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Abstract
The approach known as representational learning is a set of techniques that allows the automatic
discovery of features required for a machine learning task from raw data. In recent years, the application
of these techniques to graphs has shown promising results in node classification tasks. This work applies
representational learning to identify users that share COVID-related conspiracy theories, using their
interactions with peers as the main features for the classification algorithms. To do so, Node2vec and
FastRP were used to learn numeric representations, i.e. embeddings, of the users. Then, Random Forest
and XGBoost were used for the downstream classification task. In addition, a pseudo-labeling procedure
was applied. The experimentation shows that using interaction data for the classification task achieves
better performance compared to classifying using only node attributes. Moreover, FastRP achieve better
performance compared to Node2vec. However, pseudo-labeling does not improve the performance of
the models at all. Finally, we reject the inclusion of "cannot determine" labels in our model, as they prove
to be detrimental.

1. Introduction

This work introduces a social network analysis approach to detect nodes spreading conspiracy
theories related to COVID1. The overview paper [1] explains the task in depth. The paper focuses
on the actors, rather than the messages, and their interactions within a network as features for
classification. In particular, it focuses on the use of representational learning techniques [2] to
generate user embeddings in a semi-supervised manner, i.e. using unlabeled nodes related to
the original training sample, to be used in a downstream classification task [3].

2. Approach
Random Forest [4] and XGBoost [5] were selected as classifiers heads due to their good general
performance in different tasks [6]. Additionally, given the unbalanced nature of the dataset,
we have opted for the use of weights, assigning greater importance to the spreaders class.
Concerning the graph, due to its size, many of the techniques to be applied were not feasible.
Therefore, the most superfluous connections, i.e. those edges with a weight of less than a
threshold, were incrementally removed until a graph with a feasible size was reached. This was
achieved with a threshold of five. However, as this generated several connected components,
all the superfluous edges that touched any of the nodes under study, i.e. those with a label or
those that need to be labeled, were added. Finally, all nodes outside the biggest component were
discarded. The final graph had 1, 574, 681 nodes and 39, 946, 463 edges.
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2.1. Node attributes only
As a baseline standard, a classification model using only the node attributes was created. The
information from each node (Twitter account) available for the classifier is the following: creation
date (number of days after Twitter’s creation), description length, number of favorites, number
of statuses, number of friends, and country (as one hot encoding + "unknown_country"). All
the data was normalized between 0 and 1.

2.2. Representational learning
Representational learning techniques generate vectors (also known as embeddings) so that
nodes that are similar in the graph are closer together in the embedding space [2]. Once the
embeddings for each node were calculated, they were used in a downstream classification task.
For this work, two representation learning techniques were used: node2vec [7] and FastRP [8].
The former is a popular method that has proven good results in node classification tasks [9].
The latter is a random projection algorithm that is capable of generating embeddings that take
into account node attributes, which node2vec cannot do.

2.3. Pseudo-labeling
Pseudo-labelling is a semi-supervised technique that selects unlabeled samples that a model has
classified with high confidence and adds them to the training set. Rizve et al. [10] argue that
pseudo-labeling performance is usually low due to erroneous high-confidence predictions from
poorly calibrated models; these predictions generate many incorrect pseudo-labels, resulting
in noisy training. To correct this problem they propose an uncertainty-aware pseudo-label
selection framework. Originally, the authors propose their framework to be used with neural
networks. Therefore, in this work, we adapted that framework to work with tree ensembles.
In particular, we changed the uncertainty estimation method MC-Dropout [11] to the method
proposed by Polimis et al. [12].

2.4. "Cannot Determine" labels
The ability of the model to identify when a sample cannot be determined was assessed using
two approaches. The first uses the output probabilities generated by the model. When the
probability is lower than a threshold, the sample will be labeled as "Cannot Determine". The
second uses the confidence of the model’s predictions instead of the output probabilities. Finally,
to calculate the confidence of a model’s prediction the method proposed by Polimis et al. [12]
was used.

3. Results

3.1. Validation and hyperparameter tuning
To obtain robust metrics we follow the Stratified KFolds cross-validation method with 10 folds.
The Matthews correlation coefficient (MCC) [13] was used as the evaluation metric. To evaluate
each model, the mean and standard deviation of the scores obtained in each fold was computed.
In addition, Optuna [14] framework was used for hyperparameter tuning. Table 12 and 23 shows
the values selected for the hyperparameters.

2For the rest of the values of the hyperparameters refer to the default in https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestClassifier.html and https://xgboost.readthedocs.io/en/stable/python/
python_api.html#xgboost.XGBClassifier

3For the rest of the hyperparameters refer to the default values in https://neo4j.com/docs/graph-data-science/
current/machine-learning/node-embeddings/fastrp/ and https://neo4j.com/docs/graph-data-science/current/
machine-learning/node-embeddings/node2vec/
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https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier
https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier
https://neo4j.com/docs/graph-data-science/current/machine-learning/node-embeddings/fastrp/
https://neo4j.com/docs/graph-data-science/current/machine-learning/node-embeddings/fastrp/
https://neo4j.com/docs/graph-data-science/current/machine-learning/node-embeddings/node2vec/
https://neo4j.com/docs/graph-data-science/current/machine-learning/node-embeddings/node2vec/


Random Forest Node
attributes

Node2Vec FastRP FastRP
optimized

n_estimators 132 128 120 183
min_samples_leaf 3 2 4 0.22
min_samples_split 2 3 2 0.22
max_depth 14 15 15 7
class_weight(1/2) 1.0/2.001 1.0/2.547 1.0/2.109 0.615/1.161

XGBoost Node
attributes

Node2Vec FastRP

learning_rate 0.084 0.020 0.037
min_child_weight 3 3 5
gamma 4.65 4.66 3.80
subsample 0.92 0.97 0.97
colsample_bytree 0.62 0.62 0.59
max_depth 12 16 14
scale_pos_weight 3.94 3.35 3.39

Table 1
Hyperparameters selected for ensemble models. Rows are hyperparameters and columns are different
approaches.

FastRP default optimized

embedding dimensions 64 416
iteration weights [0.0, 0.0, 0.5, 1.0] [0.0, 0.0, 0.7, 0.1]
normalization strength -0.5 0.78
property ratio 0.11 0.20

Node2vec default

embedding dimension 64
walk length 100
walks per node 17
in out factor 0.88
return factor 0.57

Table 2
Hyperparameters selected for representation techniques. Rows are hyperparameters and columns are
different approaches.

3.2. Ensemble results

Approach Random Forest XGBoost

Node attributes 0.130 (0.054) 0.156 (0.055)
Node2Vec 0.129 (0.061) 0.115 (0.088)
FastRP 0.259 (0.063) 0.301 (0.030)
FastRP optimized 0.434 (0.071)

Table 3
MCC scores obtained by the different approaches and tree ensembles. Mean and standard deviation
obtained in the 10 folds

Table 3 contains the 10-fold MCC means and their standard deviation. The row "node
attributes" refers to the baseline approach; "Node2vec" to the representational learning approach
using the default hyperparameters; "FastRP" is the same as "Node2vec" but using the FastRP
method instead; and, "FastRP optimized" is the representational learning approach where both
the hyperparameters of FastRP and random forest were optimized at the same time.

3.3. “Cannot Determine” labels

Figure 1 shows the variation of the MCC score when different thresholds are selected for the
FastRP optimized model. The graph on the right shows the results of the model’s confidence
in the prediction, while the graph on the left shows the results of the output probability. As
we can see, labeling samples as "Cannot Determine" did not improve the model performance.
Please note that the maximum value is always obtained at the maximum possible value of the
threshold. Hence, no sample is labeled as "Cannot Determine".
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Figure 1: MCC variation with threshold: model confidence (left) vs. output probability (right).

3.4. Pseudo-labeling

The effectiveness of the pseudo-labeling was evaluated by comparing the MCC of FastRP
optimized model trained with labeled data only to the one trained with pseudo-labeling. For
this procedure, 10, 000 extra unlabeled nodes were randomly selected. A 𝜃𝑝𝑟𝑜𝑏𝑎 of 0.7, and a
𝜃𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 of 0.15 were selected after manual experimentation. This process has been repeated
for each fold of a stratified KFold validating procedure with 31 iterations.

At the end of the pseudo-labeling procedure carried during each fold, at least 95% of unlabeled
samples were used to train the model. However, a Kruskal-Wallis H-test p-value of 0.75 showed
that applying the pseudo-labeling procedure was unhelpful.

4. Discussion and outlook
This work presents a model for detecting COVID conspiracy theory spreaders online. Four
approaches were proposed: (i) Baseline model with node attributes only; (ii) representation
learning model using node2vec and FastRP to calculate node embeddings; (iii) Pseudo-labeling
with unlabeled data; (iv) Labeling nodes as ’cannot determine’ for low-confidence predictions.

From our experimentation, it can be concluded that for our particular setup: (i) topology-based
models outperformed attribute-based ones; (ii) FastRP embeddings outperformed node2vec
due to its ability to consider node attributes and topology features; (iii) "Cannot determine"
labels were unhelpful, as the experiments show the same confidence distribution for correct
and incorrect predictions; (iv) finally, applying a pseudo-labeling procedure does not further
improve the performance of the model
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