Reverse engineering smart cards

Christian M. Amsiiss

linuxwochen@christian.amsuess.com

http://christian.amsuess.com/

2010-05-06

linuxwochen@christian.amsuess.com
http://christian.amsuess.com/

Overview

objective understand smart card communication based on
sniffable communication

hardware standard card reader

software something that can talk to the smart card (typically
in emulator), cat /dev/usbmon0, some own tools

Smart card basics

Practical examples

Smart card basics

Common cards and readers

Low level

» shape and contacts defined in 1ISO 7816-1 and -2
» contacts for ground, power, reset, clock, and 1/0
> serial communication

» ATR: answer to reset (up to 33 byte)

» protocol T=1 for sending and receiving byte string messages

High level

A W N

>
<
>
<

00 a4 00 00 02 01 02
90 00

00 b0 00 00 00

00 00 02 14 90 00

» command/response dialogue
» command = APDU, consisting of
» CLA (usually 00, other values indicate proprietary commands
or RFU)
» INS (instruction, eg. a4 = “Select File")
» P1, P2 (arguments, eg 04 00 = “Select by DF")
» length and data, depending on INS
> response, consisting of

» data, depending on INS
» SW1, SW2 (return code, eg 90 00 = “OK")

Interfaces and drivers

CCID standard for USB card readers
PC/SC Windows API for smart cards
PCSC-Lite the same interface on Linux and OS X
OpenSC library focused on crypto (PKCS#x), brings some

own drivers
libchipcard library focused on not blocking unused devices
carddecoders my tools and example programs for smart card
reverse engineering, based on Python PCSC bindings

(http ://christian.amsuess. com/tools/carddecoders/)

http://christian.amsuess.com/tools/carddecoders/

Practical examples

Trying it out: pcsc-tools

Flo Resder Rup Settings

gscriptor: l—ox

Hep
serpt Resut

reset Begnning scrpt execution.
00 24 04 0408 d0 40 00 00 17 01 01 02

et

eset]
R: 38 BD 18 00 €1 31 FE 45 80 51 02 67 04 14 B1 01 01

.
A
Sending 00 A4 04 0C 08 D9 40 00 00 17 01 01 01
Received 50 00

Normal processing

B4 14 81 81

Scriot was exacuted whaut aror.
Y o i

) wraplines
asci

> pcsc_scan

» (g)scriptor

Sniffing on Linux

A W N

» Software that talks to the card can run in a VM (eg. ActiveX
applet)

> Linux lets you sniff USB communication using /dev/usbmon0;
output is CCID inside usbmon’s binary logging format

» Workflow:

sudo cat /dev/usbmonO > sniffing run_1.out

Do something with the card

Stop cat with ~C

logdecoder -r sniffing run 1.out (from carddecoders)

vV vy vy

NV AV

00
90
00
00

a4 00 00 02 01 02
00

b0 00 00 00

00 02 14 90 00

Interpreting returned data: Encodings

» Look for numbers known to be read
» Big Endian: 02 00 =512

00 a4 00 00 02 01 02
90 00

00 b0 00 00 00

00 00 02 14 90 00

A N
a | ANV AV

5.32

Interpreting returned data: Encodings

SOl W N

» Look for numbers known to be read
» Big Endian: 02 00 =512
» Binary Coded Decimal: 12 34 = 1234

00 a4 00 00 02 3f 00

90 00

00 a4 00 00 02 00 02

90 00

00 b0 00 00 08

09 6f 06 70 00 212000 90 00

NN NV ANV

BLZ 12000

Interpreting returned data: Encodings

Look for numbers known to be read
Big Endian: 02 00 =512

Binary Coded Decimal: 12 34 = 1234
ASCII: 31 32 33 34 = 1234

v

v

v

v

Interpreting returned data: Encodings

» Look for numbers known to be read
Big Endian: 02 00 =512

Binary Coded Decimal: 12 34 = 1234
ASCII: 31 32 33 34 = 1234

Other creative encodings for dates etc.

v

v

v

v

1|> 00 b2 01 04 00
2 |< [...] 90 00 010005 1046 01 00 [...]
3> 00 b2 02 04 00
4 |< [...] 90 00 009344 1331 00 00 [...]
51> 00 b2 03 04 00
6 |< [...] 90 00 009344 1331 00 00 [...]

2010-01-05, 10:46 local time (day 5 of the year '010)
2009-12-10, 13:31 local time (day 344 of the year '009)

Exploring commands

» Some commands can be bent.

1|> 00 b0 00 00 08
< 09 6f 06 70 00 21 20 00 9000

According to ISO 7816, the last byte gives the number of bytes to
read. Let's assume it works like POSIX's read:

1 |> 00 b0 00 00 00
< 09 6f [...] 95 01 23 66 02 00 [...] 01 [90N00

Exploring commands

» Some commands can be bent.

» Others can be bruteforced.

1|> 00 a4 00 00 02 df 01
< 9000

This was known to work. .. Let's try this:

1|> 00 a4 00 00 02 df 08

© 62 00

No ...One more?

1|> 00 a4 00 00 02 df 09
< 6f 14 84 07 a0 00 [...] 54 52 4f [90/00

This works, and even sends data immediately.

Card state

» Smart card directory structure:

/ 3f 00 master file (MF)
00 02....vvvnnnnn. single file: “Read Binary"”
df 0l..evuvviniennnnnnn. dedicated file (DF)

tm 01

01 03....fixed records: "“Read Record(n)"
df 09

|00 01 . variable records: “Read Record(n)"

> File selection seems rather safe for experimenting

» More card state: authentication, challenge/response (limited
tries!)

Tools provided by carddecoders

A W DN R

A W N

» logdecoder

Decodes usbmon output to

> 00 a4 00 00 02 00 02

< 90 00

> 00 bO 00 00 08

< 09 6f 06 70 00 21 20 00 90 00

... And generates Python code from it:

card.transmit(SelectFile ([0x00, 0x02]))
OK

card.transmit (ReadBinary(length=8))

09 6f 06 70 00 21 20 00, OK

Tools provided by carddecoders

~NOoO o Ww N

A W DN R

» logdecoder
» carddecoders.reverse_helpers

Find numbers in various encodings

>>> contains_number(ByteString(

"09 6f 06 70 00 21 20 00"), 12000)
number found in BCD at offset 5.5 bytes
>>> contains_number(ByteString(

"09 6f 06 70 00 21 20 00"), 1648)
number found in big endian encoding ending
at 4.0 bytes

Find length indicators:

>>> backward_length(ByteString(

"70 3c 5f [...] 5f 28 02 00 40"))
index 1: 60 remaining
index 59: 2 remaining

Further reading

» Introduction to Smart Cards

http://www.smartcard.co.uk/tutorials/sct-itsc.pdf

» Overview over ISO 7816

http://www.cardwerk.com/smartcards/smartcard_standard_IS07816.aspx

» Smartcard protocol sniffing (hardware side)

http://events.ccc.de/congress/2007/Fahrplan/events/2364.en.html

http://www.smartcard.co.uk/tutorials/sct-itsc.pdf
http://www.cardwerk.com/smartcards/smartcard_standard_ISO7816.aspx
http://events.ccc.de/congress/2007/Fahrplan/events/2364.en.html

	Smart card basics
	Practical examples

