
UVM-based RISC-V processor
verification platform

Tao Liu, Richard Ho, Udi Jonnalagadda

● Motivation

● What makes a good instruction generator

● Random instruction generation flow

● RTL and ISS co-simulation flow

● Benchmark

● Future work

Agenda

Open source RISC-V processor verification solutions

riscv-tests
Assembly unit test
A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator
Provides a good mix of hand-written sequences. Supports most
RISC-V ISA extensions which makes it very attractive. Simple
program structure and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

Many missing pieces

● Complex branch structure
● MMU stress testing
● Exception scenarios
● Compressed instruction support
● Full privileged mode operation

verification
● Coverage model
● ...

Motivation
Build a high quality open DV infrastructure that can be adopted and enhanced by DV
engineers to improve the verification quality of RISC-V processors.

Why SV/UVM

SystemVerilog (SV)
Most popular verification language, provides great
features like constrained random, coverage groups etc.

Universal Verification Methodology (UVM)
Most prevalent verification framework in the industry

We want to build something with the industry standard
verification language and framework which most DV
engineers can easily understand and extend.

What makes a good instruction generator

01
Randomness

Randomize everything:
instruction, ordering,
program structure,
privileged mode setting,
exceptions..

02
Architecture-aware

The generated program
should be able to hit the
corner cases of the
processor architectural
features.

04
Extendability

Easy to add new instruction
sequences, custom
instruction extension,
custom CSR etc.

03
Performance

The instruction generator
should be scalable to
generate a large program in
a short period of time.

Randomness

Instruction level randomization
Cover all possible operands and immediate values of each instruction
Example: Arithmetic overflow, divide by zero, long branch, exceptions etc.

Sequence level randomization
Maximize the possibility of instruction orders and dependencies

Program level randomization
Random privileged mode setting, page table organization, program calls

DIV Branch Load Fence StoreSHIFT

Instruction randomization

Easy part

Arithmetic: ADD, SUB, LUI, MUL, DIV ...
Shift: SLLI, SRL, SRLI, SRAI …
Logical: XOR, OR, AND, ANDI …
Compare: SLTI, SLT, SLTU …
Others: FENCE, SFENCE, EBREAK ...

Randomize each instruction individually with
bias towards corner cases.
(overflow, underflow, compressed
instruction)

Tricky part

Branch / jump instruction
Need a valid branch/jump target
 Avoid infinite loop

Load/store/jump instruction
Need an additional instruction to setup the base address
The calculated address should be a valid location

CSR instruction
Avoid randomly changing the privileged state
Result checking could be a challenge as the privileged
CSR behavior could be implementation-specific.

Load/store instruction generation

la x10, data_label
lw x11, x10, 20

la x10, data_label
add x12, x13, x14
xor x14, x5, x6
lw x11, x10, 20

A basic load/store instruction needs additional
instruction to setup the base address (rs1)

Mix the atomic instruction stream with other
irrelevant instructions to improve instruction order
combination coverage

Basic load/store instruction

Similar atomic instruction stream
JAL/JALR
Stack push/pop operations
Loop structure

Forward branch

Branch instruction generation

Randomly pick a forward target
Avoid step into the atomic instruction

stream

1
2
3
4
5

6
7

OK

OK

Not allowed

Mostly OK

Atomic
instruction

stream

Backward branch
A dedicated instruction stream to properly

setup loop structure, make sure the loop exit
condition can be triggered

Init loop counter register

… ...

Init loop limit register

… ...

… ...

… ...

Update loop counter register

… ...

 Backward branch instruction

 Call stack randomization

A A B

A B N...

Avoid loop function call

Main

Sub1 Sub2 Sub3 Sub4

Sub5 Sub6 Sub7

Subn

Generate call stack in a tree structure

Page table randomization

PPN2 PPN1 PPN0 PPN2 PPN1 PPN0

PPN2 PPN1 PPN0

PPN2 PPN1 PPN0 PPN2 PPN1 PPN0

PPN2 PPN1 PPN0

PPN2 PPN1 PPN0
...
...

PPN2 PPN1 PPN0
...
...

PPN2 PPN1 PPN0
...
...

Example: SV39 page table randomization (with exception injection)

4KB

!

!

!

Root table (1GiB) Level 1 page (2MiB) Level 0 page (4KiB)

Architecture aware

01 Branch prediction 02 MMU (TLB, Cache etc)

Code segment 0

Code segment n

Code segment k

Data page 0
Data page 1
Data page 2
Data page 3
Data page 4
Data page 5
Data page 6
Data page 7
Data page 8
Data page 9Load

Store

Jump

Jump

BHT

Address
TAG

Prediction
bits

M

U

U

Trap handlerS

Trap

Instruction

Architecture aware

03 Issue, execute, commit

It’s not just a random stream
of instructions, it should be
designed to effectively verify
the architectural features of
the processor.

R3 <- R4 + R5
R1 <- R3 + R8

RAW

R2 <- R4 + R5
R4 <- R3 - R8

WAR

R2 <- R4 + R5
R2 <- R3 + R8

WAW

Issue

Execution
unit

Execution
unit

Execution
unit

Commit

Exceptions!

Generator
flow

Generate program header

Privileged mode setup

Page table randomization

Initialization routine

Generate main/sub programs

Branch target assignment

Generate data/stack section

Generate page tables

Generate intr/trap handler

Test completion section

Call stack randomization

Apply directed instructions

Memory map
All instructions and data are located in
continuous physical address space, and
are mapped to the virtual address space
through page table.

Initialization routine

Main program

Sub program 0

… ...

Sub program n

Interrupt handler

ECALL handler
Exception handler

Data page 0

Data page n

….

Stack section

Instruction

Data

Stack

reset entry

Page table 0

Page table n

... Page table

satp

RTL & ISS co-simulation flow

UVM random
instruction
generator

RISC-V
compiler

RISC-V
ELF

Link script

RISC-V
assembly

RISC-V ISS
(spike)

ISS sim
log

RISC-V plain
binary

RISC-V
Processor

DUT

Memory
model

RTL sim
log

Log
compare

objcopy

RTL simulation environment

Complete feature list

Test suite

Basic arithmetic instruction test

Random instruction test

MMU stress test

Page table exception test

HW/SW interrupt test

Branch/jump instruction stress test

Interrupt/trap delegation test

Privileged CSR test

Supported ISA
RV32IMC, RV64IMC

Supported privileged mode
User mode, supervisor mode, machine mode

Supported spec version
User level spec 2.20, privileged mode spec 1.10

Supported RTL simulator
VCS, Incisive

Benchmark flow

Pulpino RI5CY:
4 stages, RV32-IMC, DSP extension
Pulpino Ariane :
6-stage, RV64-IMC, single issue,
in-order, support M/S/U privileged levels
Merlin:
Open Source RV32I[C] CPU

Ariane core architecture

Processor candidates

Benchmark metrics

Bug hunting capability, test coverage
Flow integration effort, performance

ISS simulator

Spike

https://github.com/pulp-platform/ariane

Cache line access racing

Bugs found

Load
Store
Load
Load

SSTATUS

MSTATUS

mxr ...

mxr ...

wr rd

Is
su

e

LSU

ALU

...

Multiplier

Fence

PT 1

PT 0 PT 2

PT 3

PT 4

Load Branch Add ... Mult

privileged CSR access FENCE operation failure

page fault handling Incorrect branch execution

MULHSU

ALU corner case bug

Build it
together.
It’s just the beginning ...
More instruction extensions support F/V/A
Performance verification suite
Security verification
Coverage model
...

Planned release date: 01/2019
Please sign up Google group “riscv-dv” for
further update
https://groups.google.com/forum/#!foru
m/riscv-dv

Reference

● riscv-tests
● riscv-torture
● Ariane core specification
● RI5CY core specification
● Merline core specification
● UVM (Universal Verification Methodology)

https://github.com/riscv/riscv-tests
https://github.com/ucb-bar/riscv-torture
https://pulp-platform.github.io/ariane/docs/home/
https://www.pulp-platform.org/docs/ri5cy_user_manual.pdf
https://github.com/origintfj/Merlin
https://workspace.accellera.org/downloads/standards/uvm

