation to a maximum of 5MB.

https://svn.r-project.org/R/trunk/share/licenses/license.db
https://svn.r-project.org/R/trunk/share/licenses/license.db
https://CRAN.R-project.org/src/contrib/Archive/
https://CRAN.R-project.org/src/contrib/Archive/
https://www.bioconductor.org/
https://www.bioconductor.org/

Source packages 4

Where a large amount of data is required (even after compression), consideration should
be given to a separate data-only package which can be updated only rarely (since older
versions of packages are archived in perpetuity).

Similar considerations apply to other forms of “data”, e.g., .jar files.

Source package tarballs should if possible not exceed 10MB. It is much preferred
that third-party source software should be included within the package (as e.g. a
vendor.tar.xz file) than be downloaded at installation: if this requires a larger tarball
a modestly increased limit can be requested at submission.

• Checking the package should take as little CPU time as possible, as the CRAN check
farm is a very limited resource and there are thousands of packages. Long-running tests
and vignette code can be made optional for checking, but do ensure that the checks
that are left do exercise all the features of the package.

If running a package uses multiple threads/cores it must never use more than two
simultaneously: the check farm is a shared resource and will typically be running many
checks simultaneously.

Examples should run for no more than a few seconds each: they are intended to exem-
plify to the would-be user how to use the functions in the package.

• Packages which use Internet resources should fail gracefully with an informative mes-
sage if the resource is not available or has changed (and not give a check warning nor
error).

• (Using external C/C++/Fortran/other libraries.) Where a package wishes to make use
of a library not written solely for the package, the package installation should first
look to see if it is already installed and if so is of a suitable version. In case not, it
is desirable to include the library sources in the package and compile them as part of
package installation. If the sources are too large, it is acceptable to download them as
part of installation, but do ensure that the download is of a fixed version rather than
the latest. Only as a last resort and with the agreement of the CRAN team should a
package download pre-compiled software. (See also Using Rust (using_rust.html).)

On Windows and macOS static libraries must be used. A separate document, External
Libraries for CRAN packages (external_libs.html), covers what external libraries
are or could be made available.

• The code and examples provided in a package should never do anything which might
be regarded as malicious or anti-social. The following are illustrative examples from
past experience.

− Compiled code should never terminate the R process within which it is running.
Thus C/C++ calls to assert/abort/exit/std::terminate, Fortran calls to STOP

and so on must be avoided. Nor may R code call q().

− A package must not tamper with the code already loaded into R: any attempt
to change code in the standard and recommended packages which ship with R is
prohibited. Altering the namespace of another package should only be done with
the agreement of the maintainer of that package.

− Packages should not write in the user’s home filespace (including clipboards), nor
anywhere else on the file system apart from the R session’s temporary directory (or
during installation in the location pointed to by TMPDIR: and such usage should

using_rust.html
external_libs.html
external_libs.html

Source packages 5

be cleaned up). Installing into the system’s R installation (e.g., scripts to its bin
directory) is not allowed.

Limited exceptions may be allowed in interactive sessions if the package obtains
confirmation from the user.

For R version 4.0 or later (hence a version dependency is required or only con-
ditional use is possible), packages may store user-specific data, configuration and
cache files in their respective user directories obtained from tools::R_user_dir(),
provided that by default sizes are kept as small as possible and the contents are
actively managed (including removing outdated material).

− Packages should not modify the global environment (user’s workspace).

− Packages should not start external software (such as PDF viewers or browsers)
during examples or tests unless that specific instance of the software is explicitly
closed afterwards.

− Packages should not send information about the R session to the maintainer’s or
third-party sites without obtaining confirmation from the user.

− Packages must not disable the stack-checking mechanism in the R process into
which they are loaded.

− CRAN packages should use only the public API. Hence they should not use entry
points not declared as API in installed headers nor .Internal() nor .Call()

etc calls to base packages. Also, ::: should not be used to access undocu-
mented/internal objects in base packages (nor should other means of access be
employed). Such usages can cause packages to break at any time, even in patched
versions of R.

− Packages should not attempt to disable compiler diagnostics, nor to remove other
diagnostic information such as symbols in shared objects.

− Security provisions must not be circumvented, for example by not verifying
SSL/TLS certificates.

− Use of external resources such as websites must be kept to a minimum. In partic-
ular, ‘rate limit’ errors for websites (such as HTTP codes 429 and 403) must be
avoided (and do bear in mind that other packages may be using the same resource).

• Changes to CRAN packages causing significant disruption to other packages must be
agreed with the CRAN maintainers well in advance of any publicity. Introduction
of packages providing back-compatibility versions of already available packages is not
allowed.

• Downloads of additional software or data as part of package installation or startup
should only use secure download mechanisms (e.g., ‘https’). For downloads of more
than a few MB, ensure that a sufficiently large timeout is set.

6

Binary packages

Policies for when a (Windows or macOS) binary package will be distributed:

• all its package dependencies on CRAN are available for that platform. Dependencies
from other repositories will be installed at CRAN’s discretion.

• any external software needed can easily be installed on the build machine for all the
sub-architectures: here “easily” includes not depending on specific versions, nor should
the installed binary depend on specific versions.

• it passes R CMD check without error for all the available sub-architectures, or at CRAN’s
discretion, for the most important sub-architecture(s).

Binary packages are not accepted from maintainers: CRAN will only host binary pack-
ages prepared by those responsible for the binary areas. Their packages are made automat-
ically by batch jobs and can take a day or two to appear on the CRAN master site (maybe
longer to reach CRAN mirrors).

Binary packages are built for the current version of R: they may also be built for the
last version in the previous series (e.g. R 3.1.3 when R 3.2.x is current) or for R-devel.

Questions about binary packages should be addressed to those responsible for
building them: Simon Urbanek (macOS) and Uwe Ligges (Windows); email addresses
‘First.Lastname@R-project.org’.

7

Submission

When submitting a package to CRAN you should use the submission form at https://

CRAN.R-project.org/submit.html (and not send an email). You will be sent a confirma-
tion email which needs to be accepted.

You can check that the submission was received by looking at https://CRAN.

R-project.org/incoming/. Submission difficulties (such as non-receipt of the confirmation
email) can be discussed with cran-sysadmin@R-project.org.

In more detail:

• Uploads must be source tarballs created by R CMD build and following the PACKAGE_

VERSION.tar.gz naming scheme. This should be done with current R-patched or the
current release of R.

• Please ensure that R CMD check --as-cran has been run on the tarball to be uploaded
before submission. This should be done with the current version of R-devel (or if that is
not possible and explained in the submission, current R-patched or the current release
of R.) For new submissions in particular, please take care to include an informative
Description field. See submission_checklist.html for details.

In principle, packages must pass R CMD check without warnings or significant notes to
be admitted to the main CRAN package area. If there are warnings or notes you cannot
eliminate (for example because you believe them to be spurious) send an explanatory
note as part of your covering email, or as a comment on the submission form.

For interpretation of the URL checks, see URL_checks.html.

• Authors can avoid a lot of the all too frequent rounds of updates by checking care-
fully for themselves. It should be normal for those without Windows machines of their
own to use the winbuilder (https://win-builder.R-project.org/) service to check a
package before submission. There is a lot of helpful advice on writing portable packages
in “Writing R Extensions” (../../manuals.html#R-exts).

• For a package update, please check that any packages depending on this one still pass
R CMD check: it is especially expected that you will have checked your own packages.
Reverse dependencies can conveniently be checked using tools::check_packages_

in_dir(reverse = list()), and changes in check status subsequently be analyzed
using tools::check_packages_in_dir_changes(). A listing of the reverse depen-
dencies of the current version can be found on the CRAN web page for the pack-
age, or be obtained via tools::package_dependencies(reverse = TRUE). If possible,
check reverse strong dependencies, reverse suggests and the recursive strong dependen-
cies of these (by tools::package_dependencies(reverse = TRUE, which = "most",

recursive = "strong")).

• If for some reason the submission has to be made by someone else (for example, a co-
author) this needs to be explained, and the designated maintainer will need to confirm
the submission.

• Explain any change in the maintainer’s email address and if possible send confirmation
from the previous address (by a separate email to CRAN-submissions@R-project.org)
or explain why it is not possible.

https://CRAN.R-project.org/submit.html
https://CRAN.R-project.org/submit.html
https://CRAN.R-project.org/incoming/
https://CRAN.R-project.org/incoming/
mailto:cran-sysadmin@R-project.org
submission_checklist.html
URL_checks.html
https://win-builder.R-project.org/
../../manuals.html#R-exts

Submission 8

If the package needs special treatment (for example if vignettes can only be run or re-
built on the maintainer’s machine or take a very long time), say so on the submission
form.

• Do not email the package itself.

• Once uploaded, no further submissions of that package should be made whilst the
uploaded version is pending processing (which may take a few days) and you have not
received a reply from a CRAN maintainer.

9

Re-submission

Re-submission is done in the same way as submission, using the ‘Optional comment’ field
on the web form (and not a separate email) to explain how the feedback on previous sub-
mission(s) has been addressed.

Updates to previously-published packages must have an increased version. Increasing the
version number at each submission reduces confusion so is preferred even when a previous
submission was not accepted.

In more detail:

• Submitting updates should be done responsibly and with respect for the volunteers’
time. Once a package is established (which may take several rounds), “no more than
every 1–2 months” seems appropriate.

• Before submitting a package update, consult the CRAN check page at
‘https://CRAN.R-project.org/web/checks/check_results_NAME.html’, substi-
tuting NAME by the name of your package. In particular, wait for that page to be
fully updated after publication of a version (which can take at least 48 hours) before
submitting any corrections.

For packages which have been archived since February 2018, a snapshot of the CRAN
results page at the time of archival will be available under https://cran-archive.

r-project.org/web/checks/. (Note that only a few of the links from the snapshot
will work: normally those to listed ‘Additional issues’ will.)

A package showing issues for macos-arm64 or an ‘M1mac’ additional issue should
be checked using the macbuilder (https://mac.r-project.org/macbuilder/submit.
html) service prior to re-submission.

• If an update will change the package’s API and hence affect packages depending on it,
it is expected that you will contact the maintainers of affected packages and suggest
changes, and give them time (at least 2 weeks, ideally more) to prepare updates before
submitting your updated package. Do mention in the submission email which packages
are affected and that their maintainers have been informed. In order to derive the re-
verse dependencies of a package including the addresses of maintainers who have to be
notified upon changes, the function reverse dependencies with maintainers (https://
developer.R-project.org/CRAN/Scripts/depends.R) is available from the devel-
oper website.

https://cran-archive.r-project.org/web/checks/
https://cran-archive.r-project.org/web/checks/
https://mac.r-project.org/macbuilder/submit.html
https://mac.r-project.org/macbuilder/submit.html
https://developer.R-project.org/CRAN/Scripts/depends.R
https://developer.R-project.org/CRAN/Scripts/depends.R

