
An Interactive Web-Based Simulation of a General
Computer Architecture

William Yurcik*, Joaquin Vila, and Larry Brumbaugh

 Abstract This paper describes a web-based simulation
based on a conceptual paradigm used to introduce computer
architecture and assembly language programming to
undergraduate students. An application has been developed
using Java and made available on the web
(http://138.87.169.30/LMC/). We show how the web-based
application is used to teach basic programming concepts. In
addition, experience has been that interactive use of these
simulations enable student-centered learning of more complex
issues such as addressing modes and operating system concepts.
By visualizing all parts of the computer architecture
simultaneously during the execution of the program, this
application facilitates the comprehension of the von Neumann
architecture and its relationship to assembly language.
Examples of programs, system development trade-offs, and a
description of the user interface are presented. Future extension
of this type of simulation for other computer architectures is
discussed.

 Index Terms web-based simulation, computer architecture,
computer organization, assembly language, von Neumann
architecture.

I. INTRODUCTION

 Students taking introductory courses in computer
organization and assembly language find it difficult to
understand the various concepts related to computers without
a proper model/tool that represents the architecture of a
working computer.[3-9] We have developed a web-based
simulation tool for this purpose based on the Little Man
Computer (LMC) model developed by Stuart Madnick of
MIT.[1] This model has a set of instructions that can be
executed on the LMC and operates in a manner very similar
to actual computers, helping students to understand the basics
of computer architecture.

II. THE LMC PARADIGM

 The LMC paradigm consists of a walled mailroom, 100
mailboxes numbered 00 through 99, a calculator, a two-digit
location counter, an input basket, and an output basket. Each
mailbox is designed to hold a single slip of paper upon which
is written a three-digit decimal base number. Note that each

 Manuscript received on March 8, 2000. This work was supported in part
by grants from John Deere Corporation and State Farm Insurance Co.
 All authors are affiliated with the Department of Applied Computer
Science, Illinois State University USA.
* Corresponding author; additional contact information: Email
wjyurci@ilstu.edu, voice/fax 309-438-8016/5113, hard copy: Campus Box
5150, 202 Old Union, Normal IL 61790 USA.

mailbox has a unique address and the content of each
mailbox is not the same as the address. The calculator can
be used to enter and temporarily store numbers and to add
and subtract. The two-digit location counter is used to
increment the count each time the Little Man executes an
instruction. The reset for the location counter is located
outside of the mailroom. Finally there is the “Little Man”
himself, depicted as a cartoon character, who performs tasks
within the walled mailroom. Other than the reset switch for
the location counter, the only communication a user has with
the Little Man is via slips of paper with three-digit numbers
put into the input basket or retrieved from the output basket.

FIGURE I

THE LITTLE MAN COMPUTER PARADIGM

We have implemented the LMC paradigm as a web-based

application implemented in Java embedded within an applet.
The only user requirement is a Java-enabled browser such as
Internet Explorer 4.0 or Netscape Navigator/Communicator
3.0 and LMC can be accessed anywhere via the Internet.
User documentation is available via separate web help menus
and within the application itself.

The LMC simulation visually shows a one-pass assembly
process (mnemonic source code to machine code) and load
process (moving machine code into mailboxes). In the edit
mode users can write source code (which is automatically
checked for syntax errors) or load source code from an
existing file. For convenience of the programmer, three
different execution modes are provided: (1) Burst Mode,
where all instructions in the program are executed until a
HALT instruction is encountered; (2) Step Into, which

inbox

outbox

Address
2 digits

Contents
 3 digits

Walled Mailroom

100 Mailboxes

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
00
00
95
96
97
98
99

500
199
500
399
00
00
00
00
00
00
00
00
00
00
00

00

00

00
00

123

Counter

Little
ManCalculator

executes one instruction at a time; and (3) Step Over, which
is similar to Step Into except for SKIP instructions (for SKIP
instructions, if the condition is met the program executes the
next instruction and then waits for user interaction). Break
points are available for all three execution modes for
debugging. A flag register indicates error conditions and is
set/reset for corresponding overflow/underflow conditions
and zero/negative/positive values within the calculator.

A. Computer Architecture
 Although there have been experimental computer
architectures, the von Neumann architecture continues to be
the general architecture for computers. It is significant that in
a field where technological changes is so rapid that the
general computer architecture is virtually unchanged since
1951.[1] Today’s CISC and RISC architectures are consistent
with the broad characteristics that define a von Neumann
computer. The major characteristics that define a von
Neumann architecture include:

• stored program concept: memory holds both programs

and data

• linear memory addressing: there is a unique sequential

numeric address for every memory location

• memory is addressed by location without consideration

of memory contents.

• sequential execution of instructions (unless an

instruction or outside event causes a branch to occur)

• functional organization: control unit (executes

instructions), Arithmetic Logic Unit (ALU- arithmetic
and logic operations), Program Counter (PC),
Input/Output interfaces (I/O), and memory

It should be observed that the LMC is a direct example of a
von Neumann architecture. The calculator corresponds to the
ALU, mailboxes correspond to memory, location counter
corresponds to the PC, I/O corresponds to input/output
baskets, and the Little Man himself corresponds to the control
unit. Both data and instructions are stored in the mailboxes.
There is no distinction between data and instructions except
when a specific operation is taking place. The exact steps
performed by the Little Man are important for students to
visualize because they reflect the steps performed in a real
CPU when executing an instruction.
 It should also be noted that the analogy is not perfect. In a
real computer, memory (mailboxes) is actually separated both
physically and functionally from the central processing unit
(CPU). In a most computers, general-purpose registers
(accumulators) are available to temporarily hold data being
processed. In LMC, the calculator display panel loosely
serves the purpose of an accumulator. The path of Little Man
performing tasks is loosely equivalent to computer bus
connections but does not allow for data to be on different
busses simultaneously (Little Man in two places at once).
Clock timing and interrupts are not part of the LMC

paradigm. Lastly, the LMC instruction set is based on the
decimal system and a real CPU operates in binary. We make
this numbering system trade-off to highlight novice
understanding of computer architecture while rigorously
covering binary/octal/ hexadecimal representations elsewhere
in a course.

B. Instruction Set
 The Little Man performs tasks by following simple
instructions which are described by three-digit numbers. The
LMC instruction set is fundamentally similar to the
instruction sets of many different computers. In fact, the
LMC instructions – data movement, arithmetic, and
branching – are central to the instruction set of every
computer. In a LMC instruction, the first digit describes the
operation (opcode) and the last two digits specify the mailbox
address to be acted upon (operand). The instructions provide
a way to move data between the inbox, outbox, calculator,
and mailboxes. There are also instructions that cause Little
Man to stop (HALT) or branch conditionally/unconditionally
(SKIP).
 Table I defines the LMC instruction set. These nine
instructions are sufficient to perform the steps of any
computer program.

 TABLE I
LMC INSTRUCTON SET

Opcode Description Mnemonic
1
2
3
4
500
600
700

801
802
803
9

LOAD contents of mailbox address into calculator
STORE contents of calculator into mailbox address
ADD contents of mailbox address to calculator
SUBtract mailbox address contents from calculator
INPUT value from inbox into calculator
OUTPUT value from calculator into outbox
HALT - LMC stops (coffee break)
SKIP
 SKN - skip next line if calculator value is negative
 SKZ - skip next line if calculator value is zero
 SKP - skip next line if calculator is positive
JUMP – goto address

LDA XX
STA XX
ADD XX
SUB XX
IN
OUT
HLT

SKN
SKZ
SKP
JMP XX

NOTE: XX represents a two-digit mailbox address

 When working with students, we emphasize two things
about the LMC instruction set:

1. although any program can theoretically be implemented

in LMC assembly source code, the actual
implementation may be painful!

2. expanded instruction sets on modern computers do not

change the fundamental operations of the computer!

Like most assembly language instruction sets, it is difficult to
write useful functions in a small number of source code lines.
We use this to emphasis the relationship of high level
languages to assembly language in terms of programmability,
user friendliness, and efficiency. Computer instruction sets
on real computers are more sophisticated and flexible,
providing additional instructions that make programming
easier, however, these additional instructions do not change
the fundamental operations of the computer. Students learn
the important idea that a computer is nothing more than a

machine capable of performing simple instructions at high
speed. Later in the course we discuss instruction set
variations as the major difference between types of
computers and show specific examples of different code
which performs the same task.

C. Sample Programs
 Table II shows an example program in LMC assembly
language source code. We save for later discussion how
these instructions are stored in the mailboxes starting at
mailbox address 00. For this example program the user must
place two numbers in the Input Box. The sum of the two
numbers will appear in the Output Box.

TABLE II
PROGRAM TO ADD TWO NUMBERS

mailbox LMC assembly source code machine code
00
01
02
03
04
05
99

IN ; input 1st number from inbox to calculator
STA 99; store number from calculator in 99
IN ; input 2nd number from inbox to calculator
ADD 99; add contents of 99 to calculator
OUT ; output result from calculator to outbox
HLT ; stop
DAT 00; reserve and clear memory location

500
299
500
399
600
700
000

First we assume the location counter has been reset to 00.
The Little Man looks at the location counter (00) to find the
memory address containing the next instruction to be
executed. The Little Man goes to memory address 00, gets
the instruction from the contents of the memory address 00,
puts it on his forehead (to keep his hands free – the forehead
is often referred to as the instruction register in class
discussion), and then executes the instruction. When Little
Man completes executing an instruction, he goes to the
location counter and increments it (by 1 in his case). Then
Little Man looks at the location counter to find the memory
address of the next instruction and so forth until the HALT
instruction is executed. Thus the Little Man will execute the
instructions in the mailboxes sequentially starting at mailbox
00. Since the location counter is reset outside of the
mailroom, the user can restart the program simply by
resetting the counter.

D. Fetch-Execute Cycle
 We refer to the part of the repetitive cycle in which Little
Man finds an instruction to execute as the “fetch” portion and
the part of the cycle in which Little Man actually performs
the task specified in the instruction as the “execute” portion.
The fetch portion of the cycle is identical for each instruction
and occurs before the execution portion. The execute portion
is different for each instruction.
 This analogy is close to the fetch-execute cycle of a real
CPU. In a real CPU a detailed fetch-execute cycle would
entail: (1) transferring the contents of the PC to the Memory
Address Register (MAR) resulting in a the contents of the
memory address specified by the PC (the instruction) to be
moved to the Memory Data Register (MDR); (2) transferring
the contents of the MDR (the instruction) to the Instruction
Register (IR); and (3) the remaining steps are the execution
portion and thus instruction dependent. We discuss this

detail with students up to the point of optimizing microcode
for each instruction.

III. LMC TECHNICAL DESCRIPTION

A. Hardware and Software Requirements
 The hardware and software requirements for LMC are
generally available PCs running Windows 95/98/NT. LMC
should work on any Java-enabled web browser although only
tested with Microsoft Explorer and Netscape Navigator.

B. Java Implementation
 LMC was developed using Java JDK1.2 and is embedded in
an applet so as to provide ubiquitous access to users over the
Internet without the need for JDK1.2 to be installed locally.
Another advantage of using this approach is that the applet is
loaded in a separate window allowing the user to run the
application as well as look at the HTML documentation in
separate windows. To enable control of the LMC simulation,
multiple threads were implemented: one thread for executing
the program and a second thread listening for a user interrupt
to halt the program.

C. Security
 Applets have restricted access to computer file systems on
most browsers so to enable saving and loading of source code
the user has to install a signed certificate. Signed applets
have full functionality while unsigned applets may still
execute in a restrictive “sandbox” mode preventing hard disk
access and web site connections. Signing certificates for
Microsoft Internet Explorer and Netscape Navigator are
handled in different ways. Complete documentation is
provided online.

E. User Interface
 The following are the general principles used to design the
user interface to LMC:

• an intuitive Graphical User Interface (GUI)

• on-line help should be available at all times

• standardized error messages with explanations provided

• white user modifiable fields, gray unmodifiable fields

• equally-sized buttons that are enabled only when

required

• no more than five colors on the screen

• screen resolution is 800 X 600 (commonly available)

Our intent is to provide students a visualization of all
components within a computer architecture simultaneously,
an ability to observe the fetch-execute cycle during program
execution, and a highly interactive problem-solving
environment with flexible input/output demands.

 Below is a screen shot of LMC found at http://138.87.169.30/LMC/ . The various fields are explained as follows:

A: Editor to write source program or load existing file
B: Assembler, converts mnemonics to machine code
C: if syntax is correct the assembled machine code is here
D: Loader, loads machine code into mailboxes (memory)
E: Mailboxes, 100 from 00 to 99
F: input data here by typing here
G: click here to load input data to Input Box
H: click here to remove highlighted data from Input Box
I: Input Box, contains data entered from F and G
J: Calculator, user cannot interact with calculator buttons
K: Execution: Burst Mode
L: Execution: Step-Into Mode
M: Execution: Step-Over Mode
N: Halt, safety to stop Burst Mode Execution
O: Output Box
P: Program Status Field, contains flags and error messages
Q: Reset Location Counter (or Hand Counter)
R: Clear, clears all fields except source program in A
S: Menu Bar for various operations not shown here including:
 loading and saving of files, setting breakpoints, help etc.
T: Security, indicates certificate and author of certificate

III. EDUCATIONAL USES OF LMC

A. von Neumann Architecture
 This LMC simulation is an instance of the von Neumann
architecture. We have found that LMC visualization provides
an opportunity to examine the concepts underlying this von
Neumann architecture.
 After introducing digital logic, students understand that a
small set of logic components can be combined to implement
almost any function (Boolean logic, truth tables, karnaugh
maps). The question is then posed to students: if a particular
computation is to be performed why not “hardwire” a
configuration of logic components. From this students
eventually converge to the general purpose configuration of
logic functions which can perform various operation
depending on control signals applied to hardware.
 A next question is posed to students: how shall control
signals be applied? The answer is simple but subtle.[5]
With direction, students converge to providing a unique code
for each control signal and then creating a hardware device
which accepts this code and generates control signals.
 At this point it can be revealed to students that they have
defined software programming as code (instructions)

Q

A

B

C

D

E

G

H

F

I

J

K M L N

O

P

R

S

T

executed by hardware (interpreting each instruction and
generating control signals) without the need for rewiring.
 One more component is necessary. While instructions and
data can be input, a program is not necessarily executed in
the same order as the code is input, there must be a place to
temporarily store both instructions and data. Without much
help students converge to the concept of memory which can
lead to discussion of the memory hierarchy and virtual
memory.

B. Addressing Modes
 Addressing modes add flexibility and convenience to the
programmer without significantly altering the fundamental
simplicity of LMC. The Madnick LMC paradigm is limited
to direct, absolute addressing but we have extended our LMC
simulation to include immediate and indirect addressing
(indexed addressing to be added in the near future). Students
find these addressing modes allow them to make connections
with data structures such as arrays and linked lists using
pointers learned in previous algorithm courses.
 There are situations where it is both acceptable and
convenient to store date within an instruction itself. For these
situations we have implemented immediate addressing. In
immediate addressing (denoted by # symbol) the operand
field of the instruction is the actual value to be acted upon.
For example, the instruction LDA #77 loads the value 77 into
the calculator. Immediate addressing is not compatible with
all instructions. For example, the store instruction cannot use
immediate addressing – STA #77 is both ambiguous and
incomplete – does it mean store the value 77 somewhere or
store some value in mailbox address 77.

Indirect addressing provides a second level of indirection:
the operand field of an instruction contains the address of the
address of the value to be acted upon. Students found it
intuitive to understand this concept as degrees of separation
between the instruction and the data to be acted (i.e., six
degrees of separation – Kevin Bacon Game
http://www.cs.virginia.edu/oracle/bacon_info.html). Usually
addressing is one of the more challenging concepts to
communicate but the visualization of addressing modes
(including immediate and indirect addressing) has made these
concepts intuitive such that focus can be placed on more
advanced concepts using these underlying techniques.

C. Operating Systems Concepts
 LMC also introduces the fundamental concepts of Operating
Systems (OS) in several different ways. First, students
understand that the external reset for the LMC location
counter is similar to the bootstrap process of a real computer
accessing a predetermined address in ROM to load the OS
kernel. Second, students realize the LMC is a one-trick pony
in that it only executes a single program and stops. A real
computer would have an operating system allocating
resources between different processes and would not stop and
require rebooting after the execution of each program.
Lastly, the LMC machine code output of the assembler
generally assumes a fixed program starting point, memory
location 00. Most OS do not assign programs to a particular
location, rather the OS assumes that the program is

relocatable and assigns it a location that is convenient under
the dynamic computer conditions at load time. With
accelerated course progress, an assignment may be given to
implement this OS operation as an LMC loader program.

IV. CONCLUSION

 We have presented a web-based simulation of a general
computer architecture based on the LMC paradigm of Stuart
Madnick and showed how LMC can be used as the central
model/tool for Computer Architecture and Assembly
Language Education (CAALE). We feel that the use of
interactive simulation is a powerful tool to enable CAALE
active learning and report our teaching techniques here with
the hope that others in the CAALE community will use LMC
and provide us feedback.

 With the success of this LMC simulation of a general
computer architecture, we have embarked on simulating more
complex computer architectures modeled on real CPUs.
Specifically we want students to visualize different ways of
implementing the von Neumann architecture based on
cost/speed tradeoffs. We have a prototype 8085 CPU
simulator in beta test and a VAX11 CPU simulator under
development. See the following URL for future
contributions: http://www.acs.ilstu.edu/faculty/wjyurci/caale/

V. ACKNOWLEDGMENTS

 The authors wish to acknowledge the following students
who were instrumental in the development of this LMC
simulation: Anita Knap who programmed the first LMC
prototype, Rahul Gedupudi who programmed this LMC
second version of LMC simulation as a Masters Project[2]
and continues to maintain and provide upgrades, and lastly
the ACS 254 classes at Illinois State University during the
Fall 1999 and Spring 2000 semesters who learned along with
us the value of active learning using interactive simulation.

REFERENCES

[1] I. Englander, The Architecture of Hardware and Systems Software: An

 Information Technology Approach, John Wiley & Sons, 1996.
[2] R. Gedupudi, Simulation of Little Man Computer, Masters Project

Documentation, Department of Applied Computer Science, Illinois
State University, February 29, 2000.

[3] L. Beck, System Software: An Introduction to Systems Programming,
 Addison-Wesley, 1985.
[4] D. A. Patterson and J. L. Hennessy, Computer Organization &
 Design: The Hardware/Software Interface 2nd edition, Morgan
 Kaufmann, 1998.
[5] J. L. Hennessy and D. A. Patterson, Computer Architecture A
 Quantitative Approach 2nd edition, Morgan Kaufmann, 1996.
[6] W. Stallings, Computer Organization & Architecture 5th edition,
 Prentice Hall, 2000.
[7] M.M. Mano, Computer System Architecture 3rd edition, Prentice Hall,
 1993.
[8] A. S. Tanenbaum, Structured Computer Organization 4th edition,
 Prentice Hall, 1999.
[9] J. E. Brink and R.J. Spillman, Computer Architecture and VAX
 Assembly Language Programming, Benjamin Cummings, 1987.

http://www.acs.ilstu.edu/faculty/wjyurci/caale/

