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confactord Mixed-type Data Generation with True Membership Labels

Description

This function generates a mixed-type data frame with a combination of continuous (numeric), nom-
inal (factor), and ordinal (ordered) variables with prespecified cluster overlap for each variable
type. confactord allows the user to specify the number of each variable type, the amount of vari-
ables per variable type that have cluster overlap, the amount of cluster overlap for each variable
type, the number of levels for the nominal and ordinal variables, and proportion of observations per
class membership. Within and across-type variables are generated independently from one another.
Currently, only two classes are may be generated.

Usage

confactord(n = 200,
popProb = c(0.5,0.5),
numMixVar = c(1,1,1),
numMixVarOl = c(1,1,1),
olVarType = c(0.1,0.1,0.1),
catLevels = c(2,4))

Arguments

n integer number of observations to be generated. Defaults to n = 200

popProb numeric vector of length two specifying the proportion of observations allo-
cated to each class membership, which must sum to one. Defaults to popProb =
c(0.5, 0.5).

numMixVar numeric vector of integers of length three specifying (in order) the total number
of continuous (numeric), nominal (factor), and ordinal (ordered) variables to be
generated. If a specific variable type is not required, set the appropriate vector
indice to zero. Defaults to numMixVar = c(1,1,1).

numMixVarOl numeric vector of integers of length three specifying (in order) the total number
of continuous (numeric), nominal (factor), and ordinal (ordered) variables that
will have class membership overlap. If all variables are to be well-separated
by class membership, set all indices to zero. No indice of this vector may be
greater than the corresponding indice in numMixVar. Defaults to numMixVarOl
= c(1,1,1).
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olVarType numeric vector of length three specifying (in order) the percentage of class mem-
bership overlap to be applied to the continuous (numeric), nominal (factor), and
ordinal (ordered) No argument required if numMixVarOl = c(0,0,0). Permissi-
ble class membership overlap per variable type is between 0.01 and 0.99. De-
faults to ten percent overlap per variable type, olVarType = c(0.1,0.1,0.1).

catLevels numeric vector of length two specifying (in order) the number of levels (integer
values) for each of the nominal (factor) and ordinal (ordered) variable types.
Defaults to catLevels = c(2,4).

Details

Continuous variables are generated independently from normal distributions, with means deter-
mined by true class membership. If overlap is specified, additional variance is introduced to sim-
ulate cluster overlap. Nominal variables are generated using Dirichlet distributions representing
different population proportions. Ordinal variables are initially simulated as continuous variables
and then discretized into ordered categories based on quantile distributions, similar to a latent class
model where ordinal categories are inferred based on underlying continuous distributions and ad-
justed for cluster overlap parameters.

Value

confactord returns a list object, with the following components:

data a data.frame of mixed variable types based on user- specified parameters

class a numeric vector of integers specifying the true class memberships for the re-
turned data data frame

Author(s)

John R. J. Thompson <john.thompson@ubc.ca>, Jesse S. Ghashti <jesse.ghashti@ubc.ca>

See Also

mscv.dkss, mscv.dkps, dkss, dkps

Examples

# EXAMPLE1: Default implementation generates the following
# 200 observations split into two clusters of equal size (100 observations each)
# Three variables-- one of each numeric, factor, and ordered
# Each variable has ten percent cluster overlap
# Nominal variable is binary
# Ordinal variable has four levels

df1 <- confactord()

# EXAMPLE2:
# 500 observations; 100 observations in cluster one and 400 in cluster two
# Three continuous variables, two nominal, one ordinal
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# Only one continuous variable has cluster overlap
# All nominal and ordinal variables have cluster overlap
# Cluster overlap for continuous variable is twenty percent
# Cluster overlap for nominal variables are thirty percent
# Cluster overlap for ordinal variable is fourty percent
# Nominal variable has three levels, while ordinal has 5

df2 <- confactord(n = 500,
popProb = c(0.2,0.8),
numMixVar = c(3,2,1),
numMixVarOl = c(1,2,1),
olVarType = c(0.2,0.3,0.4),
catLevels = c(3,5))

dkps Distance using Kernel Product Similarity (DKPS) for Mixed-type Data

Description

This function calculates the pairwise distances between mixed-type observations consisting of nu-
meric (continuous), factor (nominal), and ordered factor (ordinal) variables using the method de-
scribed in Ghashti, J. S. and Thompson, J. R. J (2023). This kernel metric learning methodology
learns the bandwidths associated with each kernel function for each variable type and returns a
distance matrix that can be utilized in any distance-based clustering algorithm.

Usage

dkps(df, bw = "mscv", cFUN = "c_gaussian", uFUN = "u_aitken",
oFUN = "o_wangvanryzin", stan = TRUE, verbose = FALSE)

Arguments

df a p-variate data frame for which the pairwise distances between observations
will be calculated. The data types may be continuous, nominal (unordered fac-
tors), ordinal (ordered factors), or any combination thereof. Columns of df
should be of appropriate variable type prior to running the function.

bw a bandwidth specification method. This can be set as a vector of p-many band-
widths, with each element i corresponding to the bandwidth for column i in
df. Alternatively, one of two character strings may be inputted for bandwidth
selection methods. mscv specifies maximum- similarity cross-validation, and
np specifies likelihood-cross validation which is calculated via npudensbw in
package np. Defaults to mscv. See details.

cFUN character string specifying the continuous kernel function. Options include
c_gaussian, c_epanechnikov, c_uniform, c_triangle, c_biweight, c_triweight,
c_tricube, c_cosine, c_logistic, c_sigmoid, and c_silverman. Note that
if using np for bw selection above, continuous kernel types are restricted to ei-
ther c_gaussian, c_epanechnikov, or c_uniform. Defaults to c_gaussian.
See details.
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uFUN character string specifying the nominal kernel function for unordered factors.
Options include u_aitken and u_aitchisonaitken. Defaults to u_aitken.
See details.

oFUN character string specifying the ordinal kernel function for ordered factors. Op-
tions include o_aitken, o_aitchisonaitken, o_habbema, o_wangvanryzin,
and o_liracine. Note that if using np for bw selection above, ordinal ker-
nel types are restricted to either o_wangvanryzin or o_liracine. Defaults to
o_wangvanryzin. See details.

stan a logical value which specifies whether to scale the resulting distance matrix
between 0 and 1 using min-max normalization. If set to FALSE, there is no
normalization. Defaults to TRUE.

verbose a logical value which specifies whether to print procedural steps to the console.
If set to FALSE, no output is printed to the console. Defaults to FALSE.

Details

dkps implements the distance using kernel product similarity (DKPS) as described by Ghashti and
Thompson (2023). This approach uses product kernels for continuous variables, and summation
kernels for nominal and ordinal data, which are then summed over all variable types to return the
pairwise distance between mixed-type data.

Each kernel requires a bandwidth specification, which can either be a user defined numeric vector
of length p from alternative methodologies for bandwidth selection, or through two bandwidth
specification methods. The mscv bandwidth selection routine is based on the maximum-similarity
cross-validation routine by Ghashti and Thompson (2023), invoked by the function mscv.dkps. The
np bandwidth selection routine follows maximum-likelihood cross-validation techniques described
by Li and Racine (2007) and Li and Racine (2003) for kernel density estimation of mixed-type data.
Bandwidths will differ for each variable.

Data contained in the data frame df may constitute any combinations of continuous, nominal, or
ordinal data, which is to be specified in the data frame df using factor for nominal data, and
ordered for ordinal data. Data can be entered in an arbitrary order and data types will be detected
automatically. User-inputted vectors of bandwidths bw must be defined in the same order as the
variables in the data frame df, as to ensure they sorted accordingly by the routine.

The are many kernels which can be specified by the user. The majority of the continuous kernel
functions may be found in Cameron and Trivedi (2005), Härdle et al. (2004) or Silverman (1986).
Nominal kernels use a variation on Aitchison and Aitken’s (1976) kernel, while ordinal kernels use
a variation of the Wang and van Ryzin (1981) kernel. Both nominal and ordinal kernel functions
can be found in Li and Racine (2007), Li and Racine (2003), Ouyan et al. (2006), and Titterington
and Bowman (1985).

Value

dkps returns a list object, with the following components:

distances an n× n numeric matrix containing pairwise distances between observations

bandwidths a p-variate vector of bandwidth values returned based on the bw bandwidth spec-
ification method, sorted by variable type
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Author(s)

John R. J. Thompson <john.thompson@ubc.ca>, Jesse S. Ghashti <jesse.ghashti@ubc.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method”,
Biometrika, 63, 413-420.

Cameron, A. and P. Trivedi (2005), “Microeconometrics: Methods and Applications”, Cambridge
University Press.

Ghashti, J.S. and J.R.J Thompson (2023), “Mixed-type Distance Shrinkage and Selection for Clus-
tering via Kernel Metric Learning”, arXiv preprint arXiv:2306.01890.

Härdle, W., and M. Müller and S. Sperlich and A. Werwatz (2004), “Nonparametric and Semipara-
metric Models”, (Vol. 1). Berlin: Springer.

Li, Q. and J.S. Racine (2007), “Nonparametric Econometrics: Theory and Practice”, Princeton
University Press.

Li, Q. and J.S. Racine (2003), “Nonparametric estimation of distributions with categorical and
continuous data”, Journal of Multivariate Analysis, 86, 266-292.

Ouyang, D. and Q. Li and J.S. Racine (2006), “Cross-validation and the estimation of probability
distributions with categorical data”, Journal of Nonparametric Statistics, 18, 69-100.

Silverman, B.W. (1986), “Density Estimation”, London: Chapman and Hall.

Titterington, D.M. and A.W. Bowman (1985), “A comparative study of smoothing procedures for
ordered categorical data”, Journal of Statistical Computation and Simulation, 21(3-4), 291-312.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions”,
Biometrika, 68, 301-309.

See Also

mscv.dkps, dkss, mscv.dkss

Examples

# example data frame with mixed numeric, nominal, and ordinal data.
levels = c("Low", "Medium", "High")
df <- data.frame(

x1 = runif(100, 0, 100),
x2 = factor(sample(c("A", "B", "C"), 100, TRUE)),
x3 = factor(sample(c("A", "B", "C"), 100, TRUE)),
x4 = rnorm(100, 10, 3),
x5 = ordered(sample(c("Low", "Medium", "High"), 100, TRUE), levels = levels),
x6 = ordered(sample(c("Low", "Medium", "High"), 100, TRUE), levels = levels))

# minimal implementation requires just the data frame, and will automatically be
# defaulted to the mscv bandwidth specification technique and default kernel
# function
d1 <- dkps(df = df)
# d$bandwidths to see the mscv obtained bandwidths
# d$distances to see the distance matrix
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# try using the np package, which has few continuous and ordinal kernels to
# choose from. Recommended using default kernel functions
d2 <- dkps(df = df, bw = "np")

# precomputed bandwidth example
# note that continuous variables requires bandwidths > 0
# ordinal variables requires bandwidths in [0,1]
# for nominal variables, u_aitken requires bandwidths in [0,1]
# and u_aitchisonaitken in [0,(c-1)/c]
# where c is the number of unique values in the i-th column of df.
# any bandwidths outside this range will result in a warning message
bw_vec <- c(1.0, 0.5, 0.5, 5.0, 0.3, 0.3)
d3 <- dkps(df = df, bw = bw_vec)

# user-specific kernel functions example
d5 <- dkps(df = df, bw = "mscv", cFUN = "c_epanechnikov", uFUN = "u_aitken",

oFUN = "o_habbema")

dkss Distance using Kernel Summation Similarity (DKSS) for Mixed-type
Data

Description

This function calculates the pairwise distances between mixed-type observations consisting of con-
tinuous (numeric), nominal (factor), and ordinal (ordered) variables using the method described
in Ghashti (2024). This kernel metric learning methodology calculates a kernel sum similarity func-
tion, with a variety of options for kernel functions associated with each variable type and returns a
distance matrix that can be used in any distance- based algorithm.

Usage

dkss(df, bw = "mscv", cFUN = "c_gaussian", uFUN = "u_aitken",
oFUN = "o_wangvanryzin", stan = TRUE, verbose = FALSE)

Arguments

df a p-variate data frame for which the pairwise distances between observations
will be calculated. The data types may be continuous (numeric), nominal (factor),
and ordinal (ordered), or any combination thereof. Columns of df should be of
appropriate variable type prior to running the function.

bw numeric bandwidth vector of length p, with each element i corresponding to the
bandwidth for column i in df. Alternatively, one of two character strings may be
inputted for bandwidth selection methods. mscv specifies maximum-similarity
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cross-validation, and np specifies likelihood-cross validation which is calculated
using npudensbw in package np. Defaults to mscv. See details.

cFUN character value specifying the continuous kernel function. Options include c_gaussian,
c_epanechnikov, c_uniform, c_triangle, c_biweight, c_triweight, c_tricube,
c_cosine, c_logistic, c_sigmoid, and c_silverman. Note that if using np
for bw selection above, continuous kernel types are restricted to either c_gaussian,
c_epanechnikov, or c_uniform. Defaults to c_gaussian. See details.

uFUN character value specifying the nominal kernel function for unordered factors.
Options include u_aitken and u_aitchisonaitken. Defaults to u_aitken.
See details.

oFUN character value specifying the ordinal kernel function for ordered factors. Op-
tions include o_aitken, o_aitchisonaitken, o_habbema, o_wangvanryzin,
and o_liracine. Note that if using np for bw selection above, ordinal ker-
nel types are restricted to either o_wangvanryzin or o_liracine. Defaults to
o_wangvanryzin. See details.

stan a logical value which specifies whether to scale the resulting distance matrix
between 0 and 1 using min-max normalization. If set to FALSE, distances are
unscaled. Defaults to TRUE.

verbose a logical value which specifies whether to print procedural steps to the console.
If set to FALSE, no output is printed to the console. Defaults to FALSE.

Details

dkss implements the distance using summation similarity distance (DKSS) as described by Ghashti
(2024). This approach uses summation kernels for continuous, nominal and ordinal data, which are
then summed over all variable types to return the pairwise distance between mixed-type data.

There are several kernels to select from. The continuous kernel functions may be found in Cameron
and Trivedi (2005), Härdle et al. (2004) or Silverman (1986). Nominal kernels use a variation on
Aitchison and Aitken’s (1976) kernel, while ordinal kernels use a variation of the Wang and van
Ryzin (1981) kernel. Both nominal and ordinal kernel functions can be found in Li and Racine
(2007), Li and Racine (2003), Ouyan et al. (2006), and Titterington and Bowman (1985).

Each kernel requires a bandwidth specification, which can either be a user defined numeric vector
of length p from alternative methodologies for bandwidth selection, or through two bandwidth
selection methods can be specified. The mscv bandwidth selection is based on maximum similarity
cross-validation by Ghashti and Thompson (2024), invoked by the function mscv.dkss. The np
bandwidth selection follows the maximum likelihood cross-validation method described by Li and
Racine (2007) and Li and Racine (2003) for kernel density estimation of mixed-type data.

Data contained in the data frame df may constitute any combinations of continuous, nominal, or
ordinal data, which is to be specified in the data frame df using factor for nominal data, and
ordered for ordinal data. Data types can be in any order and will be detected automatically. User-
inputted vectors of bandwidths bw must be specified in the same order as the variables in the data
frame df, as to ensure they sorted accordingly by the routine.

Value

dkss returns a list object, with the following components:
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distances an n× n numeric matrix containing pairwise distances between observations

bandwidths a p-variate vector of bandwidth values returned based on the bw bandwidth spec-
ification method, sorted by variable type

Author(s)

John R. J. Thompson <john.thompson@ubc.ca>, Jesse S. Ghashti <jesse.ghashti@ubc.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method”,
Biometrika, 63, 413-420.

Cameron, A. and P. Trivedi (2005), “Microeconometrics: Methods and Applications”, Cambridge
University Press.

Ghashti, J.S. (2024), “Similarity Maximization and Shrinkage Approach in Kernel Metric Learning
for Clustering Mixed-type Data (T)”, University of British Columbia.

Härdle, W., and M. Müller and S. Sperlich and A. Werwatz (2004), “Nonparametric and Semipara-
metric Models”, (Vol. 1). Berlin: Springer.

Li, Q. and J.S. Racine (2007), “Nonparametric Econometrics: Theory and Practice”, Princeton
University Press.

Li, Q. and J.S. Racine (2003), “Nonparametric estimation of distributions with categorical and
continuous data”, Journal of Multivariate Analysis, 86, 266-292.

Ouyang, D. and Q. Li and J.S. Racine (2006), “Cross-validation and the estimation of probability
distributions with categorical data”, Journal of Nonparametric Statistics, 18, 69-100.

Silverman, B.W. (1986), “Density Estimation”, London: Chapman and Hall.

Titterington, D.M. and A.W. Bowman (1985), “A comparative study of smoothing procedures for
ordered categorical data”, Journal of Statistical

Computation and Simulation, 21(3-4), 291-312.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions”,
Biometrika, 68, 301-309.

See Also

mscv.dkps, dkps, mscv.dkss

Examples

# example data frame with mixed numeric, nominal, and ordinal data.
levels = c("Low", "Medium", "High")
df <- data.frame(

x1 = runif(100, 0, 100),
x2 = factor(sample(c("A", "B", "C"), 100, TRUE)),
x3 = factor(sample(c("A", "B", "C"), 100, TRUE)),
x4 = rnorm(100, 10, 3),
x5 = ordered(sample(c("Low", "Medium", "High"), 100, TRUE), levels = levels),
x6 = ordered(sample(c("Low", "Medium", "High"), 100, TRUE), levels = levels))
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# minimal implementation requires just the data frame, and will automatically be
# defaulted to the mscv bandwidth specification technique and default kernel
# function
d1 <- dkss(df = df)
# d$bandwidths to see the mscv obtained bandwidths
# d$distances to see the distance matrix

# try using the np package, which has few continuous and ordinal kernels
# to choose from. Recommended using default kernel functions
d2 <- dkss(df = df, bw = "np")

# precomputed bandwidth example
# note that continuous variables requires bandwidths > 0
# ordinal variables requires bandwidths in [0,1]
# for nominal variables, u_aitken requires bandwidths in [0,1]
# and u_aitchisonaitken in [0,(c-1)/c]
# where c is the number of unique values in the i-th column of df.
# any bandwidths outside this range will result in a warning message
bw_vec <- c(1.0, 0.5, 0.5, 5.0, 0.3, 0.3)
d3 <- dkss(df = df, bw = bw_vec)

# user-specific kernel functions example
d5 <- dkss(df = df, bw = "mscv", cFUN = "c_epanechnikov", uFUN = "u_aitken",

oFUN = "o_habbema")

kdml Kernel Metric Learning for Mixed-type Data

Description

This package contains nonparametric kernel methods for calculating pairwise distances between
mixed-type observations. These methods can be used in any distance based algorithm, with empha-
sis placed on usage in clustering or classification applications. Descriptions of the implementation
of these methods can be found in Ghashti (2024) and Ghashti and Thompson (2024).

Details

This package contains two functions for pairwise distance calculations of mixed-type data based
on two different methods. Kernel methods also require variable-specific bandwidths, with two
additional functions for the bandwidth specification methods. Additionally, this package contains a
function methods for mixed-type data generation.

Author(s)

John R.J. Thompson <john.thompson@ubc.ca>, Jesse S. Ghashti <jesse.ghashti@ubc.ca>
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Maintainer: John R.J. Thompson <john.thompson@ubc.ca>

We would like to acknowledge funding support from the University of British Columbia Aspire
Fund (UBC:www.ok.ubc.ca/). We also acknowledge support from the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

References

Ghashti, J.S. (2024), “Similarity Maximization and Shrinkage Approach in Kernel Metric Learning
for Clustering Mixed-type Data (T)”, University of British Columbia. <https://dx.doi.org/10.14288/1.044397>

Ghashti, J.S. and J.R.J Thompson (2024), “Mixed-type Distance Shrinkage and Selection for Clus-
tering via Kernel Metric Learning”. Journal of Classification, Accepted.

kss Kernel Summation Similarity Function (KSS) for Mixed-type Data

Description

This function calculates the pairwise similarities between mixed-type observations consisting of
continuous (numeric), nominal (factor), and ordinal (ordered) variables using the method de-
scribed in Ghashti (2024). This kernel similarity learning methodology calculates a kernel sum
similarity function, with a variety of options for kernel functions associated with each variable type
and returns a distance matrix that can be used in any distance-based algorithm.

Usage

kss(df, bw = "np", npmethod = NULL, cFUN = "c_gaussian",
uFUN = "u_aitken", oFUN = "o_wangvanryzin", nstart = NULL,
stan = TRUE, verbose = FALSE)

Arguments

df a p-variate data frame for which the pairwise similarities between observations
will be calculated. The data types may be continuous (numeric), nominal (factor),
and ordinal (ordered), or any combination thereof. Columns of df should be of
appropriate variable type prior to running the function.

bw numeric bandwidth vector of length p, with each element i corresponding to the
bandwidth for column i in df. Alternatively, a character strings may be inputted
for bandwidth selection methods. np specifies this techniques which calculate
bandwidths using npudensbw in package np. Defaults to np with npmethod set
to cv.ml for maximum likelihood cross-validation. See details.

npmethod character value specifying the np bandwidth selection to be used for calculating
bandwidths. Options include cv.ml for maximum likelihood cross-validation,
cv.ls for least squares cross-validation, and normal-reference for normal
reference. If left as NULL, defaults to cv.ml.
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cFUN character value specifying the continuous kernel function. Options include c_gaussian,
c_epanechnikov, c_uniform, c_triangle, c_biweight, c_triweight, c_tricube,
c_cosine, c_logistic, c_sigmoid, and c_silverman. Note that if using np
for bw selection above, continuous kernel types are restricted to either c_gaussian,
c_epanechnikov, or c_uniform. Defaults to c_gaussian. See details.

uFUN character value specifying the nominal kernel function for unordered factors.
Options include u_aitken and u_aitchisonaitken. Defaults to u_aitken.
See details.

oFUN character value specifying the ordinal kernel function for ordered factors. Op-
tions include o_aitken, o_aitchisonaitken, o_habbema, o_wangvanryzin,
and o_liracine. Note that if using np for bw selection above, ordinal ker-
nel types are restricted to either o_wangvanryzin or o_liracine. Defaults to
o_wangvanryzin. See details.

nstart integer value specifying the number of random starts for the kmeans algorithm.
Defaults to 10.

stan a logical value which specifies whether to scale the resulting distance matrix
between 0 and 1 using min-max normalization. If set to FALSE, distances are
unscaled. Defaults to TRUE.

verbose a logical value which specifies whether to print procedural steps to the console.
If set to FALSE, no output is printed to the console. Defaults to FALSE.

Details

kss implements the kernel summation similarity function (KSS) as described by Ghashti (2024).
This approach uses summation kernels for continuous, nominal and ordinal data, which are then
summed over all variable types to return the pairwise similarities between mixed-type data.

There are several kernels to select from. The continuous kernel functions may be found in Cameron
and Trivedi (2005), Härdle et al. (2004) or Silverman (1986). Nominal kernels use a variation on
Aitchison and Aitken’s (1976) kernel, while ordinal kernels use a variation of the Wang and van
Ryzin (1981) kernel. Both nominal and ordinal kernel functions can be found in Li and Racine
(2007), Li and Racine (2003), Ouyan et al. (2006), and Titterington and Bowman (1985).

Each kernel requires a bandwidth specification, which can either be a user defined numeric vector of
length p from alternative methodologies for bandwidth selection, or through one bandwidth selec-
tion method can be specified. The np bandwidth selection methods follow three techniques (cv.ml,
cv.ls and normal-reference) described by Li and Racine (2007) and Li and Racine (2003) for
kernel density estimation of mixed-type data.

Data contained in the data frame df may constitute any combinations of continuous, nominal, or
ordinal data, which is to be specified in the data frame df using factor for nominal data, and
ordered for ordinal data. Data types can be in any order and will be detected automatically. User-
inputted vectors of bandwidths bw must be specified in the same order as the variables in the data
frame df, as to ensure they sorted accordingly by the routine.

Value

kss returns a list object, with the following components:

similarities an n× n numeric matrix containing pairwise similarities between observations
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bandwidths a p-variate vector of bandwidth values returned based on the bw bandwidth spec-
ification method, sorted by variable type

Author(s)

John R. J. Thompson <john.thompson@ubc.ca>, Jesse S. Ghashti <jesse.ghashti@ubc.ca>

References
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See Also

mscv.dkps, dkps, mscv.dkss, dkss, link{spectral.clust}

Examples

# example data frame with mixed numeric, nominal, and ordinal data.
levels = c("Low", "Medium", "High")
df <- data.frame(

x1 = runif(100, 0, 100),
x2 = factor(sample(c("A", "B", "C"), 100, TRUE)),
x3 = factor(sample(c("A", "B", "C"), 100, TRUE)),
x4 = rnorm(100, 10, 3),
x5 = ordered(sample(c("Low", "Medium", "High"), 100, TRUE), levels = levels),
x6 = ordered(sample(c("Low", "Medium", "High"), 100, TRUE), levels = levels))

# minimal implementation requires just the data frame, and will automatically be
# defaulted to the mscv bandwidth specification technique and default kernel
# function
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s1 <- kss(df = df)
# s$bandwidths to see the mscv obtained bandwidths
# s$similarities to see the similarity matrix

# try using the np package, which has few continuous and ordinal kernels
# to choose from. Recommended using default kernel functions
s2 <- kss(df = df, bw = "np") #defaults to npmethod "cv.ml"

# precomputed bandwidth example
# note that continuous variables requires bandwidths > 0
# ordinal variables requires bandwidths in [0,1]
# for nominal variables, u_aitken requires bandwidths in [0,1]
# and u_aitchisonaitken in [0,(c-1)/c]
# where c is the number of unique values in the i-th column of df.
# any bandwidths outside this range will result in a warning message
bw_vec <- c(1.0, 0.5, 0.5, 5.0, 0.3, 0.3)
s3 <- kss(df = df, bw = bw_vec)

# user-specific kernel functions example with "cv.ls" from np.
s4 <- kss(df = df, bw = "np", npmethod = "cv.ls", cFUN = "c_epanechnikov",

uFUN = "u_aitken", oFUN = "o_wangvanryzin")

mscv.dkps Maximum-similarity Cross-validated (MSCV) bandwidth selection
method for the Distance using Kernel Product Similarities (DKPS)

Description

This function calculates maximum-similarity cross-validated bandwidths for the distance using ker-
nel summation similarity. This implementation uses the method described in Ghashti and Thompson
(2023) for mixed-type data that includes any of numeric (continuous), factor (nominal), and ordered
factor (ordinal) variables. mscv.dkps calculates the bandwidths associated with each kernel func-
tion for variable types and returns a numeric vector of bandwidths that can be used with the dkps
pairwise distance calculation.

Usage

mscv.dkps(df, nstart = NULL, ckernel = "c_gaussian", ukernel = "u_aitken",
okernel = "o_wangvanryzin", verbose = FALSE)

Arguments

df a p-variate data frame. The data types may be continuous (numeric), nominal
(factor), ordinal (ordered), or any combination thereof. Columns of df should
be set to the appropriate data type class.
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nstart integer number of restarts for the process of finding extrema of the mscv function
from random initial bandwidth parameters (starting points). If the default of
NULL is used, then the number of restarts will be min(3, ncol(df)).

ckernel character string specifying the continuous kernel function. Options include
c_gaussian, c_epanechnikov, c_uniform, c_triangle, c_biweight, c_triweight,
c_tricube, c_cosine, c_logistic, c_sigmoid, and c_silverman. Note that
if using np for bw selection above, continuous kernel types are restricted to ei-
ther c_gaussian, c_epanechnikov, or c_uniform. Defaults to c_gaussian.
See details.

ukernel character string specifying the nominal kernel function for unordered factors.
Options include u_aitken and u_aitchisonaitken. Defaults to u_aitken.
See details.

okernel character string specifying the ordinal kernel function for ordered factors. Op-
tions include o_aitken, o_aitchisonaitken, o_habbema, o_wangvanryzin,
and o_liracine. Note that if using np for bw selection above, ordinal ker-
nel types are restricted to either o_wangvanryzin or o_liracine. Defaults to
o_wangvanryzin. See details.

verbose a logical value which specifies whether to output the i-th iteration of the total
number of nstarts, and output if the optimization procedure converges. De-
faults to TRUE.

Details

mscv.dkps implements the maximum-similarity cross-validation (MSCV) technique for bandwidth
selection pertaining to the dkps function, as described by Ghashti and Thompson (2023). This
approach uses product kernels for continuous variables, and summation kernels for nominal and
ordinal data, which are then summed over all variable types to return the pairwise distance between
mixed-type data.

The maximization procedure for bandwidth selection is based on the objective argmaxλ
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K(·), L(·), and ℓ(·) are the continuous, nominal, and ordinal kernel functions, repectively, with
λk’s representing kernel specifical bandwiths for the k-th variable, and pc, pu, po the number of
continuous, nominal, and ordinal variables in the data frame df. The resulting bw vector returned is
the bandwidths that yield the highest objective function value.

Data contained in the data frame df may constitute any combinations of continuous, nominal, or
ordinal data, which is to be specified in the data frame df using numeric for continuous data,
factor for nominal data, and ordered for ordinal data. Data can be entered in an arbitrary order
and data types will be detected automatically. User-inputted vectors of bandwidths bw must be
defined in the same order as the variables in the data frame df, as to ensure they sorted accordingly
by the routine.

The are many kernels which can be specified by the user. Continuous kernel functions may be found
in Cameron and Trivedi (2005), Härdle et al. (2004) or Silverman (1986). Nominal kernels use a
variation on Aitchison and Aitken’s (1976) kernel. Ordinal kernels use a variation of the Wang and
van Ryzin (1981) kernel. All nominal and ordinal kernel functions can be found in Li and Racine
(2007), Li and Racine (2003), Ouyan et al. (2006), and Titterington and Bowman (1985).
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Value

mscv.dkps returns a list object, with the following components:

bw a p-variate vector of bandwidth values, intended to be used for the dkps pairwise
distance calculation

fn_value a numeric value of the MSCV objective function, obtained using the optim func-
tion for constrained multivariate optimization

Author(s)

John R. J. Thompson <john.thompson@ubc.ca>, Jesse S. Ghashti <jesse.ghashti@ubc.ca>

References

Aitchison, J. and C.G.G. Aitken (1976), “Multivariate binary discrimination by the kernel method”,
Biometrika, 63, 413-420.
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University Press.

Ghashti, J.S. and J.R.J Thompson (2023), “Mixed-type Distance Shrinkage and Selection for Clus-
tering via Kernel Metric Learning. Journal of Classification, Accepted.”

Härdle, W., and M. Müller and S. Sperlich and A. Werwatz (2004), “Nonparametric and Semipara-
metric Models”, (Vol. 1). Berlin: Springer.

Li, Q. and J.S. Racine (2007), “Nonparametric Econometrics: Theory and Practice”, Princeton
University Press.

Li, Q. and J.S. Racine (2003), “Nonparametric estimation of distributions with categorical and
continuous data”, Journal of Multivariate Analysis, 86, 266-292.

Ouyang, D. and Q. Li and J.S. Racine (2006), “Cross-validation and the estimation of probability
distributions with categorical data”, Journal of Nonparametric Statistics, 18, 69-100.

Silverman, B.W. (1986), “Density Estimation”, London: Chapman and Hall.

Titterington, D.M. and A.W. Bowman (1985), “A comparative study of smoothing procedures for
ordered categorical data”, Journal of Statistical Computation and Simulation, 21(3-4), 291-312.

Wang, M.C. and J. van Ryzin (1981), “A class of smooth estimators for discrete distributions”,
Biometrika, 68, 301-309.

See Also

mscv.dkss, dkss, dkps

Examples

# example data frame with mixed numeric, nominal, and ordinal data.
levels = c("Low", "Medium", "High")
df <- data.frame(

x1 = runif(100, 0, 100),
x2 = factor(sample(c("A", "B", "C"), 100, TRUE)),
x3 = factor(sample(c("A", "B", "C"), 100, TRUE)),
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x4 = rnorm(100, 10, 3),
x5 = ordered(sample(c("Low", "Medium", "High"), 100, TRUE), levels = levels),
x6 = ordered(sample(c("Low", "Medium", "High"), 100, TRUE), levels = levels))

# minimal implementation requires just the data frame, with defaults
bw <- mscv.dkps(df = df)

# specify number of starts and kernel functions
bw2 <- mscv.dkps(df = df, nstart = 5, ckernel = "c_triangle",

ukernel = "u_aitken", okernel = "o_liracine")

mscv.dkss Maximum-similarity Cross-validated (MSCV) bandwidth selection
method for the distance using kernel summation similarity (DKSS)

Description

This function calculates maximum-similarity cross-validated bandwidths for the distance using ker-
nel summation similarity. This implementation uses the method described in Ghashti (2024) for
mixed-type data that includes any of numeric (continuous), factor (nominal), and ordered factor
(ordinal) variables. mscv.dkss calculates the bandwidths associated with each kernel function for
variable types and returns a numeric vector of bandwidths that can be used with the dkss pairwise
distance calculation.

Usage

mscv.dkss(df, nstart = NULL, ckernel = "c_gaussian", ukernel = "u_aitken",
okernel = "o_wangvanryzin", verbose = FALSE)

Arguments

df a p-variate data frame. The data types may be continuous (numeric), nominal
(factor), ordinal (ordered), or any combination thereof. Columns of df should
be set to the appropriate data type class.

nstart integer number of restarts for the process of finding extrema of the mscv function
from random initial bandwidth parameters (starting points). If the default of
NULL is used, then the number of restarts will be min(3, ncol(df)).

ckernel character string specifying the continuous kernel function. Options include
c_gaussian, c_epanechnikov, c_uniform, c_triangle, c_biweight, c_triweight,
c_tricube, c_cosine, c_logistic, c_sigmoid, and c_silverman. Note that
if using np for bw selection above, continuous kernel types are restricted to ei-
ther c_gaussian, c_epanechnikov, or c_uniform. Defaults to c_gaussian.
See details.

ukernel character string specifying the nominal kernel function for unordered factors.
Options include u_aitken and u_aitchisonaitken. Defaults to u_aitken.
See details.
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okernel character string specifying the ordinal kernel function for ordered factors. Op-
tions include o_aitken, o_aitchisonaitken, o_habbema, o_wangvanryzin,
and o_liracine. Note that if using np for bw selection above, ordinal ker-
nel types are restricted to either o_wangvanryzin or o_liracine. Defaults to
o_wangvanryzin. See details.

verbose a logical value which specifies whether to output the i-th iteration of the total
number of nstarts, and output if the optimization procedure converges. De-
faults to FALSE.

Details

mscv.dkss implements the maximum-similarity cross-validation (MSCV) bandwidth selection tech-
nique for the dkss function, described by Ghashti (2024). This approach uses summation kernels
for continuous, nominal and ordinal data, which are then summed over all variable types to return
the pairwise distance between mixed-type data.

The maximization procedure for bandwidth selection is based on the objective argmaxλ
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K(·), L(·), and ℓ(·) are the continuous, nominal, and ordinal kernel functions, repectively, with
λk’s representing kernel specifical bandwiths for the k-th variable, and pc, pu, po the number of
continuous, nominal, and ordinal variables in the data frame df. The bw vector returned is the
bandwidths that yield the highest objective function value.

Data contained in the data frame df may constitute any combinations of continuous, nominal, or
ordinal data, which is to be specified in the data frame df using numeric for continuous data,
factor for nominal data, and ordered for ordinal data. Data can be entered in an arbitrary order
and data types will be detected automatically. User-inputted vectors of bandwidths bw must be
defined in the same order as the variables in the data frame df, as to ensure they sorted accordingly
by the routine.

The are many kernels which can be specified by the user. Continuous kernel functions may be found
in Cameron and Trivedi (2005), Härdle et al. (2004) or Silverman (1986). Nominal kernels use a
variation of Aitchison and Aitken’s (1976) kernel. Ordinal kernels use a variation of the Wang and
van Ryzin (1981) kernel. All nominal and ordinal kernel functions can be found in Li and Racine
(2007), Li and Racine (2003), Ouyan et al. (2006), and Titterington and Bowman (1985).

Value

mscv.dkss returns a list object, with the following components:

bw a p-variate vector of bandwidth values, intended to be used for the dkss pairwise
distance calculation

fn_value a numeric value of the MSCV objective function, obtained using the optim func-
tion for constrained multivariate optimization

Author(s)

John R. J. Thompson <john.thompson@ubc.ca>, Jesse S. Ghashti <jesse.ghashti@ubc.ca>
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See Also

mscv.dkps, dkss, dkps

Examples

# example data frame with mixed numeric, nominal, and ordinal data.
levels = c("Low", "Medium", "High")
df <- data.frame(

x1 = runif(100, 0, 100),
x2 = factor(sample(c("A", "B", "C"), 100, TRUE)),
x3 = factor(sample(c("A", "B", "C"), 100, TRUE)),
x4 = rnorm(100, 10, 3),
x5 = ordered(sample(c("Low", "Medium", "High"), 100, TRUE), levels = levels),
x6 = ordered(sample(c("Low", "Medium", "High"), 100, TRUE), levels = levels))

# minimal implementation requires just the data frame, with defaults
bw <- mscv.dkss(df = df)

# specify number of starts and kernel functions
bw2 <- mscv.dkss(df = df, nstart = 5, ckernel = "c_triangle",

ukernel = "u_aitken", okernel = "o_liracine")
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spectral.clust Spectral Clustering using Similarity or Distance Matrices

Description

This function calculates performs spectral clustering with the k-means step using precomputed sim-
ilarity or distance matrices, and returns a vector of cluster assignments.

Usage

spectral.clust(S, k, nstart = 10, iter.max = 1000,
is.sim = NULL, neighbours = 10)

Arguments

S a n × n numeric matrix representing either pairwise similarities or distances
between observations. The matrix can be a similarity matrix or a distance matrix,
as indicated by the is.sim argument.

k integer value specifying the number of clusters to form. This is passed to the
kmeans algorithm.

nstart integer value specifying the number of random starts for the bandwidth estima-
tion. Defaults to 3 or the number of variables, whichever is larger.

iter.max integer value specifying the maximum number of iterations for the kmeans al-
gorithm. Defaults to 1000.

is.sim logical value indicating whether the input matrix S is a similarity matrix. If set
to TRUE, S is treated as a similarity matrix. If set to FALSE, S is treated as a
distance matrix. Must be specified.

neighbours integer value specifying the number of nearest neighbours to consider when con-
structing the graph Laplacian. This helps in determining the structure of the
graph from the similarity or distance matrix. Defaults to 10.

Details

spectral.clust implements spectral clustering on pairwise similarity or distance matrices, fol-
lowing the method described by Ng et al. (2001). The function first constructs an adjacency matrix
from the input similarity or distance matrix S using the neighbours parameter to define the near-
est connections. If S is a similarity matrix (is.sim = TRUE), the function retains the largest values
corresponding to the neighbours nearest observations. If S is a distance matrix (is.sim = FALSE),
it retains the smallest values for the nearest observations. The adjacency matrix is symmetrized
and used to compute the unnormalized Laplacian matrix. The eigenvectors corresponding to the
smallest eigenvalues of the Laplacian are extracted and clustered using the kmeans algorithm. The
number of clusters, k, and parameters such as the number of random starts (nstart) and maximum
iterations (iter.max) for the kmeans step are user-specified.



spectral.clust 21

Value

spectral.clust returns a list object with the following components:

clusters an n-variate integer vector indicating the cluster assignment for each observa-
tion, as determined by the kmeans algorithm.

S the original n × n numeric matrix used as input, representing either pairwise
similarities or distances between observations, depending on the is.sim argu-
ment.

Author(s)

John R. J. Thompson <john.thompson@ubc.ca>, Jesse S. Ghashti <jesse.ghashti@ubc.ca>

References

Ng, A., Jordan, M., & Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. “Ad-
vances in Neural Information processing systems”, 14.

See Also

mscv.dkps, dkps, mscv.dkss, dkss, link{kss}

Examples

# load the Iris dataset
dat <- iris[,-5]

# calculate pairwise similarities using maximum likelihood cross validation
S <- kss(dat, bw = "np", npmethod = "cv.ml", cFUN = "c_gaussian", verbose = TRUE)

# cluster points using spectral clustering and compare to true class labels
cl <- spectral.clust(S$similarities, 3, is.sim = TRUE)
table(cl$clusters, iris[,5])

# try a different number of neighbours
cl2 <- spectral.clust(S$similarities, 3, is.sim = TRUE, neighbours = 4)
table(cl2$clusters, iris[,5])
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